初中平行线性质习题
初中平行线性质习题(精选11篇)
初中平行线性质习题 第1篇
平行线的判定
一、填空
1、如图1,若A=3,则∥;若2=E,则∥;若+= 180°,则∥。
2、在四边形ABCD中,∠A +∠B = 180°,则∥()。
3、如图2,若∠1 +∠2 = 180°,则∥。
4、如图3,推理填空:
(1)∵∠A =∠(已知),∴AC∥ED();(2)∵∠2 =∠(已知),∴AC∥ED();(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、解答下列各题
5、如图4,∠D =∠A,∠B =∠FCB,求证:ED∥CF。
6、如图5,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由。
7、如图6,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:⑴、AB∥CD。⑵、MP∥NQ。
(第1页,共4页)
A
B 图1
C
图
2d 2
a b
B D
图
3C
图
4B
D F
D 图
53C
B
E
F
图6 Q
B P D
平行线的性质
一、填空
1、如图1,已知∠1 = 100°,AB∥CD,则∠2 =,∠3 =,∠4 =。
2、如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE =。
FB B E3 DD F B C A B D图1 图2 图4 图
33、如图3所示:
⑴、若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°()。⑵、若∠2 =∠,则AE∥BF。
⑶、若∠A +∠= 180°,则AE∥BF。
4、如图4,AB∥CD,∠2 = 2∠1,则∠2 =。
5、如图5,AB∥CD,EG⊥AB于G,∠1 = 50°,则∠E =。
EC l 1 A F 2 B FGl2 DF D C C A G图5 图7 图8 图66、如图6,AB∥CD,AC⊥BC,图中与∠CAB互余的角有。
7、如图7,直线l1∥l2,AB⊥l1于O,BC与l2交于E,∠1 = 43°,则∠2 =。
8、如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不包括∠1)共有个。
二、解答下列各题 C
9、如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G。F
图9
E
10、如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数。
B C
图1011、如图11,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1 +∠2 = 90°。求证:(1)AB∥CD;(2)∠2 +∠3 = 90°。
1D C F
图11
《相交线与平行线》练习题
1、设a、b、c为平面上三条不同直线,a)若a//b,b//c,则a与c的位置关系是_________;
b)若ab,bc,则a与c的位置关系是_________;
c)若a//b,bc,则a与c的位置关系是________。
2、如图,BCAC,CB8cm,AC6cm,AB10cm,那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________。
3、如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数。
4、如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由。
5、如图,AB∥DE,试问∠B、∠E、∠BCE有什么关系。
解:∠B+∠E=∠BCE
过点C作CF∥AB,则B____()
又∵AB∥DE,AB∥CF,∴____________()
∴∠E=∠____()
∴∠B+∠E=∠1+∠
2即∠B+∠E=∠BCE。
6、⑴如图,已知∠1=∠2 求证:a∥b。
⑵直线a//b,求证:12。
7、阅读理解并在括号内填注理由:
如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ。
证明:∵AB∥CD,∴∠MEB=∠MFD()
又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即 ∠MEP=∠______
∴EP∥_____。()
8、已知DB∥FG∥EC,A是FG上一点,∠ABD=60°,∠ACE=36°,AP平分∠BAC,求:⑴∠BAC的大小;
⑵∠PAG的大小.9、如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证
12.10、已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由。
初中平行线性质习题 第2篇
一、选择题:(每小题3分,共21分)
1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有()
A.5个B.4个C.3个D.2个
AC
二、填空题:(每小题3分,共9分)
1.如图6所示,如果DE∥AB,那么∠A+______=180°,或∠B+_____=180°,根据
是______;如果、∠CED=∠FDE,那么________∥_________.根据是________.2.如图7所示,一条公路两次拐弯后和原来的方向相同,即拐弯前、•后的两条
路平行,若第一次拐角是150°,则第二次拐角为
________.B
A
B
AD
A
D
CA
EDFB
D
D
(1)(2)(3)
2.如图2所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么
∠BDC等于()A.78°B.90°C.88°D.92°
3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内-错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④4.若两条平行线被第三条直线所截,则一组同位角的平分线互相()A.垂直B.平行C.重合D.相交
5.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图4所示,AB∥CD,则∠A+∠E+∠F+∠C等于()
A.180°B.360°C.540°D.720°
EF
(7)(8)(9)
3.如图8所示,AB∥CD,∠D=80°,∠CAD:∠BAC=3:2,则∠CAD=_______,∠
ACD=•_______.三、训练平台:(每小题8分,共32分)
1.如图9所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数.2.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度
数.•
D
C
B
E
DA
F
3.如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.B
E
C
B
A
(4)(5)(6)
7.如图5所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1除外)共有()•A.6个B.5个C.4个D.3个
4.如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.四、提高训练:(每小题9分,共18分)
1.如图所示,已知直线MN的同侧有三个点A,B,C,且AB∥MN,BC∥MN,试说明
A,•B,C三点在同一直线上.(1)(2)(3)(4)
六、中考题与竞赛题:(每小题4分,共8分)
1.(2002.河南)如图a所示,已知AB∥CD,直线EF分别交AB,CD于E,F,EG•平分∠BEF,若∠1=72°,则求∠2的度数。
AC
E
B
(a)
D
M
BCN
2.如图所示,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,求∠DEG的度
数.A
GM
NE
D
2.(2002.哈尔滨)如图b所示,已知直线AB,CD被直线EF所截,若∠1=∠2,•则∠AEF+∠CFE的度数。
AC
E
BD
B
C
(b)
3.如图,E是DF上一点,B是AC上一点,∠1=∠2,∠C=∠D,求证:
五、探索发现:(共12分)
如图所示,已知AB∥CD,分别探索下列四个图形中∠P与∠A,∠C的关系,•请你从所得的四个关系中任选一个加以说明.AP
∠A=∠F。
D
E
F
B
A
C
D
B
P
AC
BD
AC
P
BD
C
31B
C
B
A
4.如图,已知AB∥CD,∠3=30°,∠1=70°,求∠A-∠2的度数.一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。2.如图①,如果直线l1⊥OB,直线l2⊥OA,那么l1与 l2一定相交。(3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)(二.填空题:
1.如图③ ∵∠1=∠2,∴ ___∥___()。∵∠2=∠3,∴ ___∥___()。2.如图④ ∵∠1=∠2,∴ ___∥__()。∵∠3=∠4,∴ __∥__()。
3.如图⑤ ∠B=∠D=∠E,那么图形中的平行线有___。4.如图⑥ ∵ AB⊥BD,CD⊥BD(已知)∴ AB∥CD()又∵∠1+∠2 =180(已知)∴ AB∥EF()∴ CD∥EF()三.选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BC B.AB∥CDC.EF∥BCD.AD∥EF 2.如图⑧,判定AB∥CE的理由是()
A∠B=∠ACEB∠A=∠ECDC∠B=∠ACB D∠A=∠ACE
3.如图⑨,下列推理错误的是()
A.∵∠1=∠3,∴a∥bB.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥dD.∵∠1=∠2,∴c∥d
4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
3.①③B.②④C.①③④D.①②③④ 四.完成推理,填写推理依据:
1如图⑩ ∵∠B=∠___,∴ AB∥CD()∵∠BGC=∠____,∴ CD∥EF()∵AB∥CD,CD∥EF,∴ AB∥___()2.如图⑾ 填空:
(1)∵∠2=∠3(已知)∴ AB____()(2)∵∠1=∠A(已知)∴_____()(3)∵∠1=∠D(已知)∴_____()(4)∵_______=∠F(已知)∴AC∥DF()3.填空。如图,∵AC⊥AB,BD⊥AB(已知)∴∠CAB=90°,∠______=90°()∴∠CAB=∠___()∵∠CAE=∠DBF(已知)∴∠BAE=∠______∴_____∥_____()4.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3()
∴∠
+∠
=
180
°∴
_________
()))
五.证明题
1.已知 CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。
3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。
.已知:如图,,且
.求证:EC∥DF.5.∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由.
3B D C
图10
6.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.E
B A
P
C D
Q F
图
17.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。求证:GH∥MN。
8.如图已知∠AOE+∠BEF=180°∠AOE+∠CDE=180°,求证:CD∥BE。9.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。
10.如图AB//CD,A120,172则D的度数为
11.如图,己知AB//DE,ABC80,CDE140,则BCD__
12.如图,AB//CD,若ABE120,DCE35,则BEC度.13.如图试探索A,E,C之间具备什么关系时,AB//CD,并说明理由。
6. 已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,∠BEF的平分线与∠DFE的平分线相交于点P.说明∠P=90.
1、如图,在AB两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48度,A、B两地同时开工,若干天后公路准确接通。
① B地所修公路的走向是南偏西多少度?
② 若公路AB长8千米,另一条公路BC长6千米且BC的走向是北偏西42度,试求A地到公路BC的距离。
2、如图:把一张长方形的纸片ABCD沿EF折叠后,ED交BC于G,点D、C分别落在P、Q位置上,若∠EFG=55度,求∠
1、∠2的度数
平行线的性质 第3篇
从数学科学本身看, 平行线的性质是几何学的基础内容, 对于它的研究推动了整个几何学的发展
一、教学目标:
1.知识技能:使学生理解平行线的性质, 能初步运用平行线的性质进行有关计算。
2.数学思考:通过本节课的教学, 培养学生的概括能力和“观察猜想证明”的科学探索方法, 培养学生的辩证思维能力和逻辑思维能力。
3.解决问题:通过合作学习等活动得出平行线的性质, 进一步提高学生应用已有知识解决数学问题的能力。
4.情感态度:通过师生的共同活动, 促使学生在学习活动中培养良好的合作交流和主动参与的意识, 在独立思考的同时能够认同他人。
二、教学重点:平行线性质的研究和发现过程
教学难点:正确区分平行线的性质和判定
三、教具准备:多媒体课件、三角板, 量角器
四、教学过程设计 (见下表)
五、板书设计: (略)
平行线的性质 第4篇
《平行线的性质》同步练习题 第5篇
(二)一、基础过关:
1.下列语句中不是命题的有()
(1)两点之间,直线最短;(2)不许大声讲话;
(3)连接A、B两点;(4)花儿在春天开放.
A.1个B.2个C.3个D.4个
2.下列命题中,正确的是()
A.在同一平面内,垂直于同一条直线的两条直线平行;
B.相等的角是对顶角;
C.两条直线被第三条直线所截,同位角相等;
D.和为180°的两个角叫做邻补角。
3.如图1,AB∥CD,AD,BC相交于O,∠BAD=35°,∠BOD=76°,则∠C的度数是()
A.31°B.35°C.41°D.76°
(1)(2)
4.如图2,AB∥CD,AD∥BC,则下列各式中正确的是()
A.∠1+∠2>∠3B.∠1+∠2=∠
3C.∠1+∠2<∠3D.∠1+∠2与∠3无关
5.请将下列命题改写成“如果„„那么„„”的形式:
(1)等角的余角相等;(2)垂直于同一条直线的两直线平行;
(3)平行线的同旁内角的平分线互相垂直.
6.下列命题的题设是什么?结论是什么?
(1)对顶角相等;(2)两条直线相交,只有一个交点;(3)如果a2=b2,那么a=b.
二、综合创新: 7.(综合题)如图,直线AD与AB、CD相交于A、D两点,EC、BF与AB、CD相交于E、C、B、F,如果∠1=∠2,∠B=∠C.求证:∠A=∠D.
8.(应用题)如图,欲将一块四方形的耕地中间的一条折路MPN改直,•但不能影响道路两边的耕地面积,应如何画线?
9.(创新题)如图,若直线AB∥ED,你能推得∠B、∠C、∠D•之间的数量关系吗?请说明理由.
10.(1)(2005年,淮安)如图,已知AB∥CD,CE、AE分别平分∠ACD、∠CAB,则∠1+∠2______90°.(填“>”、“<”或“=”)
(3)(4)(2)(2005年,连云港)如图4,直线L1∥L2,L3⊥L4,有三个命题:
①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是()
A.只有①正确B.只有②正确;C.①和③正确D.①②③都正确
三、名校培优: 11.(探究题)如图,已知AB∥CD,∠1=∠2,试探索∠BEF与∠EFC•之间的关系,并说明理由.
12.(开放题)如果一个角的两边分别平行于另一个角的两边,那么这两个角之间有怎样的数量关系?请说明你的理由.
抽屉原理
5个苹果放到4个抽屉里,必有一个抽屉里至少有两个苹果.
一般地,n+1个苹果放到n(n≥1)个抽屉里,必有一个抽屉里至少有两个苹果,•这称为抽屉原理.
抽屉原理的应用很多.例如:在13•个同学中,•必有两个同学在同一个月过生日;10个客人住9个房间,必有两个客人住在同一个房间里.
想一想:在同一个圆内至少画几条半径,就必有两条半径的夹角小于60°?
答案:
1.B点拨:(2)、(3)不是命题. 2.A3.C
4.B点拨:∵AD∥BC,∴∠1=∠ACB.
∵AB∥CD,∴∠3=∠ACB+∠2=∠1+∠2.故选B. 5.解:(1)如果两个角相等,那么它们的余角相等.
(2)如果两条直线垂直于同一条直线,那么它们互相平行.
(3)如果两条射线分别是平行线的同旁内角的平分线,那么这两条射线互相垂直. 6.解:(1)题设:两个角是对顶角,结论:这两个角相等.
(2)题设:两条直线相交,结论:这两条直线只有一个交点.(3)题设:a2=b2,结论:a=b.
7.证明:∵∠1=∠2,∠2=∠BGA(对顶角相等),∴∠1=∠BGA.∴CE∥BF.
∴∠B+∠BEC=180°.
又∵∠B=∠C,∴∠C+∠BEC=180°.
∴AB∥CD(同旁内角互补,两直线平行)∴∠A=∠D(两直线平行,内错角相等).
8.连接MN.过P作EF∥MN交AD于E,BC于F.连接MF或NE,则MF或NE为新修的路. 9.解:∠C+∠D-∠B=180°.
理由:如答图,过点C作CF∥AB,则∠B=∠2.∵AB∥ED,CF∥AB,∴ED∥CF(平行于同一条直线的两直线平行).∴∠1+∠D=180°(两直线平行,同旁内角互补).而∠1=∠BCD-∠2=∠BCD-∠B,∴∠BCD-∠B+∠D=180°,即∠BCD+∠D-∠B=180°.
点拨:平行线CF是联系AB、DE的桥梁.想一想,本题还有其他做法吗?
10.(1)=;(2)A。11.解:∠BEF=∠EFC.
理由:如答图,分别延长BE、DC相交于点G.∵AB∥CD,∴∠1=∠G(两直线平行,内错角相等).∵∠1=∠2,∴∠2=∠G,∴BE∥FC.
平行线的判定及性质习题课 第6篇
一、概念复习与回顾
1、两条直线平行有哪些性质吗? ⑴根据平行线的定义: ⑵平行线的性质公理: ⑶平行线的性质定理1: ⑷平行线的性质定理2: ⑸平行线间的距离.
2、判定两条直线平行有哪几种方法吗? ⑴平行线的定义: ⑵平行线的传递性: ⑶平行线的判定方法1: ⑷平行线的判定定理2: ⑸平行线的判定定理3:
二、练习、如图,已知:∠1=∠2,∠D=50°,求∠B的度数.
2、已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?
3、如图,已知直线AB∥CD,求∠A+∠C与∠AEC的大小关系并说明理由.
4、如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.
5、如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线EF与AB有怎样的位置关系?为什么?
6、如图,已知∠A=∠F,∠C=∠D.试问BD是否与CE平行?为什么?
7、已知:如图BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD
8、如图,已知AB∥CD,AE平分∠BAD,DF平分∠ADC,那么AE与DF有什么位置关系?试说明理由.
9、已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,求证:AB∥CD.
10、完成下列推理说明:
如图,已知AB∥DE,且有∠1=∠2,∠3=∠4,试说明BC∥EF.
11、如图AB∥DE,∠1=∠2,问AE与DC的位置关系,说明理由.
12、如图,MN,EF是两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,则∠1=∠2.
(1)用尺规作图作出光线BC经镜面EF反射后的反射光线CD;(2)试判断AB与CD的位置关系;(3)你是如何思考的.
13、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.
14、:已知:如图,EF⊥CD于F,GH⊥CD于H. 求证:∠1=∠3.
15、如图所示,已知∠1=72°,∠2=108°,∠3=69°,求∠4的度数.
16、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.
17、如图,BD是∠ABC的平分线,ED∥BC,∠FED=∠BDE,求证EF也是∠AED的平分线.
18、如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D. 试说明:AC∥DF.
19、已知,如图,∠1=∠ACB,∠2=∠3,求证:∠BDC+∠DGF=180°.
平行线的判定和性质练习题 第7篇
[一]、平行线的判定
一、填空
1.如图1,若A=3,则∥;若2=E,则∥; 若+= 180°,则∥.c d A a E a 52 23 b B b C A B图4 图3 图1 图2
2.若a⊥c,b⊥c,则ab.
3.如图2,写出一个能判定直线l1∥l2的条件:.
4.在四边形ABCD中,∠A +∠B = 180°,则∥().
5.如图3,若∠1 +∠2 = 180°,则∥。
6.如图4,∠
1、∠
2、∠
3、∠
4、∠5中,同位角有;内错角有;同旁内角有.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
A D Dl1 14 5 3l2 C B C
图7 图5 图6
8.如图6,尽可能多地写出直线l1∥l2的条件:.
9.如图7,尽可能地写出能判定AB∥CD的条件来:.
10.如图8,推理填空:
(1)∵∠A =∠(已知),A
∴AC∥ED();
(2)∵∠2 =∠(已知),2∴AC∥ED();(3)∵∠A +∠= 180°(已知),B D C
∴AB∥FD(); 图8(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、解答下列各题
11.如图9,∠D =∠A,∠B =∠FCB,求证:ED∥CF. DF
平行线的判定和性质练习题 第8篇
一、知识点:
二、基础训练:
1:①如图,找出图中所有的同位角;
找出图中所有的内错角;
找出图中所有的同旁内角。
②∠BAC和∠是和被所截的内错角;
∠ACD和∠是和被所截的同旁内角。
2.如图,给出下面的推理,其中正确的是
①∠B=∠BEF,AB∥EF②∠B=∠CDE.AB∥CD
③∠B+∠BEF=180°,AB∥EF④AB∥CD,CD∥EF,AB∥EF
A.①②③B.①②④C.①③④D.②③④xKb1.Com
3.如图AB∥DE,∠B=150°,∠D=140°,则∠C的度数为()
A.60°B.75°C.70°D.50°
第2题第3题第4题第5题
4.如图,若∠1与∠2互补,∠2与∠3互补,则()
A.3∥4B.2∥5C.1∥3D.1∥2
5.如果线段AB是线段CD经过平移得到的,如图所示,那么线段AC与BD的关系为()
A.相交B.平行C.平行且相等D.相等
三、例题讲解
1、如图,从下列三个条件中:(1)AD∥CB(2)AB∥CD(3)∠A=∠C,
任选两个作为条件,另一个作为结论,编一道数学题,并说明理由。
已知:
结论:
理由:
2、如图,AD∥BC,∠A=∠C,BE、DF分别平分∠ABC和∠CDA,试说明BE∥DF的理由?
3、两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积。
三角形
一、知识点:
1、三角形三边之间的关系:
三角形的任意两边之和大于第三边;三角形的任意两边之差小于第三边。
若三角形的三边分别为a、b、c,则
2、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。②高、角平分线、中线的应用。
3、三角形的内角和:
三角形的3个内角的和等于180°;直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
4、多边形的内角和:n边形的内角和等于(n-2)180°;任意多边形的外角和等于360°。
二、例题:
例1:填空:
①在⊿ABC中,三边长分别为4、7、x,则x的取值范围是;
②已知等腰三角形的`一条边等于4,另一条边等于7,那么这个三角形的周长是;
③已知a,b,c是一个三角形的三条边长,则化简|a+b-c|-|b-a-c|=;
④如图,在⊿ABC中,IB、IC分别平分∠ABC、∠ACB,
若∠ABC=50°,∠ACB=60°,则∠BIC=°;
若∠A=70°,则∠BIC=°;
若∠A=n°,则∠BIC=°;
所以,∠A和∠BIC的关系是。
⑤已知多边形的每一个内角都等于144°,则多边形的内角和等于°。
例1:如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=42°,
∠DAE=18°,求∠C的度数.
例2:如图,AE是△ABC的外角平分线,∠B=∠C,试说明AE∥BC的理由。
例3:如图,已知在△ABC中,BD平分∠ABC,CD平分△ABC的外角∠ACE,BD、CD相交于D,试说明∠A=2∠D的理由.
三、作业:
1、如图,在△ABC中,AD是高,AE是角平分线,∠B=36,∠C=60。求∠CAD和∠AEC的度数。
2、如图,OB、OC是△ABC的外角平分线,若∠A=50°,求∠BOC的度数。
3、如图,把△ABC纸片沿DE折叠,当点A落在BCDE内部时,请找出∠A和∠1、∠2的关系,并说明理由?
4、已知一个多边形,除了一个内角外,其余各内角和是2400°,求这个内角的度数。
幂的运算
【知识梳理】
幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即(m、n为正整数);
②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n为正整数,m>n);
③幂的乘方法则:幂的乘方,底数不变,指数相乘,即(n为正整数);
④积的乘方法则:积的乘方,把积中各个因式分别乘方,再把所得的幂相乘
即:(ab)n=anbn底数不变,指数相乘
⑤零指数:(a≠0);
⑥负整数指数:(a≠0,n为正整数);
【考点例题】
1.计算:___________.
2.=
3.一张薄的金箔的厚度为0.000000091m,用科学记数法可表示为______________m.
4.若,则=.
5.下列计算中,不正确的是().
A、B、(-2x2y)3=-6x6y3
C、3ab2(-2a)=-6a2b2D、(-5xy)2÷5x2y=5y
6.计算
(1)(2);
(3)(-3)0-()-1+
7.若x=2m+1,y=3+8m,则用x的代数式表示y为.
8.已知a=355,b=444,c=533,则有()
A.a
第八章《幂的运算》水平测试
三、用心解答(共60分)
1.(本题16分)计算:
(1)(2)
(3)(4)
2.(本题10分)用简便方法计算:
(1)(2)
3.)若,解关于的方程.
4.已知,求的值.
5.已知2x+5y-3=0,求的值.
6、与的大小关系是
7、已知a=2-555,b=3-444,c=6-222,请用“>”把它们按从小到大的顺序连接起来
8、若a=8131,b=2741,c=961,则a、b、c的大小关系为.
9、计算(1)(2)(3)
第九章《整式乘法与因式分解》
一、本章概念
1、单项式乘单项式:单项式与多项式相乘:多项式乘多项式:
2、乘法公式:
①完全平方公式:、
②平方差公式:
3、因式分解:
二、基础练习
1、计算:=________;(2x+5)(x-5)=_______.(3x-2)2=_______________;
(a+2b)(a+2b)=______________.=_____________.
2、填空、⑴;⑵
3、多项式的公因式是___________;
分解因式=.
4、分解因式:⑴ ;⑵=.
5、若ab=2,3a+2b=3,则3a(ab)+2b(ab)=.
6、下列四个等式从左至右的变形中,是因式分解的是: ( )
A.;B.;
C.;D..
7、下列多项式,在有理数范围内不能用平方差公式分解的是:( )
A.B.C.D.1
8、通过计算几何图形的面积可表示一些代数恒等式,右图可表示的
代数恒等式是: ( )
A.B.
C.D.
9、如果多项式能分解为一个二项式的平方的形式,那么m的值为()
A.4B.8C.8D.±8
10、利用乘法公式计算:
(1)(2)(x+y)(x2+y2)(x-y)
(3).(a-2b+3)(a+2b-3)(4).(m-n-3)2
11、分解因式:
(1)-5a2+25a;(2)25x2-16y2(3)x2+4xy+4y2;
(4)16a4-8a2+1(5)(6)x2-2x-8
三、应用
1、试说明不论x、y取什么有理数,多项式x2+y2-2x+2y+3的值总是正数.
2、已知a2-2a+b2+4b+5=0,求(a+b)的值。
3、求:(1)的值;(2)的值。
第十章二元一次方程
【复习内容】二元一次方程组
【知识梳理】
二元一次方程(组)
1.二元一次方程:2.二元一次方程组:3.二元一次方程组的解:4.二元一次方程组的解法.
基础练习
1.写出其中一个解是的一个二元一次方程是.
2.已知是方程组的解,则=.
3.已知,请用含的代数式表示,则
4.方程x+2y=5的正整数解有
A.一组B.二组C.三组D.四组
5.方程组的解满足方程x+y-a=0,那么a的值是
A.5B.-5C.3D.-3
6.足球比赛的计分规则为胜一场得3分,平一场得1人,负一场得0分,一个队打14场,负5场,共得19分,那么这个队胜了
A.3场B.4场C.5场D.6场
7.如果.则x+y的值是___________.
8.解方程组(1)(2)
(3)(4)解方程组
9.己知y=x2+px+q,当x=1时,y=3:当x=-3时,y=7.求当x=-5时y的值.
10.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种无盖
的长方体纸盒.(长方形的宽与正方形的边长相等)
(1)现有正方形纸板50张,长方形纸板l00张,若要做竖式纸盒x个,横式纸盒y个.
①根据题意,完成以下表格:
②若纸板全部用完,求x、y的值;
(2)若有正方形纸板80张,长方形纸板n张,做成上述两种纸盒,纸板恰好全部用完.已知162
2列方程解应用题
1:某市公园的门票价格如下表所示:
购票人数1~50人51~100人100人以上
票价10元/人8元/人5元/人
某校初一年级甲乙两个班共100多人,去该公园举行联欢活动,其中甲班有50多人乙班不足50人,如果以班为单位买门票,一共要付920元;如果两个班一起买票,一共要付515元。甲、乙两班分别有多少人?
2:某校初一年级200名学生参加期中考试,数学成绩情况如下表,问这次考试中及格和不及格的人数各是多少人?
平均分
及格学生87
不及格学生43
初一年级76
第11章一元一次不等式(组)
一、选择题
1.已知a>b,c为任意实数,则下列不等式中总是成立的是()
A.a+cb-cC.acbc
2.下列说法中,错误的是()
A.不等式的正整数解中有一个B.是不等式的一个解
C.不等式的解集是D.不等式的整数解有无数个
3.已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()
4.若关于x的一元一次不等式组无解,则a的取值范围是()
A.a≥1B.a>1C.a-1D.a<-1
5.不等式组的解集在数轴上表示为().
6.如图,数轴上表示的是下列哪个不等式组的解集()
A.B.C.D.
7.若不等式的解集为2
A.-2,3B.2,-3C.3,-2D.-3,2
8.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有()
A.29人B.30人C.31人D.32人
二、填空题
9.不等式x-110的解集是
10.不等式2x+9≥3(x+2)的正整数解是_________________.
11.若关于、的二元一次方程组的解满足﹥1,则的取值范围是.
12.若不等式组的解集是x>3,则m的取值范围是______.
三、解答题
13,解不等式2(x-1)-3<1,并把它的解在数轴上表示出来.
xKb1.Com
14.解不等式组.
15.求不等式组的整数解.
16.(1)解不等式:5(x–2)+8<6(x–1)+7
(2)若(1)中的不等式的最小整数解是方程2x–ax=3的解,求a的值.
17.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.
18.某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。
(1)小明考了68分,那么小明答对了多少道题?
(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?
19.某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A、B两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票。某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?
第十二章《证明》
一、课上热身
1.命题“垂直于同一条直线的两条直线互相平行”的题设是().
(A)垂直(B)两条直线(C)同一条直线(D)两条直线垂直于同一条直线
2.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的例子是()
(A)∠1=50°,∠2=40°(B)∠1=50°,∠2=50°(C)∠1=∠2=45°(D)∠1=40°,∠2=40°
3、如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)
∠B=∠5;能判定AB∥CD的条件个数有()
A.1B.2C.3D.4
4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()
A、45°B、60°C、75°D、85°
5.“同位角相等”的逆命题是______________________。
6.填空使之成为一个完整的命题。若a⊥b,b∥c,则.
7.若a∥b,b∥c,则.理由是______________________。
8.在△ABC中,∠A=60°,∠B=2∠C,则∠B=______°
9.如图,直线1∥2,AB⊥1,垂足为O,BC与2相交于点E,若∠1=43°,则∠2=__
100.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=_______°.
三、例题讲解
3、如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.
(1)求∠BAE的度数;
(2)求∠DAE的度数;
平行线的性质和判定证明练习题 第9篇
2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:
3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠D
DE⊥AC
4.已知如图, AD⊥BC, EF⊥BC,∠1=∠2,求证:DG∥BA
5.已知如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED
初中平行线性质习题 第10篇
1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;
(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状
2.如图,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D. 求证:四边形ABCD是平行四边形.
3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AO=CO.
4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.
5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明. 6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点. 求证:四边形MFNE是平行四边形.
7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.
8.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?
9.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.
10.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.
11.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上. 求证:EF和GH互相平分. 12.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.
13.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;
(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)
14.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.
(1)求证:AF=CE;
(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.
15.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.
16.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.
(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD. 17.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;
(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?
18.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;
(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
19.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.
20.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
初中数学《平行线的性质》教案 第11篇
教材的地位和作用
《平行线的性质》是人教版版七年级数学下册第五章第三节的内容本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
教学重难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
二、目标分析
根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:
知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、教法、学法
教法:
为了让学生真正成为课堂的主人,这节课我选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、多媒体、导学案结合:充分利用多媒体教学技术,给学生以直观的感受,配合导学案,学练结合,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
学法指导:
通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
四、教学过程
创设情境引入
在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行、第一次拐的角∠B等于142°,第二次拐的角∠C是多少度?为什么?
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质。
前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。独立思考后得出推导过程,小组内会的辅导不会的同学。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等、
性质2:两直线平行,内错角相等、
性质3:两直线平行,同旁内角互补、
(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识小组交流20页例题
(4)完成导学案上课堂练习
【设计意图】:通过交流,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,同学们有什么收获?你们感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你们能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、课堂检测
完成导学案上课堂检测习题
设计意图:通过检测一方面充分激发了学生的学习兴趣。另一方面及时了解课堂掌握情况,为课外辅导做好准备。
6、作业设计
P24第4、12题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
五、说板书设计
平行线的性质
1.平行线的性质:
性质1:例题:练习:
性质2:
性质3:
2.平行线的性质与
判定的区别
初中平行线性质习题
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


