阿基米德原理教案示例
阿基米德原理教案示例(精选10篇)
阿基米德原理教案示例 第1篇
阿基米德原理教案示例之二
(第2课时)
(一)教学要求
1.知道浮力的大小只跟液体的密度和排开液体的体积有关,与物体浸入液体中的深度、物体的形状等因素无关。进一步理解阿基米德原理。
2.应用阿基米德原理,计算和解答有关浮力的简单问题。
(二)教具:弹簧秤、玻璃水槽、水、细线、石块、体积相同的铜块、铝块、木块、橡皮泥、烧杯。(三)教学过程
一、复习提问
1.学生笔答课本章后的“学到了什么”问题1和2。然后由一学生说出自己填写的答案。教师讲评。
2.270克的铝块体积多大?浸没在水中受到的浮力多大?
要求学生在笔记本上演算,一名学生板演。教师巡回指导,并对在黑板上的计算进行讲评。
二、进行新课
1.浮力的大小只跟液体的密度和排开的液体的体积有关,与物体浸入液体中的深度,物体的形状等因素无关。
①浮力的大小与物体浸入液体中的深度无关。
提问:物体浸没在液体中,在不同深度受到的浮力是否相等?
学生回答并说出分析结果和道理。
教师演示实验:把铁块用较长一些的细线拴好,挂在弹簧秤上。先称出铁块重(可由学生读值)。将铁块浸没在水中,弹簧秤的示数减小,问:这是什么原因?由学生读出弹簧秤的示数,计算出铁块受到的浮力。将铁块浸没在水中的深度加大,静止后,由学生读出此时弹簧秤的示数,求出浮力的大小。比较两次浮力的大小,得出:浮力的大小跟物体浸没在水中的深度没有关系。换用其他液体进行实验,可得出同样的结果。
教师从理论上分析:浸没在液体中的物体受到的浮力等于物体排开的液体受到的重力。当物体浸没在液体中时,无论物体位于液体中的哪一深度,由于液体的密度和它排开的液体的体积不变,所以它排开的液体受到的重力大小不改变。因此,这个物体无论处于液体中的哪一深度,它受到的浮力都是相等的。
②浮力的大小与物体的形状无关。
提问:浸没在同一种液体中的物体体积相同,它们受到的浮力大小是否相同?
演示实验:取一块橡皮泥,将它捏成立方体,用细线拴好,用弹簧秤称出橡皮泥重。将它浸没在水中,读取此时弹簧秤的示数。求出它浸没在水中受到的浮力。(以上读值和计算由学生完成)将橡皮泥捏成球形,按上述实验步骤,求出它浸没在水中时,它受到的浮力。
总结:比较两次实验测得的浮力大小,得出:浮力的大小与物体的形状无关。
提问:由学生用阿基米德原理解释上述实验结果。教师总结。
③浮力的大小与物体的密度无关。
提问:将体积相同的铜块和铝块浸没在水中,哪个受的浮力大?
演示:将体积相同的铜块和铝块用细线拴好,用弹簧秤测出它们浸没在水中受到的浮力。比较它们受到的浮力大小。
总结:比较两次实验结果得出:浮力的大小跟物体的密度无关。
提问:由学生用阿基米德原理解释上述实验结论。教师总结,并结合复习提问2的分析指出,有的同学认为“较轻的物体受的浮力一定大”的看法是错误的。
④浮力的大小与物体在液体中是否运动无关。
提问:体积相同的铁块和木块放入水中后放手,铁球下沉,木块上浮,哪个受的浮力大?
学生讨论,教师用阿基米德原理分析它们受到的浮力一样大。总结出:浮力的大小与物体在液体中是否运动无关。
通过以上的实验和分析,教师总结并板书:“浮力的大小只跟液体的密度和物体排开的液体的体积有关,而跟物体浸入液体中的深度、物体的形状、密度、物体在液体中是否运动等因素无关。”
2.例题:(出示小黑板)
①如图12-4所示,甲、乙两球体积相同,浸在水中静止不动哪个球受到的浮力大?为什么?哪个球较重?为什么? 学生讨论,教师总结。
解:甲球受到的浮力较大。根据阿基米德原理。甲球浸没在水中,乙球是部分浸没在水中,故,甲球排开水的体积大于乙球排开水的体积。因此,甲球排开的水重大于乙球所排开的水重。所以,甲球受到水的浮力较大。板书:“F甲浮>F乙浮”
浸在水中的甲、乙两球,甲球较重。分析并板书:“甲球悬浮于水中,G甲=F甲浮
乙球漂浮于水面,G乙=F乙浮
因为:F甲浮>F乙浮
所以:G甲>G乙”
小结:解答浮力问题要学会用阿基米德原理进行分析。对于漂浮和悬浮要弄清它们的区别。对浸在液体中的物体进行受力分析是解答浮力问题的重要方法。
例题:有一个空心铝球,重4.5牛,体积是0.5分米3。如果把这个铝球浸没在水中,它受到的浮力是多大?它是上浮还是下沉?它静止时受到的浮力是多大?
要求全体学生在自己的笔记本上演算,由一个学生到黑板上板演,教师针对演算过程中的问题进行讲评。
要求学生答出:
由于铝球全部浸没在水中,所以V排= V球= 0.5分米3= 0.5×10-3
米3。
F浮=G排水=ρ水·g·V排=1.0×103千克/米3×10牛/千克×0.5×10-3米3=5牛。
因为:F浮>G球,所以铝球上浮。
铝球在水中上浮,一直到露出水面,当F浮=G球=4.5牛时,铝球静止在水面上。此时铝球受到的浮力大小等于铝球的重。
小结:解答此类问题,要明确铝球是研究对象。判断上浮还是下沉以及最后的状态要对研究对象进行受力分析,应用公式计算求解。
3.总结计算浮力大小的四种方法:
应用弹簧秤进行测量:F浮=G-F。G为物体在空气中的重,F为物体浸入液体中时弹簧秤的示数。
根据浮力产生的原因,求规则固体受到的浮力。F浮=F向上-F向下。
根据阿基米德原理:F浮=G排液=ρ液·g·V排。此式可计算浸在液体中任意行体受到的浮力大小。
根据物体漂浮在液面或悬浮在液体中的条件F浮=G物,应用二力平衡的知识求物体受到的浮力。
阿基米德原理教案示例 第2篇
一、实验器材:量筒、弹簧秤、金属块、装有水的烧杯、橡皮泥、体积相同的实心铁块和铝块
二、课时安排:1课时
三、教学过程:
1.教师演示实验,复习旧知识,引入新课
实验器材:量筒、弹簧秤、金属块、装有水的烧杯.
提出问题:(a)用这些器材怎样测量金属块浸入水中的浮力?
(用称量法求浮力的公式F浮=G-G'(G代表金属块在空气中的重力,G'代表金属块在水中的视重)(b)怎样知道金属块浸入水的体积(即金属块排开水的体积)?
金属块排开水的体积公式:V排=V2-V1(V1代表没浸金属块时量筒中水的体积,V2代表浸入金属块时水面到达的刻度)(c)怎样计算金属块排开水的重力?
(金属块排开水的重力的计算公式:G排液=p液Gv排)
学生讨论回答后教师强调:注意测浮力时金属块不能与容器底、壁接触. 请学生根据自己的生活经验谈谈物体受到浮力的大小和哪些因素有关.
例如:学生根据游泳体会到人身体浸入水中体积越大,受到的浮力越大;物体浸在液体中越深受到浮力越大;物体体积越大受到的浮力越大;根据曹冲称象的故事,象或石头越重,船吃水深度越大,船排开的水越多,受到浮力越大等等.
教师乘机导入新课:你们当中到底谁说得对,请自己动手做实验,探索分析得出结论. 2.学生通过实验,找出规律,认识新知 先请学生依次做以下几个实验:
(a)用实验桌上的仪器:量筒、弹簧秤、金属块,并根据金属块排开水的体积,算出金属块排开水的重力.
(b)用实验一的器材,测出金属块排开水的重力.
(c)把实验一中量筒里的水倒出改装酒精,把金属块浸没到量筒里的酒精中,测算出此时金属块受到的浮力和它排开酒精的重力,并请学生将实验数据填入预先设计印发的表格里.如下所示:
以上三个实验完成后,提问:“浮力大小和什么因素有关?”(浮力大小等于物体排出液体的重力)
教师讲解:大家通过实验探讨得到的结论,二千多年前古希腊学者阿基米德就研究了这个问题,并总结了一条著名的“阿基米德原理”.
请学生看书上P143面阿基米德原理的内容,引导他们推导出阿基米德原理公式:F浮=G排液=G排=ρ液gV排.
根据这个公式可知浸在液体中的物体受到的浮力大小只跟液体的密度和排开液体的体积有关.
3.学生再做实验,排除生活错觉,加深理解新知
教师留出一定的时间让学生自己思考实验前自己对物体受到浮力的大小和哪些因素有关的认识上有哪些观点是错误的,并根据自己的情况选用桌子上的实验仪器动手做实验验证其错误.
教师根据学生情况启发学生选做了以下的五个实验:
(a)在量筒中多装些水,用一定长度的细线系着金属块挂在弹簧秤钩上,让金属块浸没在水中不同的深度,看弹簧秤的示数是否变化,从而看出金属块受到的浮力是否变化.
(b)将体积相同的实心铁块和铝块分别挂在弹簧秤上,浸没到水中,看两金属块受到的浮力有何关系,从而看出浮力的大小和物体的重力及做成物体的物质密度有无关系.
(c)将同一橡皮泥做成圆的、方的、扁的、三角形的分别挂在弹簧秤上浸没到量筒里的水中看弹簧秤的示数是否变化,从而看出浮力的大小和物体的形状是否有关.
(d)用体积不同的两金属块分别挂在弹簧秤上,让它们浸入量筒里水中的体积相同,看它们受到的浮力有何关系,从而看出浮力的大小和物体的体积大小是否有关.V排是否一定与V物相等.
(e)在量筒中装少量的水,如图1.将一个体积比量筒中水的体积大,直径比量筒直径略小的圆柱体金属块,让它排开的水尽量多,但圆柱体金属块不与量筒底、壁接触,如图2.用弹簧秤测出此时圆柱金属块的浮力,看物体排开液体的体积V排同容器中液体的体积V液的关系,从而看出物体受到的浮力能否大于容器中液体的重力.
4.讨论总结,巩固新知
最后,通过师生共同讨论以上实验情况,统一认识到:物体受到的浮力大小只与液体的密度和排开液体的体积有关,而与物体的密度、重力、体积、形状、浸没在液体中的深度、液体的多少等无关.
教师点评阿基米德原理公式使用中应注意的问题:各物理量的单位、含义并指出:物体全部浸在液体中时V排等于V物,而物体部分浸入液体中时V排小于V物.
5.课本例题教学
略
对“阿基米德原理”实验的改进 第3篇
实验器材准备:
弹簧测力计、石块、细线、量杯 (或大口量筒、细玻璃罐头瓶) 、25毫升废旧注射器、一次性塑料口杯、装有沙子的小药瓶 (能在水中漂浮) 、水。
实验操作步骤:
一、测水中下沉的石块受到的浮力与排开水的关系
1.用弹簧测力计测出石块在空气中的重。
2.量杯中倒入适量水, 用笔在量杯上水面处做好标记 (或用细线在液面处系一圈或直接读取两杯中水的体积) , 再将石块放在量杯中的水中。
3.另一名同学用注射器从量杯中取水, 将取出的水注射到事先准备好的一次性塑料杯中, 直到取到量杯上的标记处。 (注:用注射器取水时, 石块仍全部浸没在水中。)
4.用弹簧测力计测出水重。 (注:实验前可演示提醒学生用测力计测一次性塑料口杯的重。结果发现, 测力计示数几乎为零, 可忽略不计。)
5.比较用实验法测出的石块所受浮力大小与排开水 (即用注射器抽到塑料口杯中的水) 重的关系。
二、测水中漂浮的装有沙子的小药瓶受到的浮力与排开水的关系
1.用弹簧测力计测出装有沙子的小药瓶在空气中的重。
2.向量杯中倒入适量水, 用笔在量杯上水面处做好标记 (或用细线在液面处系一圈或直接读取两杯中水的体积) , 再将小药瓶放在量杯中的水中。
3.用注射器从量杯中抽水, 将取出的水注射到一次性塑料口杯中, 抽到量杯上的标记处为止。
4.用弹簧测力计测出水重。
5.比较塑料瓶所受浮力大小与排开水重的关系。
实验表格及结论:
结论:石块受到的浮力等于石块排开水的重。
结论:小药瓶受到的浮力等于它排开水的重
(注:实验表格设计及结论皆由各小组学生设计、整理, 教师可适时点拨。)
实验表明其优点:
1.帮助学生正确理解阿基米德原理内容。实验改进前, 我利用教材提供的实验方法进行演示。最后让学生根据实验结果总结结论时, 多数学生的回答是“浮力的大小等于排出水的重”, 或“浮力的大小等于溢出水的重”, 之后在学生所得结论的基础上, 再提醒学生猜想:“假设水没有溢出来呢, 浮力的大小又等于什么?”由此引领学生接受“排开”而非“排出”。而通过跟踪练习发现, 一些学生只是被动接受, 根本不理解其真正含义。但利用改进后的实验方法, “排开”的含义不再是教学难点。
2.实验结果更加准确。改进前方法, 向溢水杯中倒水、用小杯接水、称小杯中水时, 误差都较大。而换用注射器取水, 几乎滴水不漏, 用一次性塑料口杯盛水, 因口杯太轻 (用弹簧测力计称, 示数几乎为零) , 所以测得示数准确, 从而使结论更具说服力, 即F浮=G排。
3.增强了实验的趣味性。多数实验器材取自身边的日常物品, 学生从生活走向物理, 实验的热情大大提高。这样既符合新课标理念下鼓励学生利用好身边物品进行实验的要求, 同时也是对学生能力的训练。
探究阿基米德原理 第4篇
提出问题是科学探究的第一步.如何引出问题,是本实验成功的前提.因此,在这一环节,我们可以设计一些小实验,让学生人人动手,从中发现问题、提出问题.如:给每组学生准备一大杯水、一个空的矿泉水瓶,让学生把空瓶子慢慢压入水中,师问:“你感觉瓶子受到的浮力是否变化?”,生回答:“感觉瓶子受到的浮力在增大.”学生此时自然而然产生疑问:“浮力为什么会增大?浮力的大小与什么因素有关?”这样的引入,学生对问题的体验是实在的、深刻的,但是略显单薄.此时教师可以因势利导,投影轮船、潜水艇、热气球等图片,告诉学生这些物体在设计和制造的过程中,都需要对其受到的浮力进行计算,从而将浮力的大小问题与社会联系起来,让学生认识到这一问题的价值和重要性.
猜想与假设 师:“请你对浮力的大小与哪些因素有关提出猜想,并说出猜想的依据.”
科学假设不是凭空猜想,要以一定的事实为依据,这些依据可以来自于已有知识和生活经验、演示实验、学生实验等.教师可以让学生分组讨论提出猜想和假设,并说出猜想和假设的依据.说出猜想依据是为了保证猜想的科学性,避免出现胡猜乱想的现象.
学生一般会从浮力的受力物体与施力物体入手进行猜想,浮力大小可能与物体有关,也可能与液体有关.学生可能猜想出与物体有关的因素:物体的体积、物体的密度、物体的质量、物体的重力、物体的形状、物体在液体中的深度等;与液体有关的因素:液体的密度、液体的多少、被物体排开的液体体积、被物体排开液体的质量、被物体排开液体的重力等.
但是面对如此多的猜想,如何引导学生把探究的目标锁定在浮力的大小与物体排开液体的重力的关系上,从而得出阿基米德原理,这是教师普遍感到头疼的教学难题.为了突破这一教学难点,教师要引导学生对提出的这些猜想进行分析、归类,去伪存真.教师可以参与并引导学生的讨论.如教师可以问:“m排与ρ液和V排有关系吗?G排与m排有关系吗?F浮与G排的单位是相同的,所以,我们可以直接探究浮力与什么因素有关系.”通过以上讨论,学生大都能做出科学的假设:浮力的大小可能跟物体排开液体的重力有关,物体排开的液体重力越大,受到的浮力越大.
设计实验方案 教师要激发学生利用已学过的知识,引导学生设计实验方案.教学中要引导学生充分讨论,发挥他们的想象力,适时地加以引导和点拨,但是切忌教师包办代替.教师要注意培养学生的科学思维能力、解决问题的能力和创新能力!一般来说,学生设计的方案可能有多种多样,也不尽完善,这时教师要引导学生对这些方案进行讨论、比较,不断地完善,最后选择一至二套方案进行实验探究.
在探究阿基米德原理教学中,教师可以提出问题:“如何测量物体受到的浮力?”“如何测量物体排开液体的重力?”,然后引导学生通过讨论,归纳出所需要的实验器材、实验步骤和需要测量的物理量,并设计出记录实验数据的表格.
实验器材:弹簧测力计、重物、盛有液体的大烧杯、溢水杯、空杯等.
实验步骤:
(1)用弹簧测力计在空气中称出重物的重力为G和空杯的重力为G杯.
(2)将溢水杯盛满水(或其他液体),把重物浸没在水中,用空杯承接从溢水杯中被物体排出的水,记下此时弹簧测力计的示数为F′.
(3)用弹簧测力计测出被物体排出的水和杯子的总重为G总.
(4)用称重法求出物体所受的浮力F浮
=G-F ′和物体排开水的重力G排=G总-G杯,并比较F浮和G排的大小,得出结论.
记录数据的表格:
进行实验 学生分组进行实验探究,教师巡回指导.在探究过程中,学生会发现设计的方案中可能有不完善的地方,教师要引导学生及时地讨论和修改.在实验过程中教师既要培养学生独立操作的能力,又要让学生明白发挥团队协作精神的重要性,同时要提醒学生及时将实验数据记录在事先设计好的表格内.
分析数据、得出结论 在一组实验完成后,发现F浮=G排.师问:“我们能否就根据这一组数据就得出浮力等于被物体排开液体的重力?”生回答:“不能.”教师此时应进一步引发学生思考,如何改变实验条件进行实验探究,防止实验结论的偶然性?生可能回答“改变液体种类或将物体部分浸入液体中”等.然后教师要指导学生修正、完善原来设计的实验方案,研究物体浸没在其他液体(如酒精、盐水等)中或者将物体部分浸入液体中时物体所受的浮力和被物体排开液体重力之间的关系.学生再次进行实验,分析实验数据后,仍发现F浮=G排.
这时,教师就可以引导学生根据实验探究的结果,总结浸在液体中的物体所受到的浮力与它排开液体的重力之间的关系为F浮=G排.教师要告诉学生,大家“发现”的规律就是著名的“阿基米德原理”.
评估与反思
2.提出问题:物体所受的浮力与物体的密度、物体的质量(或重力)、物体的形状以及物体进入液体中的深度是否有关?教师启发设计实验方案,继续探究上述问题.
实验1 探究浮力的大小与物体的密度、物体的质量(或重力)的关系:把等体积的铁块和铝块分别浸没在水中(保持ρ液和V排不变,二者的密度、质量、重力不同),用弹簧测力计测出二者的浮力,比较它们所受的浮力大小,得出结论.
最后,教师引导学生总结归纳得出:物体所受浮力的大小只与液体的密度ρ液和物体排开液体的体积V排有关,而与物体的密度、物体的质量、物体的重力、物体的形状及物体浸没在液体中的深度等无关.
阿基米德原理 教案 第5篇
一、教学目标: 1.知识目标:
知道什么情况下物体受浮力;知道与浮力大小有关的因素;理解阿基米德原理。2.能力目标:
能用已掌握的知识,根据实验目的,设计、完成实验,得出实验结论并归纳出阿基米德原理的内容。培养学生初步的观察、实验能力,初步的分析、概括能力。3.情感目标:
在观察实验的基础上,归纳、概括出物理规律,培养学生实事求是的科学态度,培养学生爱科学,探求真理的愿望。
二、教学重难点:
1.重点:浮力的概念,阿基米德原理。
2.难点:浮力产生的原因;设计实验,归纳出实验定律。
三、教具:
1.演示用:弹簧测力计、溢水杯、水、圆柱形金属物(铅块)、石块、细线、小桶、杠杆、篮球、打气筒、气针、气球、长圆柱形玻璃筒。
2.学生用:两人一组。每组配备器材有弹簧测力计、烧杯、水、石块、细线、小桶。
四、教学方法:实验探究法。
五、课时:1课时
六、课型:实验探究课
七、教学过程:
(一)引入新课:
讲述:万吨巨轮,在水中为什么不下沉?热气球为什么能腾空而起?这些现象都与浮力有关。这是一个有关浮力的问题。那么什么是浮力?它的大小与哪些因素有关呢?今天我们就来学跟浮力有关的阿基米德原理。
(二)进行新课:
1、什么是浮力?
设置情景:如图1所示。
置疑:为什么金属块沉在水底,木块浮在水面? 充分让学生猜想假设,学生可能会有如下想法:
① 木块受到水对它的浮力,所以浮了起来。
② 金属块比木块重,不受浮力。
③ 金属块比木块密度大,不受浮力。
④ 金属块沉在水底,所以未受到水的浮力。
释疑:实验探究1(探究过程如图
2、图
3、图
4、图
5、图6所示。)图2弹簧测力计有示数;图3木块放入水中后,弹簧测力计无示数; 图4木块比金属块重,却浮在水面; 图5金属块沉入水底,金属盒却浮在水面; 图6加水前后弹簧的形变不同。
图
2、图3探究说明猜想①正确,木块在水中受浮力; 图4探究说明猜想②错误; 图5探究说明猜想③错误;
图6探究说明猜想④错误,金属块在水中也受浮力。
探究表明,无论物体是沉是浮、是轻是重、密度是大是小,在液体中都受到一个向上 的托力。
结论:物理学中把液体对浸在其中的物体的向上的托力叫做浮力。教师及时引导学生归纳出两个实验结论:
①液体和气体都会对浸在其中的物体产生竖直向上的浮力;
②称重法测浮力:浮力=物体重-物体在液体中的弹簧测力计示数,即F=G-F’。
再置疑:不同物体受到的浮力大小是否相同,浮力的大小与哪些因素有关?
2、浮力的大小与哪些因素有关
由死海不死及日常经验引发学生思考,再提出猜想与假设。
教师在这里要注意学生发散性思维,学生除了提出浮力的大小和液体的密度及排开液 体的体积有关以外,还可能提出浮力和物体的重力、体积等有关,教师应予以鼓励。
进行课本中P125实验探究2阶段,一定在先使学生弄清实验目的和方法,然后再动 手实验。
①对鸡蛋加盐上浮实验,教师应引导学生从力和运动状态变化的关系来认识,鸡蛋由 静止到运动是浮力增大,而浮力增大又是由于加盐导致液体密度增大的结果。
②观察物体浸在液体中的体积变化时,浮力是否变化的实验,教师要向学生讲明什么 是物体浸入部分的体积、排开液体的体积。(学生动手实验)
师生共同归纳结论:物体在液体中所受的浮力的大小不仅与液体的密度有关,还与物 体排开液体的体积有关,而与浸没在液体中的深度无关。
3、探究浮力的大小
课本中P126实验探究3是在前面两个探究实验的基础上,再进一步定量分析,从而进 入更高层次的研究。
在这一过程中,教师更应发挥指导作用,由浮力的大小和液体的密度及排开液体的体 积有关,进一步引导学生认识到浮力的大小应和排开液体的重力有关,这样才能使学生 有目的地进行实验探究。
由于学生第一次使用溢水杯,教师也应作一介绍,并示范使用溢水杯的方法。为了使学生真正认识到总结规律应具有普遍意义,课本中安排了石块和金属块的两组 实验。有条件的还可以用不同的液体及体积相同的不同的金属块去进行比较实验。
教师巡视并指导学生进行实验、评估、分析在探究过程中哪一环节出现问题,并及时 纠正。
在教师的指导下,学生完成了实验探究过程后,由学生完成自己的实验结论。教师要 全面准确地介绍阿基米德原理的内容。对学生实验及时进行肯定与表扬,使学生充分感受 探究的发现并获成功的一种愉悦。
(三)、小结:引导学生归纳出本节课的主要内容:
1.什么是浮力
2.阿基米德原理的内容及相关因素
3.求浮力的方法——弹簧测力计法(称量法),阿基米德原理法(公式法)。
(四)、布置作业
八、板书设计
阿基米德原理
1.内容:浸入液体里的物体受到向上的浮力,浮力的大小等于它排开的液体受到的重力。2.公式:F浮=G排= m液·g=ρ液·g·V排 3.适用条件: 适于液体、气体。
阿基米德原理实验教案2 第6篇
武沟乡九年一贯制学校
袁金凤
教材分析
阿基米德原理是初中物理教学的重要内容,在力学知识的学习过程中起着承上启下的作用。学好这部分内容既有利于深入理解液体压强、压力、二力平衡和二力合成等知识,又为进一步学习机械效率打好了基础。由于这部分内容涉及到的计算公式比较多,内容又有一定的难度,学生学起来总有种望而生畏的感觉。因此,教学过程中我注重学生对知识的理解,通过实验、推理等方法,努力激发使这一部分教学不枯燥,争取调动全体学生学习兴趣提高学生成绩。学生情况分析
我所教的班级,学生学习意识比较淡漠,学习基础比较差,在学习过程中体现的问题主要表现在:学习很被动、计算能力比较差。在前面的教学过程中,已经重点强调了相关内容,为进一步学习《阿基米德原理》做好了准备。如何调动他们的学习兴趣是一个关键问题。
三、三维目标
一、知识与技能:
1.了解阿基米德原理
二、过程与方法:
1.体验研究阿基米德原理时运用的尝试实验法、直觉思维法等科学方法。
2.经历从提出问题、猜想和假设、设计实验、选择器材到进行实验探究、交流评估、得出结论的全过程。
三、情感态度与价值观:
通过探索式学生实验,让学生感受勇于探求科学真理的热情,学会以开放的精神解决问题,学会感受与鉴赏自然规律的和谐及简洁之美,进而形成对自然科学浓厚的兴趣。教学重点、难点
重点:阿基米德原理。
难点:①探索阿基米德原理的实验设计及操作过程;
②对阿基米德原理的理解。
二、教学过程
(一)引入新课
同学们,上一节课我们学习了浮力的概念和测量浮力的方法,哪位
同学说一下称重法测浮力的表达式是什么?
今天,我们学习新知识之前先看这样一个问题:有一艘巨轮沉入海底,我们如何才能将它打捞上来呢?哪位同学有办法?(学生思考并回答)。
现在大家听一下科学家是如何打捞的?他们在轮船两侧绑上浮筒,随着浮筒的增加,轮船由开始移动到最后上浮,看起来浮筒越多浮力越大,为什么浮筒越多浮力越大呢?浮力的大小到底与哪些因素有关呢?
(二)新课教学
1.提出问题:浮力大小跟哪些因素有关呢? 2.猜想与假设:学生可能猜想出的因素一般有:(1)物体的质量;(2)液体的密度;(3)物体浸没在液体中的深度;(4)被排开的液体体积。教师总结并板书。
3.设计实验并进行实验:为了验证我们的猜想是否正确,我们应该怎样来设计这一实验呢?(注:引导学生注意为保证实验结果的可靠性,要控制变量)将学生分成8个小组,自主选择探究以上的一个或几个猜想,并注意这些因素是怎样影响浮力的大小的。(注:因为课堂时间有限,不必每个人都要进行完全的探究,引导学生意识到合作的重要性)巡视中对学生的实验情况进行指导,兼顾学生对猜想的选择情况,进行正确引导,保证每个猜想都有多组学生来验证。(注:要让学生感受到大量实验得出的结论才可靠,体会团结起来力量大的道理)学生实验分小组试验后,叫小组上黑板演示并板书实验数据
4.分析论证:根据实验数据进行分析。
(注:探究成果共享,使实验结论更有说服力;同时,不要忽视错误探究过程的展示,犯错误并及时改正错误是人成长的必经之路)5.得出结论:通过大家的合作探究,我们对提出的猜想进行了验证。大家得出的结论是:浮力的大小与液体的密度和排开液体的体积有关,与物体的质量和物体浸没在液体中的深度无关。
请大家思考:浮力的大小与排开液体的体积有关,与排开液体的重力有没有关系呢?
[学生分成8个小组,用不同物体、不同液体定量探究浮力的大小与排开液体的重力大小的关系。](注:因为课堂时间有限,每个人只要随意测出一组数据即可)巡视中对学生的实验情况进行指导,进行正确引导,保证每组学生都能得出正确结论。实验过程、实验数据和实验结论的典型展示。(注:探究成果共享,使实验结论更有说服力;同时,不要忽视错误探究过程 的展示,犯错误并及时改正错误是人成长的必经之路)
通过大家的合作探究,我们对提出的猜想进行了验证。大家得出的结论是:浮力的大小与物体排开的液体所受的重力相等。这就是着名的阿基米德原理。板书:阿基米德原理浸在液体中的物体所受浮力的大小等于被物体排开的液体所受的重力。(注:这对提高学生在科学探究中的猜想能力有重要意义)知识扩展:我们研究的是物体在液体中受到的浮力,物体在气体中是否也受到浮力呢?物体在气体中也会受到浮力。大量实验证明,阿基米德原理同样适用于气体。(三)回顾小结
初中浮力阿基米德原理教案优秀 第7篇
1.会设计实验探究阿基米德原理;
2.了解阿基米德原理.
教学重难点
【教学重点】浮力的概念,阿基米德原理。
【教学难点】浮力产生的原因;设计实验,归纳出实验定律。
教学过程
学习指导: 阿基米德原理
●自主预习
阅读课本53、54、55、56面,完成下列填空:
(1)两千多年以前,阿基米德发现:物体浸在液体的体积就是 物体排开液体的体积 ;
(2)排开的液体体积越大、液体的密度越大,则排开的液体的 质量 就越大,因此,浮力的大小可能跟排开液体的 质量 密切相关,而液体的 重力大小 跟它的质量成正比,因此,浮力的大小可能跟 排开液体所受的重力 密切相关;
(3) 浸在液体中的物体受到向上的浮力,浮力的大小等于它排开的液体所受的重力 ,这就是著名的阿基米德原理。用公式表示: F浮=G排。
●小组讨论
各小组同学分工合作,完成下列实验:
(1)将装满水的烧杯放在盘子里,再把易拉罐按入水中,在手感受到浮力的同时,会看到排开的水溢至盘中。注意观察比较排开水的多少与手的体验。
(2)实验探究:物体在液体中受到的浮力与它排开的液体的重力有什么关系?
实验器材: 弹簧测力计 、溢水杯、塑料小桶、水
实验步骤:
1.测出物体所受到的重力G物;
2.测出空桶重力G桶;
3.把物体浸入液体中,用小桶收集溢出的水读出此时测力计的示数G′物;
4.测出溢出的水的重力G排.
计算对比:物体受到的浮力为F浮= .
实验结论:浸在液体中物体受到的浮力,大小等于它排开的液体所受到的重力,用公式表示为F浮=G排=ρ液gV排.
●教师点拨
1.浸在液体中的物体所受的浮力可以用弹簧测力计测出。先测出物体所受的重力,再读出物体浸在液体中时测力计的读数,两者之差就是浮力的大小;
2.物体排开液体所受的重力可以用溢水杯和测力计测出。此处,应注意物体排开的液体会有丢失,不易全部收集,引起测量的误差产生;
3.阿基米德原理适用于物体受到的液体或气体对它的浮力的计算,浮力大小只与物体排开的液体体积和排开的液体密度有关,与其它因素(如:物体体积等)没有关系.
●跟踪训练
1.鱼缸中装满水,在水中轻轻放入一只小船,小船漂浮在水面上,从鱼缸中溢出510-4m3的水,则小船受到的浮力是 5 N,小船所受的重力与浮力的关系是平衡力 (g=1O N/kg)。
2.7月26日,我国自主研制的第一台深海载人潜水器“蛟龙号”成功突破5000米水深大关,这标志着我国的深海载潜技术已达到世界领先水平.
(1)“蛟龙号”在下潜过程中,所受压强将增大(填“增大”、“减小”或“不变”);
(2)“蛟龙号”潜水器在下潜过程中,排开水的体积约为23米3,则潜水器受到的浮力为 2.3105 牛(海水的密度取ρ=1.0103千克/米3).
3.一同学在岸上最多只能搬得起质量是30kg的鹅卵石.如果鹅卵石的密度是2.5103kg/m3,则该同学在水中最多能搬得起质量是 50 50
kg的鹅卵石(石头不露出水面).这时石头受到的浮力是 200 200
N(ρ水=1.0103kg/m3,取g=10N/kg)。
4.小明同学用一个弹簧测力计、一个金属块、两个相同的烧杯(分别装有一定量的水和煤油),对浸在液体中的物体所受的浮力进行了探究.下图表示探究过程及有关数据.
(1)分析图B、C、D,说明浮力大小跟排开的液体体积有关.
(2)分析图D、E,说明浮力大小跟液体密度有关.
(3)物体完全浸没在煤油中所受的浮力是2.4N.
5.某教师在“阿基米德原理”教学过程中,做了如下演示实验.
(1)在弹簧下端挂上小筒和金属块,记下弹簧伸长后指针位置O,如图甲所示.
(2)溢水杯中装满水,把金属块全部浸入溢水杯的水中,用烧杯收集排开的水,弹簧缩短,如图乙所示.
阿基米德原理教案示例 第8篇
一、教学目标
(1)通过对物体在什么情况下受浮力的探究,认识浮力。
(2)经历探究浮力大小以及“浮力大小与哪些因素有关”的过程。
(3)知道阿基米德原理。
(4)在探究浮力的过程中学习科学探究的方法,体验科学探究的乐趣。教学方法实验探究法教具容器、乒乓球(或木块)、金属块、大烧杯、弹簧测力计、细线、鸡蛋、食盐、溢水杯、小烧杯等。
二、教学过程
(一)引入新课
播放巨轮远航、气球腾空的视频或展示巨轮远航、气球腾空的图片引入课题。(板书)
四、阿基米德原理
(二)新课教学
(1)板书:1.认识浮力
演示图1,提出问题:在生活中你遇到的哪些物体受到了浮力的作用?你是怎样知道它受到了浮力的作用?请举例说明。
[学生开始可能会以在水中上浮或漂浮的物体为主举例,逐步地会有学生意识到在水中下沉的物体也会受到浮力。](注:在这里,第2问的提出一是增加学生对第1问的思考深度,二是为后面用弹簧测力计测浮力做好铺垫;对学生举出的不恰当的例子要及时进行处理)在水中下沉的物体是否也会受到浮力?怎样知道它是否受到了浮力?(注:要引导学生学会比较判断物体是否受浮力的各种方法的特点,认识到用弹簧测力计判断物体是否受浮力有独到的好处)浮力是一种什么样的力?你认为物体在什么情况下会受到浮力?(注:在学生充分讨论、感受的基础上让学生进行总结、概括)通过前面的讨论我们知道,物体在浸入液体或气体时,会受到液体或气体对它向上托的力,这个力在物理上就叫做浮力。在实验室里,我们可以用弹簧测力计两次测量求出浮力的大小。
在我们举过的事例中,物体都受到了浮力的作用。它们受到的浮力大小是否相同?为什么? [学生一般会想到在各种不同情况下,物体受到的浮力不相同。](注:这一问题的解决要引向用弹簧测力计测出浮力进行比较,使学生养成通过实验研究问题的习惯)那么,是什么因素影响了浮力的大小?(2)板书:2.探究浮力
请你对浮力的大小与哪些因素有关提出猜想,并说出猜想的依据。
(注:说出猜想依据是为了保证猜想的科学性,避免出现胡猜乱想的现象)[学生一般会从浮力的受力物体与施力物体———液体入手进行猜想,浮力大小可能与物体有关,也可能与液体有关。学生可能猜想出的因素一般有:①物体的体积;②物体的密度;③物体在液体中的深度。⑵与周围物体有关的因素:①液体的密度;②液体的多少;③被排开的液体体积。] 过分析,我们可以把上述猜想归结为以下4个:
物体的密度;物体浸没在液体中的深度;液体的密度;物体排开的液体的体积。
(注:要引导学生对提出的这些猜想进行分析、归类,去伪存真,以便实验探究更加顺利)为了验证我们的猜想是否正确,我们应该怎样来设计这一实验呢?(注:引导学生注意为保证实验结果的可靠性,要控制变量)将学生分成若干小组,自主选择探究以上的一个或几个猜想,并注意这些因素是怎样影响浮力的大小的。(注:因为课堂时间有限,不必每个人都要进行完全的探究,藉此引导学生意识到合作的重要性)巡视中对学生的实验情况进行指导,兼顾学生对猜想的选择情况,进行正确引导,保证每个猜想都有多组学生来验证。
(注:要让学生感受到大量实验得出的结论才可靠,体会团结起来力量大的道理)实验过程、实验数据和实验结论的典型展示。
(注:探究成果共享,使实验结论更有说服力;同时,不要忽视错误探究过程的展示,犯错误并及时改正错误是人成长的必经之路)通过大家的合作探究,我们对提出的猜想进行了验证。大家得出的结论是:浮力的大小与液体的密度和排开液体的体积有关,与物体的密度和物体浸没在液体中的深度无关。
请大家思考:
物体在密度大的液体中受到的浮力是否一定大?物体排开的液体体积大时,物体受到的浮力是否一定大?在液体的密度和物体排开液体的体积都不同时,物体可否受到相同的浮力? [学生在思考的基础上,不难回答;况且也有学生在实验中已发现在密度小的液体中,物体排开液体的体积大的话浮力也可较大。](注:这是一个极具价值的问题,这样就等于在探究过程中发现了新的问题,可促使探究进一步的深入)既然在液体的密度和物体排开液体的体积都不同时,物体受到的浮力的大小可能相同。再说“浮力的大小与液体的密度和排开液体的体积有关”是否欠妥?那么,浮力大小到底跟什么因素有关?又是怎样的关系呢? [学生可能会猜想浮力与排开液体的质量、重力有关;浮力与排开液体的重力相等或成正比](注:根据液体密度小、排开液体的体积大与液体密度大、排开液体的体积小的物体受到的浮力的大小可能相同,不难猜出排开液体的质量,进而猜出排开液体的重力;而浮力的大小更可能与排开液体的重力有关,因为它们都是力)为了验证浮力的大小是否与排开液体的重力大小相等或成正比,又应当怎样来设计实验呢?(注:要提醒学生在液体密度不同、排开液体的体积也不同的各种情况下,随机测出浮力的大小和排开液体的重力,然后进行比较)[学生分成若干小组,用不同物体、不同液体定量探究浮力的大小与排开液体的重力大小的关系。](注:因为课堂时间有限,每个人只要随意测出一组数据即可)巡视中对学生的实验情况进行指导,进行正确引导,保证每组学生都能得出正确结论。实验过程、实验数据和实验结论的典型展示。
(注:探究成果共享,使实验结论更有说服力;同时,不要忽视错误探究过程的展示,犯错误并及时改正错误是人成长的必经之路)通过大家的合作探究,我们对提出的猜想进行了验证。大家得出的结论是:浮力的大小与物体排开的液体所受的重力相等。这就是著名的阿基米德原理。
(注:要对学生强调大量实验得出的结论才可靠,在全班同学的努力下,我们一节课解决了智者阿基米德几年都没解决的问题)(3)板书:3.阿基米德原理
浸在液体中的物体所受浮力的大小等于被物体排开的液体所受的重力。讲述阿基米德洗澡发现阿基米德原理的轶事。阿基米德在洗澡时突然意识到浮力的大小与物体排开的液体所受的重力有关。
通过本节课的探究,对你以后在科学探究中的猜想有什么启示?课下与你的同学一起讨论。
(注:这对提高学生在科学探究中的猜想能力有重要意义)知识扩展:我们研究的是物体在液体中受到的浮力,物体在气体中是否也受到浮力呢?物体在气体中也会受到浮力。大量实验证明,阿基米德原理同样适用于气体。
(三)回顾小结
引导学生就本次实验探究过程中在知识与技能、过程与方法以及情感态度与价值观方面的收获进行总结。
阿基米德原理教案示例 第9篇
教学目的
1.使学生理解原电池原理.
2.常识性介绍日常生活中常用的化学电源和新型化学电池. 教学重点:原电池原理. 教学难点:原电池原理.
教学方法:实验探究法——通过实验、分析、讨论、总结、应用等过程,诱导学生观察、思考、推理、探究.
教学用具:铁丝、铜丝、锌片、铜片、稀硫酸、导线、烧杯、电流计 教学过程:
[引言] 前几节我们学习了有关金属的知识,了解了铁和铜的性质.铁是比较活泼的金属,能溶于稀硫酸,铜是不活泼金属,不溶于稀硫酸.如果我们把铁和铜连接在一起,同时放到稀硫酸中,会发生什么现象呢?下面我们做这个实验.
[学生实验] 见课本图3-18 [讲述] 把铁丝和铜丝的上端连在一起,放入稀硫酸中,在金属丝上有电子流动,构成一个小电池我们叫它原电池.今天我们就来研究原电池的原理和应用.
[板书] 第四节 原电池原理及其应用
一、原电池
[实验] 下面我们用锌片和铜片、稀硫酸做实验 [投影]
[设疑] ①锌片和铜片分别插入稀硫酸的现象是什么? ②锌片和铜片用导线连接后插入稀硫酸中,铜片上为什么有气泡产生? ③锌片的质量有无变化?溶液中c(H+)如何变化? ④写出锌片和铜片上变化的离子方程式 ⑤电子流动的方向如何? [学生讨论] 略.
[板书] 锌片 Zn-2e-=Zn2+(氧化反应)铜片 2H++2e-=H2↑(还原反应)电子由锌片经导线流向铜片
[讲述] 我们知道,物质发生反应时,常伴有化学能与热能、光能等的相互转化.如:镁条在空气中燃烧的化学反应,伴有放热、发光等.这说明化学能转变为热能和光能.那么,我们做的这个实验是化学能转变为哪种能呢?
[学生回答] 略.
[教师总结] 这种化学能转变为电能的装置叫做原电池. [板书] 原电池的定义:化学能转变为电能的装置.
[讲述] 这一现象早在1799年被意大利的物理学家伏打捕捉到并加以研究,发明了世界上第一个电池:伏打电池,即原电池.
[投影] [学生填写下表]
[引导思考] 原电池的两极材料如何选择呢? [讨论] 略. [学生精读课本] [投影]
[讲述] 下面我们再做几个实验共同探讨一下原电池的组成条件和原理.请大家仔细观察现象,认真思考.
[投影]
[设疑] ①哪种装置可以形成原电池? ②正、负极各为什么物质?两极上各发生什么变化? ③电子的流动方向如何?
[学生讨论] A、B、C可形成原电池(可让学生在黑板上书写电极反应式)[讲述] 1.通过以上我们做的几个实验,我们共同总结一下组成原电池的条件及原理. [讨论] 略.
[板书] 2.组成原电池的条件
①有两种活动性不同的金属(或一种是非金属导体)作电极. ②电极材料均插入电解质溶液中. ③两极相连形成闭合电路.
3.原电池的原理:较活泼的金属发生氧化反应,电子从较活泼的金属(负极)流向较不活泼的金属(正极)[讲述] 人们应用原电池原理,制作了多种电池,如:干电池、蓄电池、充电电池、高能电池等,以满足不同的需要.请同学们说说你所知道的电池的用途.
[投影](课本图3-20,学生分别述说电池的用途)[板书]
二、化学电源
[讲述] 下面简单介绍几种常见电池和新型电池 1.干电池 [展示干电池实物] [学生讲述] 学生通过预先准备好的拆开的干电池介绍干电池的构造(正、负极以及电解质溶液)[阅读] 课本 2.铅蓄电池 3.锂电池 4.新型燃料电池 [练习] 1.X、Y、Z都是金属,把A浸入C的硝酸盐溶液中,A的表面有C析出,A与B组成原电池时,B为电池的负极.A、B、C三种金属的活动性顺序为
[
]
A.A>B>C
B.A>C>B C.B>A>C
D.B>C>A 2.试用三个实验来比较铁和铜的金属活动性,并写出离子方程式 [小结] 按板书的内容,归纳本节的内容和要点. [作业] 本节课本习题
一、1,2,二、1,2,3 阅读选学内容:金属的电化学腐蚀
(天津红桥区教研室
孙秉从
《阿基米德原理》说课稿 第10篇
张青
我说课的题目是《阿基米德原理》,下面我将从五个方面来汇报我对这节课的认识和设计。
一、对本节教材的理解
浮力是在学生掌握了弹力、重力、摩擦力后,将要探究认识的另一种自然界普遍存在的力,本节是“密度与浮力”这一章的核心内容,通过本节课的学习,学生将对刚刚学过的质量、密度知识进行提高和升华,学生自主探究、经历科学探究过程中将发展他们的各项技能,培养他们的各种能力。阿基米德原理是初中物理力学部分的重点和难点内容。
(一)、教学目标:
1、通过实验探究,认识浮力和测量浮力的一种方法,知道阿基米德原理。
2、通过实验探究的过程,发现浮力的大小和液体的密度及排开液体的体积有关。
(二)、方法与过程
1、通过猜想、设计、实验、分析,体验探究过程,渗透物理学的研究方法“猜想——设计——验证——结论”。培养探究意识,发展科学探究能力
2、在经历探究浮力大小的过程中,提高自身收集证据、分析和论证的能力。
(三)、情感态度价值观
⒈在浮力实验的探究过程中,培养交流与合作精神,并逐渐形成既能坚持原则又能尊重他人的良好习惯。
2、培养学生实事求是的科学态度,通过介绍阿基米德原理的发现史,在教学中渗透仔细观察身边事物的教育,提高学生的科学素养。
(四)、教学重难点
重点:知道阿基米德原理。
难点:发现排开液体体积会影响浮力的大小。
二、学情分析:
学生已经具有了一定的力学知识:重力、平衡力、力的合成、弹簧测力计的使用方法等,同时也了解了控制变量法、等效法的物理思想。在日常生活中也感受到了浮力,观察了大量的事例,但还是缺少抽象概括能力,同时还会产生一些认知偏差,对教学反而形成一定的干扰。
三、选择的教法
1、将被动观察改为主动探究,将演示实验改为学生探索实验。
2、探究模式采用与物理研究方法相同的模式,即:猜想—设计—验证—分析、归纳—评估。
教学用具
弹簧测力计、烧杯、小桶、塑料袋、小石块、木块、金属块、鸡蛋、水、酒精、盐
四、学法的指导
在课堂上着力开发学生的三个空间:
1、学生的活动空间。将演示实验改为学生的分组试验,全体学生参与,使每个学生都能体验探究过程,得到发展。
2、学生的思维空间。创设问题情景,让学生自己体验、感知知识的发生、发展过程,通过交流合作产生思维碰撞,培养思维能力。
3、学生的表现空间。通过把自己的想法、结果展示给大家,学习交流与合作,体验成功的愉悦。
五、教学设计
1、引入:
首先播放“曹冲称象”的视频,由学生通过观察,判断船只在水面上漂着的原因——受到浮力。锻炼了学生的观察能力和分析判断能力。再让学生利用手边的器材感受浮力的存在。学生将各种物体放入水中观察现象:木块漂在水面上,石块、金属块沉人水底。这样提高了学生的学习兴趣。在描述不同的实验现象的同时,也可判断出浮力的方向。锻炼了学生的语言表达能力,归纳、总结能力。木块受到的浮力有多大?进行受力分析,根据平衡力的知识得到浮力的大小。那么石块、金属块浸没在水中,受浮力吗?如何测浮力?通过学生小组讨论,激发了学生的学习兴趣,同时培养了他们的团结合作意识,还再一次练习使用的弹簧测力计,为后面的分组实验打好了基础。从而引出“二次称量法”测浮力F浮=G-F拉。在实验中发现弹簧测力计的示数减小,与我们直接用手去拖着物体的效果相同,利用等效法得出浮力的概念。通过课件展示热气球升空,表现出物体在空气中同样也会受浮力的作用。由于学生知识有限,激起认知冲突,调动学生思维的积极性,提出问题,进入课题。
2、猜想:
你怎样改变这些物体所受的浮力?学生可以自由操作:①往放鸡蛋的水中加盐 ②改变石块、金属块浸在水中的位置(改变深度)③手向下压木块(改变液面下的体积)等等,并说出自己的方法。培养学生认真观察的好习惯,锻炼学生的语言表达能力。利用慢速的演示石块浸入水中的过程,引导学生观察现象,有学生说出“水面上升,弹簧测力计示数减小”等所有的现象,老师再提出问题,哪些因素会影响浮力?培养学生直觉猜想能力。并对猜想进行分类。这时,不管学生的想法正确与否,是否完善,老师都不评论,只是倾听。这样做是想通过学生之间的交流,通过反思,改进、修改各自的设计。按自己认为正确的设计进行,让事实来说明。由于在猜想时很难想到V排,所以老师可以将石块浸入水的速度尽量放慢。并引导学生注意观察石块的位置变化情况。进而引导出,其实是物体浸在水下部分的体积在影响着浮力的大小。然后利用课件中量筒内水位的变化,来判断V浸=V排,这样就比较容易的联想到,V排对浮力的影响了。
3、设计实验:
这个实验难度较大,涉及的器材多,步骤繁琐,学生思维负担重。所以,这个环节是这节课的重中之重。教师可以讲述“王冠之迷”的故事。提问学生,阿基米德到底发现了什么?强化排开水的现象,并发现排开水越多,浮力就越大。并测量G排。强化排开液体的过程,关注浮力大小与排开液体的多少的关系。突出F浮= G排的物理意义,加强学生对G排的理解。
再提出新的问题,引发学生进一步去思考。根据猜想的内容,主要引导学生讨论下列几个问题:(1)没有溢水杯怎么办?培养学生思维的发散性,锻炼学生用身边物品做实验。
(2)用什么样的容器接水?如何测溢出的水重?是否可以用塑料袋代替小桶?从而降低实验难度,减轻思维负担。
通过讨论,要达到的目的有三点,第一,设计、讨论实验的可行性,发展思维水平,培养创新能力。第二、培养学生初步的提出问题、解决问题能力。第三、学习拟定简单的实验方案。
4、实验、评估
⑴ 学生根据猜想,进行小组讨论,设计实验方案,并讨论实验的可行性。
⑵ 团结协作,进行探究实验。
学生以小组为单位,按拟定的方案实验,边做边记,教师巡视,注意学生仪器使用是否得当,数据记录是否正确,作个别指导。帮助学生进行实验,收集数据,进行数据处理、分析,从而得出结论。这样做,体现了课堂上学生的主体地位,培养学生自主学习的意识。然后将自己小组的实验过程和记得出的结论展示给大家,使学生之间互相学习交流、合作,同时也提高了学生的学习积极性,提高了人文素质。在展示的过程中,可能有的学生为了达到自己的实验结论,就对实验数据擅自作了“修正”。老师要先不要质疑,以免打击学生的积极性,这样说:你们很聪明;或者是笑一笑,同学们会“心领神会”的,渗透实事求是的科学意识。有可能会有个别数学能力强的学生,会判断出浮力与液体密度和排开液体体积成正比的关系,老师要及时鼓励。但只要得出浮力与液体密度和排开液体体积有关即可。
5、深化理解
有两项内容,一是纠正学生的前概念,例如:物体浸入水中越深,浮力越大等等。二是深化认识,漂在液面上的物体受到的浮力可以用阿基米德原理解决吗?体现特殊到一般的认识规律,从而实现认识的第二次飞跃。这两项内容都可以通过实验解决。
6、总结
主要是总结知识、能力、态度,尤其是使物理方法显性化。
本节课的设计主旨,面向全体学生,突出科学探究过程,让学生体验阿基米德原理知识的发生、发展过程,重视学习过程、物理方法的学习和学生思维水平的提高,立足于学生的全面发展及全体学生的发展,提高全体学生的科学素质,培养科学精神。
7、随堂练习
(1)请说出曹冲称象的理论依据和方法。
(2)将金属块的一半浸没水中,排开了 0.6kg的水,金属块受到的浮力是____________。(g取10N/kg)
(3)把重17.8N的实心铜球挂在弹簧测力计上,浸没在水中后,弹簧测力计的示数是15.8N,铜球受到的浮力是________ N,铜球的体积是 ________cm3。(g取10N/kg)
阿基米德原理教案示例
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


