电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

高数第一章函数与极限

来源:火烈鸟作者:开心麻花2025-11-191

高数第一章函数与极限(精选9篇)

高数第一章函数与极限 第1篇

考研高数第一章 函数、极限与连续知识点

考研数学备战在即,基础阶段广大学子应该对考研数学的`基本概念、基本理论、基本方法进行重点把握,为了方便大家更好的复习,考研教育网编辑团队现将20考研数学第一章重要知识点整理如下,为大家考研数学的复习助力!

高数第一章函数与极限 第2篇

电信1003班  函数

1.定义域与定义区间的关系。

2.映射的种类及存在条件。

3.求函数定义域的基本原则(7条)。

4.几种特殊的函数类型(绝对值函数、符号函数、取整函数)。

5.基本初等函数、初等函数、简单函数的对比。分段函数不一定

是初等函数哦。

6.复合函数的分解及原则。

7.双曲函数、反双曲函数的函数式、图像、及性质。

 函数的极限

1.两种极限的定义、比较以及符号语言。

2.极限的性质:唯一性、有界性、局部保号性,函数极限与数列

极限的关系以及对它们的证明。

3.函数极限的证明方法及语言的表述,左右极限的求法及意义。

4.无穷小及无穷大的定义,两个定理及证明。

5.无穷小的比较:高阶、低阶、同阶、K阶无穷小,常见等价无

穷小及应用。

6.极限的运算法则:6个定理4个推论。

7.函数的连续性与间断点。连续的定义及符号语言,连续的条件,单侧连续的求法,证明判断某点连续的方法,间断点的定义、种类及判断分类原则。

8.闭区间上函数的性质:有界性、最值定理、零点定理、介值定

理及推论。

9.有关复合函数的性质及运算。

10.函数的三种渐近线及求法。(P76)

11.函数符号和极限符号的对换。

 数列的极限

1.定义及理解(8个字)

2.性质:唯一性、有界性、保号性。

3.数列发散与收敛的判断及证明。

4.数列极限与函数极限的关系,以及数列极限的证明(几个定

理)。

 极限存在准则及两个重要极限

1.夹逼准则(适当的放缩)。

2.单调有界准则:判断极限存在与否。

3.两个重要极限的证明、特征、变形及应用。

 课后习题推荐

P22-13P31-4,5P38-7,8P42-6,7P49-4,5P56-4P60-4P65-4,5,6P70-4.6,5P74-1,2,3,4,5,6P75-9.5,9.6P76-14

第一章函数与极限教学基本要求 第3篇

所用学时:16学时理论授课学时:14学时习题课:2学时

一.本章导读

本章介绍了高等数学的研究对象函数,重点提出了极限方法是研究变量的一种基本方法;高等数学的研究对象是变动的量,函数关系就是变量之间的依赖关系,而极限方法是研究变量的一种基本方法。

二.学习目标

1.理解函数的概念及函数的奇偶性.单调性.周期性和有界性。

2.理解数列极限的概念及性质(对于给出求N不作要求)。

3.理解函数极限的概念及性质(对于给出求X和不作要求)。

4.了解无穷小与无穷大的概念。

5.掌握极限运算法则。

6.理解极限存在的夹逼准则,了解单调有界准则,会用两个重要极限求极限

7.了解无穷小的阶的概念,会用等价无穷小求极限。

8.理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判 别间断点的类型

9.掌握连续函数的运算,会用初等函数的连续性求极限

10.了解闭区间上连续函数的性质(介值定理和最值定理)

三.学习重点

1.理解函数的概念,使学生理解函数关系就是变量之间的依赖关系,函数值随自 变量变化而变化。

2.理解极限的概念,极限的思想方法将贯穿整个高等数学的教学过程,对极限的 N和定义可以在学习过程中逐步加深理解。

3.掌握极限的运算法则

4.掌握函数在一点连续和在一个区间上连续的概念

四.学习难点

第一章函数、极限与连续学习指导 第4篇

重点:极限基本理论及计算、闭区间上连续函数的性质。

难点:

1.计算极限技巧;

2.极限的“X”,“”语言,(一)

A1函数概念是高等数学的基本概念,反应了同一过程中,几个变量的联系以及依赖关系。函数定义强调了自变量x在定义D上每取一值时,函数y都有唯一确定的值与它对应,而对于对应关系的形式,定义中并无限制,因此一个函数可以用分析式子来表达,也可以用图象法和表格法来表达。在用分析式子来表达时,可用一个式子表达,也可用几个式子(即分段函数),参数式(实质是以参变量为中间变量的复合函数),隐式(即隐函数)表达。

A2高等数学讨论的函数主要是初等函数。初等函数是由基本初等函数组成,因此对基本初等函数及其性质要非常熟悉,否则在研究初等函数的性质时会遇到困难。对基本初等函数以及性质的深入了解应结合函数图形进行,将函数的性质与图形的特点逐一对照,在此基础上利用图形来记忆函数的性质。

A3由于极限是研究变量在无限变化过程中的趋势,因此必须从变化的、运动的角度来认识极限,在极限的描述性定义中应明确fx“无限接近于A”的含义。“fx无限接近于A”是指x在某一过程中,fx与A要有多接近就有多接近,或者说fx与A的误差可达到任意小。

“x无限接近于a”,“fx无限接近于A”均刻划了变量无限接近于某个常数。这里有两点值得注意:

①无限接近是指在变化过程中,变量与某个常量要有多接近就有多接近,或者说fx与A的误差可以达到任意小,因此“无限接近”与“越来越接近”的含义是不同的。

②变量无限接近于某个常量并没有要求达到这个常量,如“x无限接近于a时,fx无限接近于A”,这个描述并不要求也不要求...x最终达到a,...fx达到A。这一点不可忽视。

A4闭区间上连续函数具有:有界性、最值性、介值性、零值性。在这里,闭区间与函数连续这两个前提应引起充分的注意,当前提不满足时结论就不能成立。

数列极限是特殊的函数极限。因此,其极限性质也有其特殊性。如函数极限只具有局部有界性,而存在极限的数列xn是有界的,这里就有一个局部和整体的差别,其它性质也可进行对照比较。

A5闭区间上连续函数的性质在实际中应用较广泛,在科学技术中常需知某个方程的根的近似值。对于较复杂的方程,若知fafb0便可由零值定理知所求的根落在a,b内,而求出满足fafb0的a,b一般比求出方程

fx0的根要容易得多。

(二)B1“连续”是个局部的概念,是在xx0这一点定义的,因此区间上的连续函数是指对区间上的任一点处,函数都连续。

B2函数fx在x0连续的定义常用以下两种:

定义1:若fx在点x0的某个邻域内有定义,且limfxfa,则称函数

xx0

fx在x0处连续。

定义2:若fx在点x0的某个邻域内有定义,且fx在x0处有limy0,x0

则称函数fx在x0处连续。

从以上定义中看出,fx在x0处连续的充要条件为同时满足以下三条: ①limfx存在;②fx在xx0处有定义;③极限值limfx与函数值

xx0

xx0

fx0相等。

B3无穷小量就是极限为0的变量,因此,极限为的变量显然不是无穷小量,依无穷大量的定义,它是无穷大量。

常用的等价无穷小量:当x0时,x~sinx~tgx~ln1x~ex1;

ax1~xlnaa0;1x1~x0。

B

4计算极限的基本方法小结:

1.利用极限四则运算、夹逼原理、两个重要极限求极限; 2.约简分式、分子(分母)有理化法; 3.变量替换法; 4.等价无穷小的替换法; 5.利用连续函数求极限法 6.利用对数求极限法;

7.利用洛必塔法则求极限(第二章后)。

(三),“”语言定义函数极限具有简练、精确、使用方便的C1用“X”

特点。但由于这种语言要通过一些符号、式子来表达,从而比较抽象。因此应将极限的描述性定义与用“X”,“”语言给出的定义加以对照,深入理解。

下面以limfxA为例,将极限的描述性定义转化为用“”语言给出

xx0的定义,从而加深对用“”语言的理解。

xx0

limfxA表示了:

当x无限接近于x0时,因变量fx无限地接近于常数A,即:fxA可以任意小,只要xx0充分小(不用考虑xx0的情况)即:0,只要xx0充分小,(不用考虑xx0的情况),就有fxA,即:0,0,当0xx0时,就有fx。

这时应注意到,且不唯一。而定义中对,只要求了它的存在性,加外并无要求。由的任意给定和fxA的呼应,用运动变化的观点来刻划fx与A的无限接近。,“”语言中,X、均用于刻划自变量x的变化过程,C2“X”

而是用于刻划因变量y的变化趋势的。自变量x的变化过程有:x、、xx0。而对自变量每个变化过程,因x、x、xx、xx0

变量yfx可有不同的变化趋势:fxA、fx、fx、(当然也可以考虑分得更fx。因此搭配起来就有24个不同的极限定义。细些)

只要真正掌握了极限的基本思想,理解了以上C1,这24个不同的极限定义,是可以理解和掌握的。,“”语言给出的极限定义。C3可利用图象理解“X”

从图中易看出无论取多么小,作二条平行线yA,一定存在邻域

ˆ0,,当x在这个邻域内变化的时候,对应函数图象落入这二条平行线之间。Nx

请将图中看到的这个结果与极限的“”的叙述语言联系起来考虑,并可考虑相应的图象来理解“”语言给出的极限定义。,“”语言来证明函数的极限为某值时,语言一定C4使用“X”

要规范,初学者应按教材上的例题为范例,进行证明,否则易走弯路。

例证明:当x00时,limxx0。

xx0

证:0,因为fxA

xx0

xx0xx0

1x0

xx0

要使fxA,只要xx0x0,且x0,而x0,可用xx0x0保证,因此取minx0,x0 则当x满足0xx0时,对应的函数值x满足不等式

xx0



即limxx0。

xx0

特别注意:

①证明中的划直线部分,实际上正是limxx0的“”语言定义;

xx0

②划曲线部分是用“X”,“”语言来证明xx0时,函数极限为A这类问题的主要叙述语言,要尽快地熟悉和掌握;

③式子fxA

1x0

该式应引起充分注意,通过放大的手段,xx0,将fxA与xx0联系起来了。

④从以上证明中不难看出的取法不唯一,对小于minx0,x0的数均可作为。



C5一致连续是个整体性的概念,它与fx在区间上连续的差别在于fx在区间I上连续,即0,对I上的不同的x0,分别存在x00,当xx0x0

时,fxfx0,这里的x0一般因x0的不同而不同。但若fx在区间I上一致连续,则对于给定的0,存在公共的0,对于I上的任一x0,当恒有fxfx0 成立。由于x与x0地位是相当的,因此f在xx0时,I上一致连续用“”语言来定义时通常表达为:0,0,x1I,x2I,当x1x2时恒有fx1fx2。

C6柯西准则

我们以数列极限为例容易知道,①有极限的数列在n充分大时,它们的项的变化是很微小的。这个特点就是收敛数列的本质。因此,一个数列的收敛或发散可从该数列本身的结构入手进行刻划,柯西准则就是这样刻划数列的敛散性的,它是数列an存在极限的充要条件。

高数复习笔记之极限与函数 第5篇

2,如何判断微积分的有界性

3,极限定义做了解,性质:唯一性、保号性、四则运算,若一个极限存在另一个不存在则相加减的极限必不存在、乘除的极限可能存在也可能不存在;若两个极限都不存在那么加减乘除的极限可能存在也可能不存在。举反例:(参考书籍:数学分析中的反例);相除时,分母为0分子不为0则极限为无穷大,若分子分母全为0,极限怎么算?

4,极限的复合运算:若此函数连续则函数符号跟极限符号可以调换位置。

极限存在准则:单调有界数列必有极限;夹逼定理

两类重要极限:书上找

5:无穷大量与无穷小量(即把任何函数的极限为A的问题转化为极限为零的问题)

无穷小量的比较(视频001 2第16分钟):高阶l=0(两个趋近于0的速度前者比后者快)、同阶l不=0(两者趋近于0的速度一样快)、等价l=1(五个等价无穷小的特例:把指数、三角、对数函数转化为求解简单的幂函数)

高数第一学期期末考试复习提纲 第6篇

一、基本概念要求

(1)理解并熟练掌握函数的四种特性,即单调性、奇偶性、有界性和周期性;

(2)熟悉分段定义函数;

(3)理解极限的εN,εδ,εX定义,理解极限的唯一性、有界性、保号性;

(4)理解无穷小的概念、等价无穷小的性质;

(5)理解极限存在的两个准则并会应用这两个准则证明极限的存在性;

(6)理解并熟练掌握函数的连续性定义、间断点的分类;

(7)熟悉闭区间上连续函数的性质

(8)理解导数、左右导数的定义;

(9)理解函数微分的定义及其近似公式;

(10)理解微分中值定理并熟悉三个定理的条件、结论;

(11)熟练掌握函数的单调性与极值、凹凸性与拐点的判定定理和方法;

(12)理解并掌握原函数与不定积分的概念和性质;

(13)理解定积分的定义、定积分存在的必要条件和充分条件;

(14)理解并掌握定积分的性质特别是估值定理和积分中值定理;

(15)理解并掌握变限积分的定义和性质,理解并掌握牛顿—莱布尼兹公式;

(16)理解并掌握定积分应用的元素法;

(17)理解两类广义积分的定义及其敛散性。

二、基本运算和论证能力要求

价无穷小代换、洛比达法则等;(1)熟练掌握求极限的基本方法,如四则运算法则、极限存在法则、两个重要极限、等

(2)熟练掌握求导的基本方法,如复合函数求导、隐函数求导、参数方程确定的函数的求导、对数求导法、高阶导数等;

(3)熟练掌握分段定义函数在分段点可导性的讨论方法;

(4)能够运用微分中值定理和函数的单调性证明某些不等式,运用微分中值定理证明某

些方程的根的存在性和唯一性;

(5)能够运用导数的知识对函数的性态进行分析,熟练掌握函数图形的描绘;

(6)熟练掌握函数的极值、最大值、最小值问题的求解方法;

(7)熟练掌握不定积分的基本求解方法,特别是第一、二类换元积分法、分部积分法等;

(8)熟练掌握定积分的基本求解方法,熟练掌握变限积分有关问题的求解方法;

(9)熟练掌握定积分的几何应用,特别是在直角坐标系下的面积、体积的计算。

高数第一章函数与极限 第7篇

1.设xn

nn2

(n1,2,),证明limxn1,即对于任意0,求出正整数N,使得

n

当nN时有 |xn-1|,并填下表:

n

1|

2n2

,只需n

22,取

证0,不妨设1,要使|xn-1||N

n2

2

2,则当nN时,就有|xn-1|.

n

n

2.设limanl,证明lim|an||l|.证0,N,使得当nN时,|anl|,此时||an||l|||anl|,故lim|an||l|.n

3.设{an}有极限l,证明

(1)存在一个自然数N,nN|an||l|1;

(2){an}是一个有界数列,即存在一个常数M,使得|an|M(n12,).证(1)对于1,N,使得当nN时,|anl|1,此时|an||anll||anl||l||l|1.(2)令Mmax{|l|1,|a1|,,|aN|},则|an|M(n12,).4.用-N说法证明下列各极限式:

(1)lim

n

3n12n3

;(2)lim

n

n1

0;

(3)limnq0(|q|1);(4)lim

n

n

2n

n!n

n

0;

111(5)lim1;n1223(n1)n11(6)lim0.3/23/2n(n1)(2n)证(1)>0,不妨设<1,要使

3n12n3

32

112(2n3)

,只需n

112

3,取N

3n133n1311

3,当nN时,,故lim.2n2n32n322

(2)>0,要使

,由于

只需

,n

3,1

取N

3(3)|q||nq|

n

,当

nN时1

.1n

(0).n4

1n124n

n

n(n1)

(1)6n

n



n(n1)(n2)



}.

3n

(n1)(n2)n!n

n

,n1.

,Nmax{4,243

(4)

1n

,n

,N

111(5)1

(n1)n1223

111111111

1,n,N

n(n1)n1223

.

(6)

1(n1)

n

3/2



1(2n)

3/2

n(n1)

3/2

,n

,N

12.

5.设liman0,{bn}是有界数列,即存在常数M,使得|bn|M(n1,2,),证

明limanbn0.n

证0,正整数 N,使得

|an|故limanbn0.n

M,|anbn||an||bn|

M

M,6.证明lim

n

1.证0,要使1|n(1)

n

1,只需

n(1)

n

1.4n

而

1n

nn(n1)

(n1)

4n,只需1,n

,N

4

2.

7.求下列各极限的值:(1)limn

lim

n

0.22

(2)lim

n

n3n1004nn2(2n10)nn

lim

n

13/n100/n41/n2/n

.(3)lim

n

lim

n

(210/n)11/n

n

16.2

1

(4)lim1

nn

2n

1

lim1

nn

e.2

11

(5)lim1limn1

nnn11

11

n1n1

1

lim1nn11

(6)lim1

nn

n

n

n

n1

1

lim1nn1

n

n

1e

.111

lim1,取q(,1),N,当nN时,1qnnen

11

10,即lim1nnn

n

n

n

n

n

1nn

01q,limq0,lim

nnn

n

n

n

0.1111

(7)lim12lim1lim1e1.nnnnnne

8.利用单调有界序列有极限证明下列序列极限的存在性:(1)xnxn1(2)xn

11112121



1n,xn1xn2

121

n

1(n1)

xn,

1(n1)n1

1n

2.xn单调增加有上界,故有极限.,xn1xn

n1

21



1

xn,1n

111111111.xn2n12n12222222211

2xn单调增加有上界,故有极限.(3)xn

1n1

1n2



1nn

.xn1xn

12n2

1n1



12n2

0,xn1xn,xn0,xn单调减少有下界,故有极限.(4)xn11

12!

1n!

.xn1xn

1(n1)!

0,111111

xn2133.223nn1nxn单调增加有上界,故有极限.11

9.证明e=lim11.n2!n!

11n(n1)1n(n1)(nk1)1

证11n2k

nn2!nk!n

n(n1)(nn1)1

n!

n

n

n

2

1111k111n1111112!nk!nnn!nn1

n

11111.elim1lim11.nn2!n!n2!n!对于固定的正整数k,由上式,当nk时,11111k112111,n2!nk!nn

11

令n得e11,2!k!

1111

elim11lim11n.k2!k!2!n!

10.设满足下列条件:|xn1|k|xn|,n1,2,,其中是小于1的正数.证明limxn0.n

n

n1

高数第一章函数与极限 第8篇

1.证明:任一奇数次实系数多项式至少有一实根.证设P(x)是一奇数次实系数多项式,不妨设首项系数是正数,则limP(x),x

limP(x),存在A,B,AB,P(A)0,P(B)0,P在[A,B]连续,根据连续函数

x的中间值定理,存在x0(A,B),使得P(x0)0.2.设01,证明对于任意一个y0R,方程y0xsinx有解,且解是唯一的.证令f(x)xsinx,f(|y0|1)|y0|1|y0|y0,f(|y0|1)|y0|1|y0|y0,f在[|y0|1,|y0|1]连续,由中间值定理,存在x0[|y0|1,|y0|1],f(x0)y0.设x2x1,f(x2)f(x1)x2x1(sinx2sinx1)x2x1|x2x1|0,故解唯一.3.设f(x)在(a,b)连续,又设x1,x2(a,b),m10,m20,证明存在(a,b)使得f()

m1f(x1)m2f(x2)

m1m2

.证如果f(x1)f(x2),取x1即可.设f(x1)f(x2),则f(x1)

m1f(x1)m2f(x1)

m1m2

m1f(x1)m2f(x2)

m1m2

m1f(x2)m2f(x2)

m1m2

高数第一章函数与极限 第9篇

三角函数基本公式(如积化和差,和差化积,二倍角公式等等)

反三角函数的值域与其对应三角函数的关系

数列的极限——注意数列有界是数列收敛的必要条件,但不是充分条件

函数极限的部分性质(唯一性,局部保号性,局部有界性)

无穷小与无穷大(后者是重点)

极限运算法则(不会直接考察,但题目中一定会用到,所以说是重点)

夹逼准则,几个重要不等式,两个重要极限(都是重点)

理解高阶无穷小,低阶无穷小,同阶无穷小,等阶无穷小的联系及区别

函数的间断点(第一类间断点包括可去间断点和跳跃间断点,其他的统称为第二类间断点)

导数的求导法则(重中之重!)

反函数,复合函数的导数的求法,及隐函数的求法(必考,重点)

微分与积分的联系与区别(微分=积分dx)

罗尔定理,拉格朗日中值定理的应用(必考)

洛必达法则的使用条件及如何使用

函数的极值与最值,驻点与拐点的区别

高数第一章函数与极限

高数第一章函数与极限(精选9篇)高数第一章函数与极限 第1篇考研高数第一章 函数、极限与连续知识点考研数学备战在即,基础阶段广大学子...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部