高中物理知识点:物理公式
高中物理知识点:物理公式(精选11篇)
高中物理知识点:物理公式 第1篇
高中物理公式及知识点总结
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|F|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册22〕/振动中的能量转化〔见第一册173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}
4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′
6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
7.非弹性碰撞Δp=0;0r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),
W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。
九、气体的性质
1.气体的状态参量:
温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,
热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}
体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL
压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1.013105Pa=76cmHg(1Pa=1N/m2)
2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大
3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}
注:
(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;
(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。
十、电场
1.两种电荷、电荷守恒定律、元电荷:(e=1.6010-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器〔见第二册111〕
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:
(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的电场线分布要求熟记〔见图[第二册98];
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.6010-19J;
(8)其它相关内容:静电屏蔽〔见第二册101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册105〕。
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+ U总=U1=U2=U3
功率分配 P总=P1+P2+P3+ P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR+UA
电流表外接法:
电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真
Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [或Rx>(RARV)1/2]
选用电路条件RxRx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp
注1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率最大,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册127〕。
十三、电磁感应
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
_4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册180〕。
十四、交变电流(正弦式交变电流)
1.电压瞬时值e=Emsinωt 电流瞬时值i=Imsinωt;(ω=2πf)
2.电动势峰值Em=nBSω=2BLv 电流峰值(纯电阻电路中)Im=Em/R总
3.正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2 ;I=Im/(2)1/2
4.理想变压器原副线圈中的电压与电流及功率关系
U1/U2=n1/n2; I1/I2=n2/n2; P入=P出
5.在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册198〕;
6.公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);
S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。
高中物理知识点:物理公式 第2篇
表达式:Ft=mv′-mv=p′-p,或Ft=△p
动量定理公式中的F是研究对象所受的包括重力在内的所有外力的合力.它可以是恒力,也可以是变力.当合外力为变力时,F是合外力对作用时间的平均值.p为物体初动量,p′为物体末动量,t为合外力的作用时间.
(2)F△t=△mv是矢量式.在应用动量定理时,应该遵循矢量运算的平行四边表法则,也可以采用正交分解法,把矢量运算转化为标量运算.假设用Fx(或Fy)表示合外力在x(或y)轴上的分量.(或)和vx(或vy)表示物体的初速度和末速度在x(或y)轴上的分量,则
Fx△t=mvx-mvx0
Fy△t=mvy-mvy0
高中物理知识点:物理公式 第3篇
一、现代物理知识内容在当前高中物理教学中的渗透概念
渗透式物理教学模式与固有的传统物理教学模式存在着很大的区别。在传统的物理教学方法中, 教师会以一位“灌输者”的身份, 将清晰合理的物理知识思路完全灌输给学生。这种教学模式, 无法让学生真正对物理学习产生兴趣, 久而久之甚至会产生一种对物理学习的逆反心理。物理知识的根本学习宗旨是为了“学以致用”, 让学生可以在未来的生活当中、在未来的职业生涯之中可以运用得到。但是, 传统的“灌输式”学习法仅仅是一种应试教育的学习模式, 这种方式造成了学生只能够用基础理论知识应对考试, 一旦走上需要物理实践的环境之中, 学生便会非常茫然, 不懂得如何运用这些理论知识了。而“渗透式”教学法, 则是将知识的大框教给学生, 在学生刚刚掌握繁多的知识却又无法理解时, 会觉得杂乱无章, 无法入手。但是, 随着自我知识储备的逐渐增加, 在经过自我思考的过程之后, 学生便可以逐渐懂得这些内容。现代物理知识在高中物理教学中的有效渗透, 可以让学生学会自主思考学习, 这是促进学生大脑思维得到有效开发的良好途径。这种教学模式也非常有助于学生对于高中物理知识的理解与实践, 这乃是促进我国高中物理教学可持续发展的重要方式之一。
二、在高中物理教学中注重突出知识的实用性, 从而将物理知识更好地渗透其中
在高中物理教学中, 学生的学习宗旨不仅仅应该是牢记物理的知识概念及使用公式来应对各种考试, 更重要的应该是注重物理内容的实用性。物理学科乃是起源于生活并且运用于生活的一个学科内容, 所以在物理教学的过程当中, 也应当使物理知识更为贴近于生活环境。要将高中物理教材中的理论知识与现代的物理知识科学合理地结合起来, 并且完全联系于实际的生活当中, 从而既能够提高学生对于物理学习的积极性与能动性, 也可以有效地提高高中物理教育的教学质量与教学效率。
三、高中物理教师可以使用物理教材中的阅读材料来有效地渗透入现代物理知识内容
阅读材料也是渗透现代物理知识的良好教材。在高中物理教学的课堂当中, 教师可以依照实际来让学生进行阅读, 并给予正确的补充和引导。在有条件的情况下, 还可以联合教材当中的教学内容来指导学生阅读一些相关的课外科普读物。并且, 教师在课堂当中可以组建一些讨论小组, 给学生自由充分的讨论实践, 让学生大胆发表个人的见解与看法。虽然这些见解内容未必都是正确的, 但是学生却可以借鉴着彼此的思维, 取长补短, 加深对于物理知识的理解。通过实践研究的结果表明, 在课堂当中充分利用阅读材料对高中生进行现代物理的知识渗透是一种非常有效的途径, 并且可以提高学生对于科学知识的分析能力以及理解能力。
综上所述, 在当前的高中物理教学课堂中渗透现代物理知识, 乃是知识经济时代发展的一种必然趋势。这种教学模式在完全遵循新课改中教学要求的前提之下, 用更为纵深的知识充分开拓学生的创造性思维, 从而来促进学生对于物理学习的积极性与能动性。在现代教学的模式中, 教师是课堂中的引导者, 而学生才是课堂中的核心主体, 这也是让学生更好地掌握物理知识内容的先决性因素。所以, 高中物理教育工作者唯有重视起现代物理知识的关键性, 并且注重学生对于物理学习的思维模式, 才可以真正有效地将现代物理知识更好地渗透在高中物理教学的课堂之中, 从而也可有效地促进我国高中物理教学的可持续发展。
摘要:随着社会经济的快速发展, 我国已经逐渐完成了由传统经济时代到知识经济时代的巨大转变。而在这种经济时代的转变之下, 物理学也被赋予了新的时代特征。如今的社会正向着新技术、多元化、国际化、新能源等更为纵深的角度发展, 而这众多科技的根源都是需要将物理学作为基础因素的。所以说, 当今的物理学内容已经成为了技术科学体系、自然科学体系的众多发展体系的基础。伴随着当今科学技术的迅猛发展, 以及各种新教育形式的改革, 这对中学的物理教育教学提出了更新更高的要求。因此, 在高中物理教学中渗透近现代物理知识已经成为了物理教育顺应时代发展的必然趋势。
关键词:高中物理,教学内容,现代物理知识,教学改革,渗透模式
参考文献
[1]何家胜.现代物理知识在高中物理教学中的渗透分析[J].新课程:上, 2013 (1) .
[2]黄敏.高中物理教学现代技术知识的渗透研究[D].西北师范大学, 2006 (11) .
[3]何征宇.基于新课标的高中物理教学内容现代化初探[D].南京师范大学, 2004 (11) .
[4]黄宏梅.现代物理学渗透于高中物理教学的研究[D].浙江师范大学, 2006 (10) .
高中物理知识点:物理公式 第4篇
关键词:势函数;原函数;零点;积分上限;积分下限
中图分类号:G633.7 文献标识码:A文章编号:1003-6148(2009)11(S)-0078-2
数学是学习和研究物理学的重要工具,运用数学工具解决物理问题是大学物理教学中的重要环节,善于利用数学分析方法,能够更好地理解物理公式的含义。
首先,切莫淡化物理公式中变量的物理含义,而过分强调数学关系。学生在运用数学知识解决物理问题的过程中,往往撇开公式的物理意义,忘记公式所表达的物理现象之间的因果关系,容易造成错误。如电磁学中的场强公式:
E=FQ(1)
学生们往往会从公式的数学形式上得出结论:E正比于F或反比于Q。事实上,方程左端代表一物理事实,而右边代表一种定义的方法(测定方法),描述的是这样一个事实:将电量为Q的点电荷放在待测电场中时,受到的电场力为F,并不存在E正比于F或反比于Q的问题。克服这种思维偏差的主要措施,一是要强调公式的物理意义,理解公式所描述的物理现象与物理事实之间的因果关系、决定关系。二是要明确公式的来龙去脉,增强公式的物理色彩,突出对其物理意义的分析。
然而有一些物理公式,在保持其物理色彩的前提下,强调其数学本质,有时甚至过分地强调。实践证明,对于初学者来说,强调其数学本质可以帮助其更加深刻地理解物理公式的本质含义。
例如,大学物理中有关“势”函数的概念,与高等数学中“原”函数概念,有着对应关系。所以,在讲授“势”概念时,将其还原回到数学公式,利用掌握的微积分知识,可以澄清一些容易出错的概念。
高等数学知识告诉我们,如果一个函数f(x)有原函数F(x),则由牛顿-莱布尼茨公式可得到:
∫xx0f(x)dx=∫xx0dF(x)=F(x)-F(x0)(2)
x、x0分别为积分上、下限,且在同一数轴上,在学习“势”概念之前,学生对这一公式应该有了较深刻的理解。
静电场中“电势”φ(r)是这样定义的:
φ(r)-φ(r0)=∫r0rE(r)•dr(3)
公式(3)带着明显物理含义,与具有普遍意义的积分公式(2)有着一定的差别。显然,这种差别是表面上的,式中E为电场强度,r0、r分别为积分上、下限,且上限r0一般定义为电势的“零点”。
为了更好地理解这些变化的含义以及场强与电势之间的关系,将(3)式形式地还原为数学形式:
φ(r)-φ(r0)=∫rr0dφ(r)=∫r0rE(r)•dr=-∫rr0(E•dr )(4)
可以得到:
dφ=-E•dr=-dW(5)
我们一般定义电势的改变量为电势能增量的负值,之所以这样定义,从数学公式角度考察,“故意”将积分上下限颠倒,必然会得到这种结果;从物理含义角度来考察,之所以将上下限颠倒,是为了迎合物理习惯:一般情况下,保守力做功导致势能的减少,而数学只采用末态值减去初态值的方式来描述积分过程。
从(4)式还可以看出,积分变量不再局限于某一坐标轴上变化,可以是描述数量变化的任何变量。在力学、电磁学中,它通常是三维空间位置向量的大小。
从上述对比、分析过程不仅可以更加深刻地理解保守力做功的含义,而且有关“零点”定义的含义也搞清楚了。如果将上限r0处定义为零点,则任意点处电势为:
φ(r)-φ(r0)|=0=∫rr0-(E•dr)=∫rr0dφ(r)=φ(r)-φ(r0)(6)
值得注意的是,方程左端的φ(r0)=0,是“人为”的,是我们定义的零点,明显具有物理含义,而方程右端的φ(r)、φ(r0) ,取具体的数学计算结果(真实结果),φ(r0)不见得取“零”值。从式(6)亦可以看出,如果没有人为地将方程左端的φ(r0)设定为φ(r0)=0,那么,必须将r处真实值φ(r)修正为φ(r)-φ(r0)。
一般将有限带电体无穷远处定义为电势零点,即有:
φ(r)=∫∞rE•dr=∫r∞dφ(r)=φ(r)-φ(∞)(7)
一般情况下,有限带电体的φ(∞)=0,与左端“人为”定义的结果相同(巧合),故有:
φ(r)=∫∞rE(r)•dr(8)
初学者通常会将上式牢记在心, 并且习惯于解决无穷远处电势零点问题, 而容易把(6)、(7)式忽略,忽略的后果是,当遇到变换零点问题时,往往无计可施。例如,如果问题中涉及将零点定义在某有限距离r0处时,只要清楚“人为”的、“数学”的零点的含义,很自然地会利用(6)式来求任意点r处的电势。例如,任意点r处点电荷Q的电势φ(r),可以直接写为:
φ(r)=∫rr0-(E•dr)=∫rr0dφ(r)=∫rr0d(Q4πε0r)=Q4πε0(1r-1r0)(9)
显然,若生硬照搬公式,则(8)式爱莫能助。
总之,有些物理公式,可以通过将其数学化,来加深对其物理含义的理解。这样,将有助于培养学生运用数学知识、数学方法描述物理问题的能力,真正建立起物理上的数量关系的能力,增强运用数学知识的意识,提高运用数学工具的能力。
参考文献
[1]张三慧. 电磁学[M]. 北京:清华大学出版社, 2004:60-87.
[2]赵凯华, 罗蔚茵. 力学[M]. 北京:高等教育出版社, 2004:106-132.
[3]沈永欢等. 实用数学手册[M]. 北京:科学出版社, 2004:175-200.
高中物理知识点:物理公式 第5篇
高中怎么才能学好物理 学好物理的技巧在哪里
物理是高中理科的一门重头戏,学好物理对于理科生提分十分重要。物理这门自然科学课程比较难学,靠死记硬背是学不会的,那么,高中怎么学好物理?具体内容如下:
就是在上课的前一天晚上对第二天所要学习的课本内容进行预习,通过课前的阅读了解知识重、难点和疑点,以便上课时有目的地听讲,提高学习效率。通过课前预习,还可以培养自学能力和自学习惯。
上课要认真听讲,不走神。不要自以为是,要虚心向老师请教,不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致、同步,不能自搞一套,否则就等于是完全自学了。另一方面,还要注意学习老师分析问题解决问题的思路和方法,提高思维能力。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构、好的解题方法、好的例题、听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课老师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经常看,要能做到爱不释手,一直保存。
要及时复习巩固所学知识。对课堂上刚学过的新知识,课后一定要把它的引入、分析、概括、结论、应用等全过程进行回顾,并与大脑里已有的相近的旧知识进行对比,看看是否有矛盾,如果有矛盾就说明还没有真正弄懂。这时就要重新思考,重新看书学习。在弄懂所学知识的基础上,要及时完成作业,有能力的同学还可适量地做些课外练习,以检验掌握知识的准确程度,巩固所学知识。
要独立地(指不依赖他人),保质保量地完成一些题目。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必由之路。另外,对于完成作业要有如下的五点要求:①书写工整;②作图规范;③表达清楚;④推理严密;⑤计算准确。还有作业批改完发下去以后,有错的要认真订正并装订保存好,留待以后复习时用。
有什么疑问或是弄错的地方要随手拿专门的本子记下,然后通过再思考琢磨或请教老师和同学来解决。专门的本子命名为“疑难问题记录本”,记完一本要再换一本,每本都要编号保存着。
每学完一个板块,要把分散在各章的知识点连成线、铺成面、结成网,使学到的知识系统化、规律化、结构化,这样运用起来才能联想畅通、思想活跃。要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识系统化起来。大到整个物理的知识结构,小到力学的知识结构,甚至具体到章,如静力学的知识结构等等。
阅读适量的课外书籍,丰富知识,开阔视野。实践表明,物理成绩优秀的同学,无不阅读了适量的课外书籍。这是因为,不同的书籍,不同的作者会从不同角度用不同的方式来阐述问题,阅读者可以从各方面加深对物理概念和规律的理解,学到很多巧妙简捷的解题思路和方法。见识一多,思路当然就活了。
总之,学习物理大致有六个层次,即:首先听懂,而后记住,练习会做,逐渐熟练,熟能生巧,有所创新,这样才能最终达到学习物理的最高境界。
物理学中的10个未解之谜
当一个“事物”的某些性质是无限的时候,就会出现奇点,因此我们所知道的物理定律就会崩溃。在黑洞的中心有一个无限小的点(里面塞满了有限数量的物质),这个点被称为奇点。在数学中,奇点总是不断出现,例如坐标平面上的垂直线有一个“无限”的斜率。实际上,垂直线的斜率是没有定义的。
裸奇点”是一个可以与宇宙其他部分互动的奇点。黑洞有一个球形区域的视界,任何东西(包括光)都不能从中逃脱。乍一看,你可能会认为裸奇点的问题至少在一定程度上已经被黑洞解决了,因为没有任何东西可以离开视界,奇点也不会影响到宇宙的其他部分。
但是奇点是否可以在没有事件视界的情况下形成,这仍然是一个悬而未决的问题。如果它们能够存在,那么阿尔伯特爱因斯坦的广义相对论将需要修正,因为当系统太接近奇点时,它就会崩溃。裸奇点可能是虫洞,也可能是时间机器,但在自然界没有证据证明这一点。
测量是如何使量子波函数坍缩的
在电子、光子和其他基本粒子的奇异领域,量子力学就是定律。粒子的行为不像小球,而是像散布在大面积上的波。每个粒子都由一个“波函数”或概率分布来描述,它告诉我们它的位置、速度和其他属性可能是什么,但不告诉我们这些特性是什么。实际上,粒子的所有属性值都有一系列值,直到你通过实验测量其中一个属性时,粒子的波函数在该点“坍缩”。
但是,为什么测量一个粒子会使它的波函数坍缩,产生我们认为存在的具体现实。这个问题被称为测量问题,似乎看起来很深奥。
弦理论正确吗
当物理学家假设所有的基本粒子实际上都是一维环或“弦”,每一个都以不同的频率振动时,物理学就容易多了。弦理论使物理学家能够调和控制粒子的量子力学定律和控制时空的广义相对论定律,并将四种基本的自然力统一到一个框架中。但问题是,弦理论只能在一个有10或11维的宇宙中成立:3个大的空间维度,6或7个压缩的空间维度,和一个时间维度。压缩的空间维度以及振动的弦本身大约是原子核的万亿分之一的十亿分之一。我们没有办法探测到这么小的东西,也没有办法通过实验验证弦理论。
混沌中有秩序吗
物理学家不能精确地解出描述流体行为的方程组。事实上,我们不知道所谓的N-S方程的通解是否存在,如果存在一个解,它是否描述了各处的流体,或者包含了称为奇点的内在不可知的点。因此,人们对混沌的本质并没有很好地理解。物理学家和数学家想知道,天气仅仅是难以预测,还是本质上不可预测?湍流是否超越了数学描述,或者当你用正确的数学来处理它时,一切都有意义?
四种基本力会统一吗
宇宙地四种基本力:电磁力、强核力、弱核力和引力。物理学家们知道,如果你把能量调到足够大,其中的三种力就会“结合”成一种力。物理学家运行粒子加速器,理论上可以将电磁力和弱核力统一起来,在更高的能量下,强核力和引力也会发生同样的事情。
但是到目前为止,还没有一种粒子加速器能达到足够高的能量来统一电磁力和弱核力。除了能量的问题外,大统一理论仍然存在一些问题,因为它们预测了迄今尚未证实的其他观测结果。我们可能只是没有一个足够强大的粒子加速器,又或者物理学家关于宇宙如何运行的观点是错误的。
为什么物质比反物质更多
有人假设宇宙会对称地对待物质和反物质,因此,在大爆炸的那一刻,应该产生等量的物质和反物质。但如果这种情况真的发生了,那么这两种物质就会完全湮灭:质子与反质子相互抵消,电子与反电子(正电子)相互抵消,中子与反中子相互抵消,最终在一片无物质的广阔空间里,留下一片沉闷的光子海洋。由于某种原因,有多余的物质没有被湮灭,但是这仍然没有公认的解释。
宇宙的最终命运会是如何
宇宙的命运在很大程度上取决于一个未知的因素:Ω,一个测量整个宇宙物质和能量密度的指标。如果Ω大于1,时空就会像一个巨大球体的表面一样“闭合”。如果没有暗能量,这样的宇宙最终会停止膨胀,相反会开始收缩,最终在一场被称为“大收缩”的事件中坍缩。如果宇宙是封闭的,但存在暗能量,球形宇宙将永远膨胀。
如果Ω小于1,那么空间的几何结构就将像马鞍的表面一样“开放”。在这种情况下,它的最终命运是“大冻结”,接着是“大撕裂”:首先,宇宙的向外加速会撕裂星系和恒星,让所有物质变得寒冷而孤独。接下来,加速度会变得如此之大,以致于它会压倒把原子结合在一起的力的作用,一切都会被扭开。
如果Ω=1,宇宙将是平的,像一个无限大的平面向四面八方延伸。如果没有暗能量,这样的平面宇宙将永远膨胀,但速度会不断减速,接近停滞。如果有暗能量,平坦的宇宙最终会经历失控的膨胀导致大撕裂。
声音会发光?
虽然粒子物理学解释了许多未解决的问题,但在实验室的实验装置上还是可以观察到一些未解之谜,声致发光就是其中之一。如果你拿一些水,用声波打它,就会形成气泡。这些气泡是被高压包围的低压区,外部压力推动低压空气,气泡迅速破裂。当这些气泡破裂时,它们会发出光,闪烁持续万亿分之一秒。
问题是,目前还不清楚光源是什么。物理学家们测量了这些气泡内部的高温,温度达到了数万华氏度,并拍摄了许多它们发出的光的照片。但是没有很好的解释声波是如何在气泡中产生这些光的。
标准模型之外还有什么
标准模型是迄今为止最成功的物理理论之一。四十年来,它经受住了实验的考验,新的实验不断证明它是正确的。标准模型描述了构成我们周围一切的粒子的行为,并解释了为什么。但是标准模型并不能解释一切。
引力到底是什么
引力到底是什么?其他的力是由粒子介导的。例如,电磁就是光子的交换。弱核力由W玻色子和Z玻色子携带,而胶子携带将原子核结合在一起的强核力。所有其他的力都可以被量化,这意味着它们可以被表示成单个的粒子,并具有不连续的值。
引力不是这样的。大多数物理理论认为它应该由一个假设的称为引力子的无质量粒子携带。问题是,目前还没有人发现引力子,而且我们也不清楚是否可以建造粒子探测器来观测它们,因为如果引力子与物质相互作用,它们会非常少地这样做,以至于在背景噪音的作用下它们是看不见的。甚至还不清楚引力子是否有质量,如果它们有质量的话,它也非常非常小。
高中物理知识点:物理公式 第6篇
1.物体仅在中立的作用下,从静止开始下落的运动,叫做自由落体运动(理想化模型)。在空气中影响物体下落快慢的因素是下落过程中空气阻力的影响,与物体重量无关。
2. 伽利略的科学方法:观察提出假设运用逻辑得出结论通过实验对推论进行检验对假说进行修正和推广
自由落体运动规律:
1. 自由落体运动是一种初速度为0的匀变速直线运动,加速度为常量,称为重力加速度(g)。g=9.8m/s2;
2. 重力加速度g的.方向总是竖直向下的。其大小随着纬度的增加而增加,随着高度的增加而减少。
3. vt2;= 2gs
竖直上抛运动:
处理方法:分段法(上升过程a=-g,下降过程为自由落体),整体法(a=-g,注意矢量性)
1.速度公式:vt= v0gt
位移公式:h=v0tgt?2;/2
2.上升到最高点时间t=v0/g,上升到最高点所用时间与回落到抛出点所用时间相等
初中物理电学知识总结物理公式 第7篇
1、欧姆定律:IU(只适用于纯电阻电路)R
变形公式:U=IR(只是提供了电压、电阻的计算方法,不存
在比例关系)
UR I2、电功:W=UIt
W=pt
W=I2Rt3、电功率:P=
W=U2Rt(适用于纯电阻电路)W=UItP=I2RP=U2
R(适用于纯电阻电路)
4、焦耳定律:QI2Rt
(当W=Q时Q=UItQ=ptQ=I2RtQ=U2
Rt)
2PU5、看铭牌求用电器正常工作的电流:I看铭牌求电阻:R UP6、串联电路:I=I1=I2U=U1+U2R=R1+R2(R=nR0)
R1U1W1P1Q1 R2U2W2P2Q27、并联电路:I=I1+I2U=U1=U21111(RR1R2)RR0 nRR1R2R1R2
高中物理知识点:物理公式 第8篇
1. 高中物理渗透现代物理知识的教学原则
(1) 科学性原则
只有给学生以科学的知识, 才能使学生更好地认识世界和改造世界, 从而不断地逼近和实现教学目标。科学性原则要求教材中的知识信息必须是正确的、科学的, 而不是歪曲的和谬误的;所下的定义和结论要准确可靠, 进行的推导过程要有严密的逻辑性, 而不是混乱颠倒的;引用的事实、例子、图表必须可靠可信, 并在组合搭配上讲究艺术性和科学性, 从而使学生掌握真正的科学知识。要做到这一点, 就要求教师具有较高的现代物理知识水平和较高的组织编码能力, 要认真钻研教材, 不断扩充自己在现代物理方面的知识, 才能确保教学信息的科学性。
(2) 适应性原则
教学中现代物理知识内容的选择应当是十分谨慎的, 既要适应社会的发展及现代物理的发展概况, 又要适应学生的身心发展水平和认知水平。一方面, 要从现代物理的发展、科学、技术和社会的关系角度考虑, 搜集最新的为大多数人了解的事件, 体现内容的时代性和影响力;另一方面, 要从学生的个人经验、认知能力以及已有的知识和技能的水平出发, 选择学生生活中、生产中令他们普遍关心的科技问题, 解决这些问题的能力最好处于他们力所能及的范围 (即最近发展区) 。这些问题对学生具有吸引力, 能使他们主动地探究和学习。
(3) 新颖性原则
课堂教学内容的新颖性对于维持学生的课堂注意力, 激发学生的求知欲望, 保持学生对学习内容的积极探究的心理倾向, 激发他们的学习兴趣, 起着重要的作用。
在实际的教学实践中, 师生都会有这样的体会, 课堂教学内容陈旧, 照本宣科, 学生就会感到索然寡味, 课堂气氛沉闷, 师生双方都提不起兴趣, 但如果课堂教学内容新颖, 信息组织形式多样, 传输的方法独特, 学生的思维就活跃, 注意力集中, 课堂效果就会显著。
(4) 渗透性原则
要使学生成为真正具有现代科学素养的公民, 必须在教育过程中渗透批判精神和创新精神, 使他们在对各种问题的讨论中, 逐步形成正确的信念、价值观和对社会的责任感。因此, 在教学中, 可以适当加入一些现代物理发展过程中出现的不同观点之间的争论、佯谬, 可让学生就与物理科技密切相关的社会问题展开讨论, 使学生在学习过程中不再仅仅是接受知识, 更能接触到科学家发现问题, 提出问题的科学研究方法, 学会从不同的角度看问题, 培养他们勇于创新, 不迷信权威的科学精神。
在教学中还应渗透现代科技知识, 渗透物理学的研究方法, 思维方式, 指导学生从搜集信息入手, 然后进行归纳、整理, 直至分析、研究、判断, 最后做出决策。让学生们通过模拟的方式, 结合典型的科技事例, 尝试如何面对错综复杂的各项因素, 作出明智的决策或制订出正确的实施计划。
(5) 实践性原则
随着信息时代的到来, 知识灌输式的教学己经无法适应学生终身学习的需要, 实践性原则就是要通过各种探究实践活动发展学生的实践能力和解决综合问题的能力。新课程倡导的研究性学习, 就是为了能充分发挥学生的主体性、能动性和创造性, 培养学生的综合实践能力。因此我们应该以学生的学习和发展为中心组织教学, 让学生主动参与实践活动, 亲身感受、理解科学产生和发展的过程, 引导他们在课堂上主动思考, 紧密联系生活实际, 在课外主动接触学习与物理有关的各种知识, 将学到的现代物理知识应用到实践中去, 使他们学会用现代物理的思想方法去思考解决生活中碰到的各种问题。
2. 高中物理渗透现代物理知识的教学策略
为了充分将现代物理知识渗透到高中物理, 更好地培养学生现代物理思想, 创新精神和实践能力, 我们在实施过程中应该考虑以下几点:
(l) 加强理论联系实际的教学
现代物理中涉及许多新情境问题, 这些问题把中学物理知识和生活实际紧密结合在一起, 弥补了理论联系实际的不足。让物理现象进入课堂, 首先需要将生产、生活中的实际现象转化为物理问题。教师要做这方面的有心人, 多观察生活, 处处留心, 注意收集和整理与现代物理知识相关的素材。
(2) 创设和谐的学习环境
现代物理的发展离不开创新, 离不开后人对前人公认理论的质疑和批判。要培养学生的批判精神和创新精神, 就需要我们把师生关系建立在民主、平等的基础上, 在教学中宽容、理解、信任和激励学生, 使教学过程生动活泼、自由宽松, 为学生创设成功的情境, 让他们经常体验成功的乐趣, 自信乐观、积极进取, 实现自强。
(3) 结合教学内容适时介绍现代物理学知识
现代物理学知识有的与中学物理教材有一定的联系, 教师根据教材的内容, 可以适时地把有关现代物理学知识介绍给学生。例如, 在光学部分, 把激光的应用补充进去, 使学生了解这方面的新技术。再如, 电磁波及其传播中插入微波技术、光纤通信, 讲物质的导电性时引入超导现象及应用前景等。通过设置“接口”的做法引入的新知识、新技术与教学内容联系紧密、衔接自然。同时, 可以激发学生的学习情趣, 活跃课堂气氛, 充实教学内容。
(4) 开设科普讲座, 介绍现代物理知识
随着新课程改革的不断深入, 尤其是校本课程的逐步实施, 中学开设各种活动课将会逐渐引起重视, 现代物理科普讲座将是校本课程开发中的一项重要内容。学生可以从现代物理科普讲座中能学到许多物理学的新知识, 这些知识与学生在课堂上学到的知识相互融合渗透, 有利于学生的知识层次、知识结构、知识网络发生变化, 从而构建形成正确的现代物理知识框架。
(5) 组织学生选择现代物理方面的课题进行研究性学习
研究性学习是为了培养学生科学探究思维、创新与实践能力而提出的新课程改革的重要内容, 组织对现代物理感兴趣的学生选择这方面的课题进行研究性学习, 有利于进一步提高学生的兴趣, 使他们了解现代物理发展的历史, 研究的领域, 和科学研究的方法。
参考文献
[1]、花惠萍高中物理新课程方案试验的实践与认识《江西教育科研》2001、9
[2]、滕琴科学素质教育与基础物理教学现代化《上海第二工业大学学报》2002、1
[3]、戴结林中学物理教学现代化问题初探《安徽教育学院学报》1999、2
高中物理知识点:物理公式 第9篇
关键词:高中物理 教学内容 现代物理知识 教学改革 渗透模式
物理教育作为自然科学中的基础教育学科,在我国的科学技术发展中起到了至关重要的作用。随着我国知识经济时代的迅速发展,近年来的高考及国家高中物理竞赛试题中所涉及的现代物理知识的频率也出现了逐年递增的发展趋势。为了使得高中物理教学内容跟上社会科技发展的步伐,我国的高中物理教材中已经涉及了许多物理学科发展前沿的知识内容。在高中物理教学中,采用“渗透式”的教学方法也是一种时代造就的必然趋势,教师仔细分析教材中每一章节的知识点,并且确定好教材中每一章节的物理教学内容与现代物理知识可以如何渗透以及渗透知识内容,从而来设计渗透的物理教学模式。这对于开拓学生的创造性思维以及促进物理教育的学习效率来说,都起到了不可估量的重要作用。
一、现代物理知识内容在当前高中物理教学中的渗透概念
渗透式物理教学模式与固有的传统物理教学模式存在着很大的区别。在传统的物理教学方法中,教师会以一位“灌输者”的身份,将清晰合理的物理知识思路完全灌输给学生。这种教学模式,无法让学生真正对物理学习产生兴趣,久而久之甚至会产生一种对物理学习的逆反心理。物理知识的根本学习宗旨是为了“学以致用”,让学生可以在未来的生活当中、在未来的职业生涯之中可以运用得到。但是,传统的“灌输式”学习法仅仅是一种应试教育的学习模式,这种方式造成了学生只能够用基础理论知识应对考试,一旦走上需要物理实践的环境之中,学生便会非常茫然,不懂得如何运用这些理论知识了。而“渗透式”教学法,则是将知识的大框教给学生,在学生刚刚掌握繁多的知识却又无法理解时,会觉得杂乱无章,无法入手。但是,随着自我知识储备的逐渐增加,在经过自我思考的过程之后,学生便可以逐渐懂得这些内容。现代物理知识在高中物理教学中的有效渗透,可以让学生学会自主思考学习,这是促进学生大脑思维得到有效开发的良好途径。这种教学模式也非常有助于学生对于高中物理知识的理解与实践,这乃是促进我国高中物理教学可持续发展的重要方式之一。
二、在高中物理教学中注重突出知识的实用性,从而将物理知识更好地渗透其中
在高中物理教学中,学生的学习宗旨不仅仅应该是牢记物理的知识概念及使用公式来应对各种考试,更重要的应该是注重物理内容的实用性。物理学科乃是起源于生活并且运用于生活的一个学科内容,所以在物理教学的过程当中,也应当使物理知识更为贴近于生活环境。要将高中物理教材中的理论知识与现代的物理知识科学合理地结合起来,并且完全联系于实际的生活当中,从而既能够提高学生对于物理学习的积极性与能动性,也可以有效地提高高中物理教育的教学质量与教学效率。
三、高中物理教师可以使用物理教材中的阅读材料来有效地渗透入现代物理知识内容
阅读材料也是渗透现代物理知识的良好教材。在高中物理教学的课堂当中,教师可以依照实际来让学生进行阅读,并给予正确的补充和引导。在有条件的情况下,还可以联合教材当中的教学内容来指导学生阅读一些相关的课外科普读物。并且,教师在课堂当中可以组建一些讨论小组,给学生自由充分的讨论实践,让学生大胆发表个人的见解与看法。虽然这些见解内容未必都是正确的,但是学生却可以借鉴着彼此的思维,取长补短,加深对于物理知识的理解。通过实践研究的结果表明,在课堂当中充分利用阅读材料对高中生进行现代物理的知识渗透是一种非常有效的途径,并且可以提高学生对于科学知识的分析能力以及理解能力。
综上所述,在当前的高中物理教学课堂中渗透现代物理知识,乃是知识经济时代发展的一种必然趋势。这种教学模式在完全遵循新课改中教学要求的前提之下,用更为纵深的知识充分开拓学生的创造性思维,从而来促进学生对于物理学习的积极性与能动性。在现代教学的模式中,教师是课堂中的引导者,而学生才是课堂中的核心主体,这也是让学生更好地掌握物理知识内容的先决性因素。所以,高中物理教育工作者唯有重视起现代物理知识的关键性,并且注重学生对于物理学习的思维模式,才可以真正有效地将现代物理知识更好地渗透在高中物理教学的课堂之中,从而也可有效地促进我国高中物理教学的可持续发展。
参考文献:
[1]何家胜.现代物理知识在高中物理教学中的渗透分析[J].新课程:上,2013(1).
[2]黄敏.高中物理教学现代技术知识的渗透研究[D].西北师范大学,2006(11).
[3]何征宇.基于新课标的高中物理教学内容现代化初探[D].南京师范大学,2004(11).
[4]黄宏梅.现代物理学渗透于高中物理教学的研究[D].浙江师范大学,2006(10).
[5]黄黎燕.新课程背景下高中物理渗透现代物理知识的教学初探[J].大众文艺,2009(12).
高二物理知识点公式总结 第10篇
1.两种电荷、电荷守恒定律、元电荷:(e=1.6010-19C);带电体电荷量等于元电荷的整数倍
2.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9.0109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2 {r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.匀强电场的场强E=UAB/d {UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
6.电场力:F=qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从高中物理电路实验A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
常见电容器
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo入入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;
(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;
(3)常见电场的高中物理知识点总结电场线分布要求熟记;
(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;
(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;
(6)电容单位换算:1F=106μF=1012PF;
(7)电子伏(eV)是能量的单位,1eV=1.6010-19J;
(8)其它相关内容:静电屏蔽、示波管、示波器及其应用、等势面
十一、恒定电流
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r R)或E=Ir IR也可以是E=U内 U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电高中物理公式阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1 R2 R3 1/R并=1/R1 1/R2 1/R3
电流关系 I总=I1=I2=I3 I并=I1 I2 I3
电压关系 U总=U1 U2 U3 U总=U1=U2=U3
功率分配 P总=P1 P2 P3 P总=P1 P2 P3
10.欧姆表测电阻
(1)电路组成 (2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r Rg Ro)
接渗入渗出被测电阻Rx后通过电表的电流为
Ix=E/(r Rg Ro Rx)=E/(R中 Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注重挡位(倍率)}、拨off挡
11.伏安法测电阻
电流表内接法:
电压表示数:U=UR UA
电流表示数:I=IR IV
Rx的测量值=U/I=(UA UR)/IR=RA Rx>R真
高中物理公式(下) 第11篇
2.原子核的大小:10-15~10-14m,原子的半径约10-10m(原子的核式结构)
3.光子的发射与吸收:原子发生定态跃迁时,要辐射(或吸收)一定频率的光子:hν=E初-E末{能级跃迁}
4.原子核的组成:质子和中子(统称为核子), {A=质量数=质子数+中子数,Z=电荷数=质子数=核外电子数=原子序数〔见第三册P63〕}
5.天然放射现象:α射线(α粒子是氦原子核)、β射线(高速运动的电子流)、γ射线(波长极短的电磁波)、α衰变与β衰变、半衰期(有半数以上的原子核发生了衰变所用的时间)。γ射线是伴随α射线和β射线产生的〔见第三册P64〕
6.爱因斯坦的质能方程:E=mc2{E:能量(J),m:质量(Kg),c:光在真空中的速度}
7.核能的计算ΔE=Δmc2{当Δm的单位用kg时,ΔE的单位为J;当Δm用原子质量单位u时,算出的ΔE单位为uc2;1uc2=931.5MeV}〔见第三册P72〕。
注:(1)常见的核反应方程(重核裂变、轻核聚变等核反应方程)要求掌握;
(2)熟记常见粒子的质量数和电荷数;
(3)质量数和电荷数守恒,依据实验事实,是正确书写核反应方程的关键;
(4)其它相关内容:氢原子的能级结构〔见第三册P49〕/氢原子的电子云〔见第三册P53〕/放射性同位数及其应用、放射性污染和防护〔见第三册P69〕/重核裂变、链式反应、链式反应的条件、核反应堆〔见第三册P73〕/轻核聚变、可控热核反应〔见第三册P77〕/人类对物质结构的认识。
高中物理难吗?有多难?该怎么学呢?
有句话记忆犹新:世上无难事只怕有心人!
干净利落的说法:一个字干!
干什么?请允许我细细道来。实际操作举了一两个简单的例子:师傅带进门,修行在个人!此间真意只可意会不可以言传!
要问高中物理是不是很难?主要取决于自己是否真心的想做改变。如果是真心的想改变,想学好物理那么它就是简单的。如果不想付出,就想有收获那是白日做梦。就是天上掉馅饼也会把你砸死!还是趁早死了这种懒惰的想法!
我们都知道,牛顿在苹果树下乘凉,被一个苹果砸了一下就发现一个牛顿万有引力。不是被砸了就出来一个美妙的想法。如果是这样,干脆住在苹果树下,那就会有一千万个万有引力出来了。显然是不可能的,那么会为什么他被砸了就出来万有引力,我们被砸就是一个包呢?那是因为牛顿思考了,他一直在思考物体会下落的原因。这样苹果砸头只是在一个特殊的情况下点醒了他。这里面的前因后果一定要弄清楚了来。不要不问缘由人云亦云,这是对自我的践踏!
所以如果你想学好物理,你得思考。持续不断地思考,思考那些发生在你身边的事情。搞明白它们发生的原理。当思考的习惯养成后。知识的掌握只是一种副产品罢了!高中的物理总的来说就是运动,物体的运动和粒子的运动。
高中学习的运动不是初中所学的运动,初中的物理学只是一种相对来说比较简单的运动,直线的运动!高中的重点不是研究直线运动,建立在直线运动的基础上合成出来的曲线的运动。物体的曲线运动,粒子的曲线运动。
抓住了这个核心,那么把直线运动的知识点整明白了。清楚物体为什么会做曲线运动,然后进而掌握粒子的运动。说得简单点就是四个匀变速直线运动的基本公式然后和力的分析。没了就这两个而已!其他的只是在这个基础上拓展出来的,或者一些新的发现而已!
在学习这些知识点的时候你是否发现了这个秘密。是否有这种觉悟?如果没有说明你的思考不够深,不够彻底!
当你把握住了核心知识点,就像一棵树,你抓住了主干,接下来就是分支,那些细枝末叶了。考高分这些基础知识很重要。作为过来人,我得一而再再而三地强调基础知识非常重要。每一个理论知识,对它的结构一定要非常熟悉。比如匀变速直线运动,我们不但要知道它是速度在变化的直线运动,同时也是一种匀速直线运动和初速度为零的匀变速直线运动合成而成的。能不能想到这个点很关键。如果只是前半部分,很遗憾你没有撬开物理的大门!你还没有掌握学好物理的诀窍。那么从今天起开始改变自己,努力去思考,多翻阅资料。多分析问题!物理就是一个发现问题,分析问题,解决问题的三部曲!准备总是多过闪亮的一瞬间!
如果没有准备复出汗水的想法,那不好意思。物理对你来说那是天书!你就准备好混一个四五十分安慰自己就好了。
高中物理知识点:物理公式
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


