电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

解直角三角形教案1

来源:莲生三十二作者:开心麻花2026-01-071

解直角三角形教案1(精选13篇)

解直角三角形教案1 第1篇

28.2.1解直角三角形

西湖中学 黄 勇

一、内容和内容解析

1、内容:解直角三角形的意义,直角三角形的解法。

2、内容解析:本节是学习锐角三角函数之后,结合已学过的勾股定理和三角形内角和定理,研究解直角三角形的问题。本课内容既能加深对锐角三角函数的理解,又能为后续解决与其相关的实际问题打下基础,在本章起到承上启下的作用。

二、目标和目标解析

1.了解解直角三角形的意义和条件.

2.能根据直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的知识解决有关的实际问题.

目标解析:达成目标1的标志是,知道解直角三角形的内涵,能根据直角三角形中已知元素,明确所有要求的未知元素。达成目标2的标志是根据元素的关系,选择适当关系式,求出未知元素。

三、学情分析

在直角三角形的边角关系中,三边之间的关系、两锐角之间的关系比较直接,而两边的比与一个锐角的关系,学生通过学习锐角三角函数,有了一定的基础,但在具体的直角三角形中,根据已知条件选择恰当的锐角三角函数,还是有些困难,且解直角三角形往往需要综合运用勾股定理及三角函数的知识,具有一定的综合性。

CB

四、教学过程

1、实例引入,初步体验

本章引言提出的比萨斜塔倾斜程度的问题。设塔顶中心点为B,塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引 垂线,垂足为点C,在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数。

sinA=BC5.2≈0.0954 AB54.5A一般地,在直角三角形中,除直角外,共有五个元素,即三条边和两个角,由已知元素求出其余未知元素的过程,叫做解直角三角形.

解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如下图:

角角关系:两锐角互余,即∠A+∠B=90°;

222边边关系:勾股定理,即abc;

边角关系:锐角三角函数,即:

a,cosAcbsinB,cosBcsinAb,tanAca,tanBca,cotAbb,cotBabaab

解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);

(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.

用解直角三角形的知识解决实际问题的基本方法是:

把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.

借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.

例1 在△ABC中,∠C=90°,根据下列条件解直角三角形. AC2,BC6解这个直角三角形。

思路与技巧

求解直角三角形的方法多种多样,可以先求AB,也可以先求∠A,依据都是直角三角形中的各元素间的关系,但求解时为了使计算简便、准确,一般尽量选择正、余弦,尽量使用乘法,尽量选用含有已知量的关系式,尽量避免使用中间数据. 解答

tanABC63AC2

A60o

B90oA90o60o30o AB2AC22A

C B 例2 如图,CD是Rt△ABC斜边上的高,BC23,CD22,求AC,AB,∠A,∠B(精确到1′).

思路与技巧 在Rt△ABC中,仅已知一条直角边BC的长,不能直接求解.注意到BC和CD在同一个Rt△BCD中,因此可先解这个直角三角形.

解答 在Rt△BCD中

BDBC2CD21282

sinBcosBCD226BC323BD23BC323

用计算器求得 ∠B=54°44′ 于是∠A=90°-∠B=35°16′ 在Rt△ABC中,ABBC3236cosB36263 ACABsinB6

五、课堂小结

1、直角三角形中,除直角外,五个元素之间的关系。

2、什么是解直角三角形。

六、课堂练习

在Rt△ABC中,∠C=90°,根据下列条件解直角三角形。

(1)C=20,b=20;(2)∠B=72°,c=14;(3)∠B=30°,a=7

解直角三角形教案1 第2篇

步讨论

●教学目标 知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。

过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。

情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。●教学重点

在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法;三角形面积定理的应用。●教学难点

正、余弦定理与三角形的有关性质的综合运用。●教学过程 Ⅰ.课题导入 [创设情景] 思考:在ABC中,已知,,解三角形。

(由学生阅读课本第9页解答过程)

从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。下面进一步来研究这种情形下解三角形的问题。Ⅱ.讲授新课 [探索研究] 例1.在ABC中,已知,讨论三角形解的情况

分析:先由则

可进一步求出B;

从而

才能有且只有一解;否则无解。1.当A为钝角或直角时,必须2.当A为锐角时,如果≥,那么只有一解; 如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解。(以上解答过程详见课本第910页)

评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且

时,有两解;其它情况时则只有一解或无解。

[随堂练习1](1)在ABC中,已知,,试判断此三角形的解的情况。

(2)在(3)在ABC中,若ABC中,,,则符合题意的b的值有_____个。,如果利用正弦定理解三角形有两解,求x的取值范围。

(答案:(1)有两解;(2)0;(3)例2.在ABC中,已知分析:由余弦定理可知,),判断

ABC的类型。

(注意:解:∴[随堂练习2]

(1)在ABC中,已知(2)已知ABC满足条件(答案:(1),判断ABC的类型。,判断ABC的类型。

;(2)

ABC是等腰或直角三角形),即。,)

例3.在ABC中,,面积为,求的值

分析:可利用三角形面积定理以及正弦定理

解:由则

得=3,即,从而Ⅲ.课堂练习(1)在ABC中,若,且此三角形的面积,求角C(2)在ABC中,其三边分别为a、b、c,且三角形的面积或

;(2)),求角C(答案:(1)Ⅳ.课时小结

(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;

(3)三角形面积定理的应用。

Ⅴ.课后作业(1)在ABC中,已知,,试判断此三角形的解的情况。

(2)设x、x+

1、x+2是钝角三角形的三边长,求实数x的取值范围。(3)在ABC中,,判断

解直角三角形应用 第3篇

教学反思

1.关于设计思路

创设情境, 引入新课———实际问题, 学习新知———应用知识, 培养能力———归纳总结, 整理提升———布置作业, 巩固知识.

通过创设情境, 让学生“了解问题的存在背景”, 使学生产生解决问题的欲望.通过生活的实例, 了解仰角、俯角的概念, 并能在实际背景中找出仰角和俯角.设置梯度合理的练习题应用性质, 使学生经历从实际问题抽象成数学问题的探索过程 (这是本节课的难点) , 让学生动口说、动手画, 层层递进来突破难点. (从学生作业反馈情况来看, 本节的难点突破很好, 学生画示意图转化成数学问题已全部过关.)

2.关于练习题、问题的配置

问题的配置分下面几个层面:

第一层:小文提供了一些数据:已知这两栋楼相距约30米, 在他家阳台的测点N处用高为1.5米的测角仪, 测得楼顶部A点的仰角为40°.你能利用这些数据计算这栋楼的高度吗 (结果精确到0.1米) ?

问题1和前一节课的实际问题相比有如下不同:首先实际背景较为复杂, 需要学生借助仰角的概念构造直角三角形, 把求AB长度转化成在直角△AEC中计算AE的长度;其次是需要把隐含在生活情景中的已知条件转化到图形中 (这对学生来说是比较困难的) .因此问题1的教学分两步进行:

(1) 学生独立审题、思考后在教师的引导下分析已知条件, 独立尝试画几何图形, 并由一名同学板图.教师根据学生画图情况, 再引导学生根据已知条件完善几何图形, 在图形中正确标出仰角.

(2) 学生思考解题思路, 由一名学生口答, 其他同学补充, 教师板书解题过程, 规范解题格式.

第二层:小明和小文还发现那栋新楼为了促销, 在楼上的点P处悬挂了一宣传条幅PQ (如图) .请问:他们需要测量或补充哪些数据, 才能计算出条幅PQ的长度? (可把需要补充的条件用字母表示, 写出表示PQ长度的代数式.)

你能设计几种方案?

<方案一>在小明家分别测出点P、Q的仰角α和俯角β, 过点F作FN⊥PQ, 得PQ=30·tanα+30·tanβ.

<方案二>在小文家分别测出点P、Q的仰角∠2、∠1, 过点C作CE⊥PQ, 得PQ=30·tan∠2-30·tan∠1.

<方案三>在小明家测出点P的仰角α, 在小文家测出点Q的仰角∠1, 作辅助线后得PQ=30·tanα+7.5-30·tan∠1.

<方案四>在小明家测出点Q的俯角β, 在小文家测出点P的仰角∠2, 作辅助线后得PQ=30·tan∠2-7.5+30·tanβ.

<方案五>在地面上任意可测量B点的地方, 测量它到点B的距离, 再由此地点分别测出P、Q的仰角, 也可计算出PQ的长度.

……

学生独立思考后四人小组为单位进行方案探究, 看看哪个小组得到的方案最合理?

教师在学生设计过程中巡视指导, 针对学生的具体情况, 及时进行调控, 关注每个学生参与小组活动的积极性及所补充的条件, 鼓励学生用不同方法进行探究、尝试.

学生以小组为单位展示自己的设计方案, 师生共同点评学生方案是否合理, 是否可行, 并提出修改建议.

经过一段时间的发散思维训练, 我提醒学生静下心来进行反思、归纳:比较各种方案的差异并形成共同认识:要想测量PQ的长度, 需要分别测出观察P, Q两点的仰角 (或俯角) , 目的都是构造出直角三角形, 这其中都体现着一种重要的数学思想, 那就是———转化思想.

通过这道拓展题的分析和评价, 培养学生的创新意识和实践能力.

3.小结提升

引导学生自主小结提升 (知识点和思想方法) ;注重每个例题、习题后的小结, 逐步形成解决问题的能力.

教师小结过程中注重学生未总结出来的更深层次的内容.比如这节课和前面几节课联系在一起的研究函数问题的一般性方法 (体现教师的主导作用) :

4.几个需要推敲的问题

(1) 在问题3的设计过程中注重了一题多解, 体现解题策略的多样性, 但在思维的开放程度上还不够, 反而是学生有了更一般的方法, 比如用三角形中位线等其它知识来解决;

(2) 在引导学生给出问题3的一般性结论时, 学生们在用字母给出已知条件, 用这些已知条件来表示PQ长度时不是很顺利, 反而不如设计方案快, 看来从理论到实践还是有一段距离, 在今后的教学中还要有意识地安排这样的问题, 使学生的代数能力有一定的提高, 为高中打好基础;

解直角三角形不可忽视的问题 第4篇

一、 忽视正弦、余弦的有界性

例1 计算 - cos40°+.

【错解】原式=-cos40°+sin50°-1

=sin50°-sin50°-

=-.

【分析】应注意锐角三角函数的取值范围,即:

00. 且在0<α<45°内,cosα>sinα;在45°<α<90°内,cosα

【正解】原式=cos40°-+1-sin50°

=sin50°-sin50°+

=.

二、 函数值与边长大小无关

例2 在Rt△ABC中,如果各边长度都扩大100倍,那么锐角A的正弦值( ).

A. 扩大100倍

B. 缩小为原来的

C. 没有变化

D. 不能确定

【错解】A.

【分析】误认为锐角的三角函数值随着各边长扩大100倍,其也扩大100倍. 实际上,锐角A的三角函数值只与它的度数有关,与其所在的直角三角形的大小无关,即只要锐角A的度数确定,其三角函数值也随之确定.

【正解】C.

三、 概念理解不清

例3 如图1,甲在60米高的大楼上A点看地面C点的乙的俯角为30°,则乙到大楼的距离CB为______米.

【错解】∵从A点看地面C点的乙的俯角为30°,

∴∠CAB=30°,

∴CB=ABtan30°=20(米),即乙到大楼的距离CB为20米.

【分析】在上面的解题过程中,由于对俯角的概念不清楚,错将俯角认为是∠CAB,而实际上俯角的定义是视线和水平线的夹角,即∠DAC=30°,故正确答案是60米.

四、 勾股数的误用

例4 在直角三角形中,∠B=90°,a=3,b=4,求边长c的值.

【错解】由勾股定理得,c===5.

∴c=5.

【分析】在上面的解题过程中,习惯于3,4,5是一组勾股数,c=5前提是在∠C=90°的直角三角形中,而本题∠B=90°,∴b是斜边,故正确答案是c==.

五、 忽视双直角三角形

例5 已知在△ABC中,∠A=30°,AB=40,BC=25,则S△ABC=______.

【错解】如图2,过点B作AC的延长线的垂线,垂足为D,

∵∠A=30°,AB=40,

∴BD=20,AD=20,

又BC=25,∴CD=15,∴AC=20-15,

∴S△ABC=×20-15×20=200-150.

【分析】因为已知条件是“角、边、边”,根据学过的全等三角形的知识,我们知道,只具备“角、边、边”不能确定一个三角形,也就是说还有另一个三角形,即如图3的情况.

易知此时S△ABC=200+150,

正确答案为S△ABC=200±150.

《解直角三角形》教案 第5篇

《解直角三角形》教案

【探究目标】 1.目的与要求能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题. 2.知识与技能能根据直角三角形中的角角关系、边边关系、边角关系解直角三角形,能运用解直角三角形的.知识解决有关的实际问题. 3.情感、态度与价值观通过解直角三角形的应用,培养学生学数学、用数学的意识和能力,激励学生多接触社会、了解生活并熟悉一些生产和生活中的实际事物. 【探究指导】 教学宫殿 在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图19―46: 角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即 ; 边角关系:锐角三角函数,即 解直角三角形,可能出现的情况归纳起来只有下列两种情形:(1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边. 用解直角三角形的知识解决实际问题的基本方法是: 把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系. 借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题. 当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解. 在解直角三角形的过程中,常会遇到近似计算,如没有特殊要求外,边长保留四个有效数字,角度精确到1′.

 

解直角三角形的应用教案 第6篇

教学目标:1.使学生能运用解直角三角形模型,将斜三角形问题转化为解直角三角形。

2.通过对比练习,使学生体会到用斜三角形构造直角三角形,要构造为可解(含特殊角)的直角三角形。及方程思想的运用。

教学重点:

将斜三角形问题转化为解直角三角形和实际问题转化为数学模型。

教学难点:

将斜三角形问题转化为解直角三角形及方程思想的运用 教学过程:

一、让学生回忆解直角三角形的依据和哪两种情形?

依据:1.边的关系(勾股定理)2.锐角的关系(互余)3.边角关系(锐角三角函数关系式)情形有:1.已知两边,2,已知一边一锐角,二、练习直接解直角三角形

试一试:如图,在RtΔABC中,已知∠C=90°,(1)若AC=3,AB=5,求 sinA ;(已知两边)

A

(2)若AC=3, ∠A=60°,求BC;(已知一条直角边和一个锐角)

C

(3)若AB=5,∠A=60°,求BC.(已知斜边和一个锐角)

三、解斜三角形

变式:1)如图1,在△ABC中,∠B=45°,∠C=30°,AC=4,求AB。2)图2 中,∠B=135°,∠C=30°,AC=4,求AB。

BA

BB

图1

CC图2

A

四、用解斜三角形解决实际问题

典型中考题赏析:

将实际问题化为解斜三角形

例:(2013遂宁)如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,船B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少?(结果保留根号)

方程思想的渗透

变式训练:如果将上题中“C在B的北偏东15°方向”改为“C在B的北偏东30°方向”,其它条件不变,你能解吗?

小结:解决与斜三角形有关的实际问题

北450AC北300B的方东

法是构造可解的直角三角形(1)形内构造(2)形外构造

练习:如图,海岛A四周45海里周围内为暗礁区,一艘货轮由东向西航行,在B处见岛A在北偏西60˚,航行18海里到C,见岛A在北偏西45˚,货轮继续向西航行,有无触礁的危险?

28.2 解直角三角形 教案5 第7篇

28.2解直角三角形

一、教学目标

1、巩固用三角函数有关知识解决问题,学会解决坡度问题.

2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.

3、培养学生用数学的意识,渗透理论联系实际的观点.

二、教学重点、难点

重点:解决有关坡度的实际问题. 难点:理解坡度的有关术语.

三、教学过程

(一)复习引入

1.讲评作业:将作业中学生普遍出现问题之处作一讲评. 2.创设情境,导入新课.

同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33 水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).

同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚.这时,教师应根据学生想学的心情,及时点拨.

(二)教学互动

通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义. 1. 坡度与坡角

结合图6-34,教师讲述坡度概念,并板书:坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。即i=,常i=1:m的形式如i=1:2.5 把坡面与水平面的夹角α叫做坡角.

引导学生结合图形思考,坡度i与坡角α之间具有什么关系?

答:i=hl=tan

这一关系在实际问题中经常用到,教师不妨设置练习,加以巩固.

练习(1)一段坡面的坡角为60°,则坡度i=______; ______,坡角______度.

为了加深对坡度与坡角的理解,培养学生空间想象力,教师还可以提问:

(1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系?举例说明.(2)坡面水平宽度一定,铅直高度与坡度有何关系,举例说明.

答:(1)

如图,铅直高度AB一定,水平宽度BC增加,α将变小,坡度减小,因为 tan=ABBC,AB不变,tan随BC增大而减小

(2)与(1)相反,水平宽度BC不变,α将随铅直高度增大而增大,tanα

AB 也随之增大,因为tan=BC不变时,tan随AB的增大而增大 2.讲授新课

引导学生回头分析引题,图中ABCD是梯形,若BE⊥AD,CF⊥AD,梯形就被分割成Rt△ABE,矩形BEFC和Rt△CFD,AD=AE+EF+FD,AE、DF可在△ABE和△CDF中通过坡度求出,EF=BC=6m,从而求出AD.

以上分析最好在学生充分思考后由学生完成,以培养学生逻辑思维能力及良好的学习习惯.

坡度问题计算过程很繁琐,因此教师一定要做好示范,并严格要求学生,选择最简练、准确的方法计算,以培养学生运算能力.

解:作BE⊥AD,CF⊥AD,在Rt△ABE和Rt△CDF中,∴AE=3BE=3×23=69(m). FD=2.5CF=2.5×23=57.5(m).

∴AD=AE+EF+FD=69+6+57.5=132.5(m).

因为斜坡AB的坡度i=tan=α≈18°26′

13≈0.3333,答:斜坡AB的坡角α约为18°26′,坝底宽AD为132.5米,斜坡AB的长约为72.7米.

其实这是旧人教版的一个例题,由于新版里这样的内容和题目并不少,但是对于题目里用的术语新版少提,基于学生的接受情况应插讲这一内容。

(三)巩固再现

1、习题

2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图6-35阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:

①横断面(等腰梯形)ABCD的面积;

②修一条长为100米的渠道要挖去的土方数.

解直角三角形教案1 第8篇

28.2解直角三角形

一、教学目标

1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角

2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.

3、巩固用三角函数有关知识解决问题,学会解决方位角问题.

二、教学重点、难点

重点:用三角函数有关知识解决方位角问题

难点:学会准确分析问题并将实际问题转化成数学模型

三、教学过程

(一)复习引入

1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。

2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线

(二)教学互动

例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,解:如图, 在中,PCPAcos(900650)

80cos2 72.8 0在中,.,因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.海轮所在的B处距离灯塔P有多远(精确到0.01海里)?

(三)巩固再现

1、习题1

2、上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小

时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).

3、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?

解直角三角形教案1 第9篇

一、知识点讲解:

1.解直角三角形的依据

在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么

(1)三边之间的关系为

(勾股定理)

(2)锐角之间的关系为∠A+∠B=90°

(3)边角之间的关系为

2.其他有关公式

面积公式:

3.解直角三角形的条件

(hc为c边上的高)

在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。

4.解直角三角形的关键是正确选择关系式

在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?

(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数

(2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。

(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。

5.解直角三角形时需要注意的几个问题

(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。

(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。

(3)按照题目中已知数据的精确度进行近似计算

二、例题解析:

1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积,解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得 由题意,有c+a=16,b=8,例

2、在△ABC中,解:

求:a、b、c的值及∠A。,由直角三角形的边角关系,得,即 又∵a+b=3+

3、已知△ABC中,∠C=90°,若△ABC的周长为30,它的面积等于30,求三边长。

解:设△ABC的三边分别为a、b、c,其中c是斜边。

由勾股定理,有

依题意,有a+b+c=30

及 ab=30

①、②、③联立,有

4、如图:△ABC中,∠ACB=90°CD⊥AB于D点,若∠A=60°,AB-CD=13,求BC及

解:∵∠ACB=90°,∠A=60°,∵CD⊥AB,设CD=x,则BC=2x

∴AB=13+x。

∴∠B=30°,∴BC=2CD。

∵AB-CD=13。

在△ABC中,∠ACB=90°,∴

∴ ∴BC=6+8

∴AB=16+4

∵∠B=30°,∴

5、如图:△ABC中,∠A=90°,D是AB上一点,若BD=8,且,求AC的长。

解:在△ABC中,∠A=90°,设AB=12x,BC=13x。,又

由勾股定理,有

∴AC=5x ∵AD=AB-BD ∴AD=12x-8

在△ADC中,∠A=90°,又,求三边的长。例

6、已知△ABC中,∠BAC=60°,AB∶AC=5∶2且

解:过C点作CD⊥AB于D点。

∴∠ADC=90°。

∵∠A=60°,∴∠ACD=30°。∵AB∶AC=5∶2,设AB=5x,AC=2x ∵AD=

由勾股定理,有

AC,∴AD=x

由勾股定理,有

∴BC=2

答:AB=10,AC=4,BC=2。

测试

选择题

A组:

1.已知在直角三角形中,锐角α的邻边是m,则斜边等于()

A、B、C、D、2.RtΔABC中,AD是斜边BC上的高,若BC=a,∠B=α,则AD=()

A、asinα

B、acosα

C、asinαcosα

D、asinαtanα

223.已知:CD是RtΔABC斜边AB上的高,CD=12,sinB= ,则AB的长为()

A、15 B、16 C、20 D、25

4.已知RtΔABC中,∠C=90°,tanA=

A、480 B、120 C、60,ΔABC周长为120,则ΔABC的面积为()

D、120

5.ΔABC中,∠A=105°,∠C=45°,AB=20

A、15,20

B、20, 10

C、20, 10

B组: +10

D、15, 10,则AC,BC分别为()

6.在等腰ΔABC中,一腰上的高为(),这条高与底边的夹角为30°,则ΔABC的面积为

A、B、2

C、D、3

7.已知一直角三角形的面积为50 积为(),斜边长为20,则这个直角三角形两锐角的正弦之

A、B、C、D、8.直角三角形ΔABC的周长为2+

A、4 B、4,斜边上的中线CD长为1,求tanA+tanB的值()

C、6 D、6

考题评析

1.(吉林省)在Rt△ABC中,若∠C=90,∠A=30,AC=3,则BC=__________

考点:解直角三角形。

0

0

评析思路,因三角形ABC是含30°角的直角三角形,根据三边关系a∶b∶c=1∶ 或边与角的关系利用30的正切都可以求出BC。答案为

00

∶2,2.(辽宁省)在△ABC中,∠C=90,AC=3,AB=5,则cosB=_______。

考点:解直角三角形

评析思路:根据条件先求出BC(运用勾股定理)则 得求。答案为

3.(广州市)在△ABC中,∠C=90°,cosA=,则tanB=_______

(A)

(B)

考点:解直角三角形

(C)

(D)

评析:由cosA= sinA=,设AC=3x,AB=5x,ÐC=90°,由勾股定理求BC的长。再求tanB,或由

及tanB=tan(90°-A)=cotA求出。答案为C。,和cotA=

4.(北京市海淀区)已知:如图,在△ABC中,∠C=90°,D为AC上一点,∠BDC=45,DC=6,求AB的长。

考点:解直角三角形

评析:首先弄清直角三角形中边角的关系。因D在AC上且

0,所以BC=DC=6而SinA=,所以AB得求。

解:在△BCD中,∠C=90°,∵∠BDC=45°,∴∠DBC=∠BDC=45°

∴DC=CB.∵DC=6,∴CB=6.在△ABC中,∠C=90°,∵sinA=

∴AB的长为15.=,∴AB= =15.5.(四川省)如图,在△ABC中,∠C=90°,∠ABC=60°,D是AC的中点,那么tan∠DBC的值是

.考点:解直角三角形。

评析:在Rt△ABC中,求出 的值,从而求得 的值,由正切函数定义获知此值即为答案,答案为

26.(四川省)若关于x的一元二次方程x-3(m+1)x+m-9m+20=0有两个实数根,又已知a、b、c分别是△ABC的∠A、∠B、∠C的对边,∠C=90°,且cosB=,b-a=3.是否存在整数m,使上述一元二次方程两个实数根的平方和等于Rt△ABC的斜边c的平方?若存在,请求出满足条件的m的值;若不存在,请说明理由.解:在Rt△ABC中,∠C=90°,∵cosB=,∴设a=3k,c=5k,则由勾股定理,有b=4k.∵b-a=3,即4k-3k=3,∴k=3.∴a=9,b=12,c=15.一元二次方程x-3(m+1)x+m-9m+20=0的两个实数根为x1、x2,则有

x1+x2=3(m+1),x1x2=m-9m+20.∴x1+x2=(x1+x2)-2x1x2=[3(m+1)]-2(m-9m+20)

=7m+36m-31 由x1+x2=c,c=15,有7m+36m-31=225,即7m+36m-256=0.2

222

(7m+64)(m-4)=0,∴m1=4,m2=-

.时,不是整数,应舍去.∵当m=4时,△=(-15)-4(4-9×4+20)=225>0;当m=-

∴存在整数m=4,使方程两个实数根的平方和等于Rt△ABC的斜边c的平方.答案与解析

答案:A组:1.D 2.C 3.D 4.A 5.C B组:6.A 7.C 8.A

4、提示:设a=5k, b=12k, ∴c=13k, ∴a+b+c=5k+12k+13k=30k=120,k=4, ∴ a=20, b=48, ∴ SΔABC=

5、提示:作AD⊥BC于D,∠C=45,BD=10,ab=

0

×20×48=480.0

∠BAC=105∴∠B=30°,AB=20,则AD=10

∵∠C=45°,∴ AC= ·AD=20,CD=AD=10 +10

。,∴BC=BD+CD=10

6、如图,BD⊥AC,∠DBC=30°,∴∠C=60°,AB=AC,∴ΔABC是等边三角形,∵BC= = =2,∴ AC=BC=2,∴三角形的积为: ×2=

27、依题意:设直角三角形三边为a,b,c,∴ ab=50 , ∴ab=100 , ∵c=20,∴ sinA·sinB= · = = =。

8、如图,RtΔABC中,∠ACB=90°,CD是斜边中线,则AB=2,设

2∠A、∠B、∠C所对的边分别为a,b,c,由周长是2+,得a+b=.又∵a+b=4, 2ab=(a+b)-(a+b)=6-4=2, ∴ ab=1, ∴tanA+tanB= 222

解三角形应用举例教案(推荐) 第10篇

●教学目标

知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语

过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。其次结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,根据大纲要求以及教学内容之间的内在关系,铺开例题,设计变式,同时通过多媒体、图形观察等直观演示,帮助学生掌握解法,能够类比解决实际问题。对于例2这样的开放性题目要鼓励学生讨论,开放多种思路,引导学生发现问题并进行适当的指点和矫正

情感态度与价值观:激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力 ●教学重点

实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解 ●教学难点

根据题意建立数学模型,画出示意图 ●教学过程 Ⅰ.课题导入

1、[复习旧知] 复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?

2、[设置情境]

请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。于是上面介绍的问题是用以前的方法所不能解决的。今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。Ⅱ.讲授新课

(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解

[例题讲解]

(2)例

1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=51,ACB=75。求A、B两点的距离(精确到0.1m)

启发提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?

启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边。解:根据正弦定理,得

ABsinACB =

ACsinABC

AB = ACsinACB

sinABC = 55sinACB

sinABC =

55sin75 sin(1805175)= 55sin75

sin54 ≈ 65.7(m)答:A、B两点间的距离为65.7米

变式练习:两灯塔A、B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?

老师指导学生画图,建立数学模型。解略:2a km 例

2、如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法。

分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题。首先需要构造三角形,所以需要确定C、D两点。根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离。

解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得BCA=, ACD=,CDB=,BDA =,在ADC和BDC中,应用正弦定理得

AC = BC =

asin()= asin()

sin[180()]sin()asin = asin sin[180()]sin()计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离 AB =

AC2BC22ACBCcos

分组讨论:还没有其它的方法呢?师生一起对不同方法进行对比、分析。

变式训练:若在河岸选取相距40米的C、D两点,测得BCA=60,ACD=30,CDB=45,BDA =60

略解:将题中各已知量代入例2推出的公式,得AB=20

评注:可见,在研究三角形时,灵活根据两个定理可以寻找到多种解决问题的方案,但有些过程较繁复,如何找到最优的方法,最主要的还是分析两个定理的特点,结合题目条件来选择最佳的计算方式。学生阅读课本4页,了解测量中基线的概念,并找到生活中的相应例子。Ⅲ.课堂练习

课本第13页练习第1、2题 Ⅳ.课时小结

解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型

(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解

(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解 Ⅴ.课后作业

解直角三角形教案1 第11篇

(四)一.教学三维目标

(一)知识目标致

使学生懂得什么是横断面图,能把一些较复杂的图形转化为解直角三角形的问题.(二)能力目标

逐步培养学生分析问题、解决问题的能力.(三)情感目标

培养学生用数学的意识;渗透转化思想;渗透数学来源于实践又作用于实践的观点.

二、教学重点、难点

1.重点:把等腰梯形转化为解直角三角形问题; 2.难点:如何添作适当的辅助线.

三、教学过程

1.出示已准备的泥燕尾槽,让学生有感视印象,将其横向垂直于燕尾槽的平面切割,得横截面,请学生通过观察,认识到这是一个等腰梯形,并结合图形,向学生介绍一些专用术语,使学生知道,图中燕尾角对应哪一个角,外口、内口和深度对应哪一条线段.这一介绍,使学生对本节课内容很感兴趣,激发了学生的学习热情.

2.例题

燕尾槽的横断面是等腰梯形,下图是一燕尾槽的横断面,其中燕尾角B是55°,外口宽AD是180mm,燕尾槽的深度是70mm,求它的里口宽BC(精确到1mm).

分析:(1)引导学生将上述问题转化为数学问题;等腰梯形ABCD中,上底AD=180mm,高AE=70mm,∠B=55°,求下底BC.

(2)让学生展开讨论,因为上节课通过做等腰三角形的高把其分割为直角三角形,从而利用解直角三角形的知识来求解.学生对这一转化有所了解.因此,学生经互相讨论,完全可以解决这一问题.

例题小结:遇到有关等腰梯形的问题,应考虑如何添加辅助线,将其转化为直角三角形和矩形的组合图形,从而把求等腰梯形的下底的问题转化成解直角三角形的问题. 3.巩固练习

如图,在离地面高度5米处引拉线固定电线杆,拉线和地面成60°角,求拉线AC的长以及拉线下端点A与杆底D的距离AD(精确到0.01米).

分析:(1)请学生审题:因为电线杆与地面应是垂直的,那么图中△ACD是直角三角形.其中CD=5m,∠CAD=60°,求AD、AC的长.

解直角三角形教案1 第12篇

(一)沅陵七中 黄有圣

2016.12.3 ●教学目标

知识与技能:1.梳理解三角形的知识点,及时查找知识点的漏洞,建立知识之间的联系,形成知识体系。

2.能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题。

过程与方法:采用启发与尝试的方法,让学生在温故知新中学会正确解三角形,帮助学生逐步构建知识框架,并通过练习、训练来巩固深化解三角形实际问题的一般方法。教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯,让学生在具体的实践中结合图形灵活把握正弦定理和余弦定理的特点,有利地进一步突破难点。

情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验

●教学重点

1.正弦定理,余弦定理的掌握。

2.应用正、余弦定理进行边角关系的相互转化问题(内角和的灵活运用)。

●教学难点

让学生转变观念,由记忆到理解,由解题公式的使用到结合图形去解题和校验。●教学过程(课件上课)【复习导入】 1. 正弦定理: abc2R(2R可留待学生练习中补充)sinAsinBsinC111absinCbcsinAacsinB.222 S余弦定理 :a2b2c22bccosA b2a2c22accosB

c2a2b22abcosC

222222a2b2c2bcaacb求角公式:cosA cosB cosC

2ab2bc2ac 2.思考:各公式所能求解的三角形题型?

正弦定理: 已知两角和一边、两边和其中一边的对角,求其他边角

余弦定理 :已知两边和夹角、已知三边、两边和其中一边的对角,求其它边角

注意:由公式出发记忆较为凌乱,解题往往由条件出发。【合作探究】 5 注:求三角形的边角时,应注意挖掘隐含的条件上。如第3题的角A只能是锐角这个隐含条件。【战高考】

【一题多变】

【归纳小结】

1. 应用正、余弦定理进行边角关系的相互转化问题,要注意公式及题目的隐含条件。2. 解三角形问题要注意结合图形,特别是三角形的相关性质(内角和、边角关系)3.正确选择正弦定理和余弦定理是解决问题的关键。

【课后练习】(难度取舍不同,各班可按实际情况安排)、在 ABC中,AC=3,A45,C75,则BC A.2,B.3,C.2,D.5.ABC中,a,b,c分别为A、B、C的对边,如果 a、b、c成等差数列,B=30,ABC的面积 3 2,那么b等于

13为23,D.23 2 abc4.在ABC中,若,则ABC是conAconBconC

A.直角三角形,B.等边三角形,A.3,C.13,B.12C.钝角三角形,D.等腰直角三角形

9.在ABC中,已知(abc)(abc)3ab,且2cosAsinBsinC,试确定ABC的形状

10.tanC37 在ABC中,角A、B、C的对边分别为a,b,c,()求1cosC

5(2)若CACB,且ab9,求c2

解直角三角形教案1 第13篇

教学目的

知识与技能:掌握直角三角形的判别条件,并能进行简单应用;

教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.

解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

情感态度与价值观:

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识. 重点、难点

重点:探索并掌握直角三角形的判别条件。难点:运用直角三角形判别条件解题 教学过程

一、创设情境,激发学生兴趣、导入课题

展示一根用 13 个等距的结把它分成等长的12 段的绳子,请三个同学上台,按老师的要求操作。

甲:同时握住绳子的第一个结和第十三个结。乙:握住第四个结。

丙:握住第八个结。

拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角。问:发现这个角是多少?(直角。)展示投影 1。(书P9图1—10)

教师道白:这是古埃及人曾经用过这种方法得到直角,这个三角形三边长分别为多少?(3、4、5),这三边满足了哪些条件?(345),是不是只有三边长为3、4、5的三角形才可以成为直角三角形呢?现在请同学们做一做。

二、做一做

下面的三组数分别是一个三角形的三边a、b、c。5、12、13 7、24、25 8、15、17 222abc1、这三组数都满足吗?

222同学们在运算、交流形成共识后,教师要学生完成。

2、分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗? 同学们在在形成共识后板书:

如果三角形的三边长a、b、c满足abc,那么这个三角形是直角三角形。满足abc的三个正整数,称为勾股数。大家可以想这样的勾股数是很多的。

今后我们可以利用“三角形三边a、b、c满足abc时,三角形为直角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法。

三、讲解例题

例1 一个零件的形状如图,按规定这个零件中∠A 与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD = 4,AB = 3, DC = 12 , BC=13,这个零件符合要求吗?

分析:要检验这个零件是否符合要求,只要判断△ADB和△DBC 是否为直角三角形,这样勾股定理的逆定理即可派上用场了。

解:在△ABD中,ABAD3491625BD

22222222222222

所以△ABD为直角三角形

∠A =90° 在△BDC中,所以△BDC是直角三角形∠CDB =90°

13BD2DC25212225144169132BC2

C12 D54A3B因此这个零件符合要求。

四、随堂练习:

⒈下列几组数能否作为直角三角形的三边长?说说你的理由.

⑴9,12,15;

⑵15,36,39; ⑶12,35,36;

⑷12,18,22.

⒉已知∆ABC中BC=41, AC=40, AB=9, 则此三角形为_______三角形,______是最大角.⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.

13D4A312BC⒋习题1.3

五、读一读

P11 勾股数组与费马大定理。⒈直角三角形判定定理:如果三角形的三边长a,b,c

六、小结:

1、满足a2 +b2=c2,那么这个三角形是直角三角形.

2、满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.

六、作业

1、课本 P12 1.3 1、2、3。

解直角三角形教案1

解直角三角形教案1(精选13篇)解直角三角形教案1 第1篇28.2.1解直角三角形西湖中学 黄 勇一、内容和内容解析1、内容:解直角三角形的意...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部