电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

抛物线和圆范文

来源:盘古文库作者:莲生三十二2025-09-191

抛物线和圆范文第1篇

傅雷家书读后感篇一:

我读了《傅雷家书》1961年5月1日的信。

这封信主要讲了傅雷寄给傅聪的几本书所作的介绍和希望傅聪能时时到野外去,而不是终日在锁碎家务与世俗应对中过生活的人。表达了傅雷对博大精深的中国文化的热爱和对儿子的关爱之情。其中有几句话富含哲理:“多亲近大自然倒是维持身心平衡最好的方法。”“近代人的大病即在于拼命损害了一种机能去发展一种机能,造成许多畸形与病态。”“幸而你东西奔走的路上还能常常接触到高山峻岭,海洋流水,日出日落,月色星光,无形中更新你的感觉,解除你的疲劳。”“一切艺术品都忌做作,最美的字句都要出之自然,好像天衣无缝,才经得起时间考验而能传世久远。”

从这封信中,我看到了傅雷先生对中国文化的热爱。为了让儿子更加深刻地感受到中华文明的渊源,他三番五次地向儿子邮寄各类版画、拓片及许许多多的中国文学作品。他认真地分析中华文明的得与失,大胆地批评或者褒奖,表现了他真正、敢作敢为的性格。他的这种对中国的热爱同样影响着他的儿子傅聪,使傅聪虽然长年生活在海外却依旧会写会说中文,保持着一颗炽热而又难得的炽子之心。傅雷父子这种对祖国的深情让我们自愧不如。

傅雷先生还十分注重身心的调节。虽然他对待工作如痴如狂,可以说是一个工作狂人,但对儿子却希望要劳逸结合,多去欣赏大自然,亲近大自然,走入大自然,向大自然学习。在他的谆谆教导下,傅聪不再狂热地工作,游览世界风光的同时也让他的音乐事业不断向上迈进。而我却要么紧绷神经得几乎绷断,要么松松垮垮地度过一天,却做不到傅雷所提倡的天人合

一、劳逸结合的境界。

这封信是傅雷爱的倾注,是父母对子女关怀的见证。

傅雷家书读后感篇二:

我怀着一颗感恩的心捧起《傅雷家书》。这本书凝聚了傅雷对祖国,对儿子深厚的爱。信中强调的是一个年轻人如何做人,如何对待生活。傅雷用自己的经历现身说法,教导儿子待人要谦虚,礼仪要得体;遇困境不气馁,获大奖不骄傲;要有国家和民族的荣辱感,有艺术,人格的尊严,做一个“德艺兼备,人格卓越的艺术家”。

《傅雷家书》,充斥着一个父亲对儿子的期望,关爱及严格要求,洋溢着浓浓的父子情深。它让我感觉像戏曲那样给人以脱俗的氛围和无穷的回味。

傅雷把教育子女当成了对社会,对祖国的一项光荣的义务和责任。不是每个家长都能把教育提升到这种境界,但对子女的关心爱护,却是永恒的,不变的。

我的父亲文化程度不高,常年打拼积累了丰富的人生阅历。父亲把教育我当成首要任务,他在我身上耗费的精力和心血有目共睹。每当亲朋赞扬我取得的成绩时,总不忘夸夸父亲这个“大功臣”,而父亲满是沟壑的苍老的面容上总会现出幸福的笑容。

不知从何时起,父亲开始在我耳边“唠叨”,大概就是些人生哲理,处事方法。那是,不明事理的我总觉得不胜其烦,常常敷衍了事。不知道傅聪有没有排斥过这种“唠叨”?不过想来是没有的。他完整的保存了父亲的书信,保存着这笔精神财富。如今,我逐渐读懂了父亲,也逐渐重视父亲的谆谆善诱。虽然父亲的说教我无法以书信的形式保存下来,但在我心中,那永远是一笔无价的财富。

父亲依然忙碌,依然“唠叨”,依然用期待而严厉的目光注视着我。不经意间看见父亲头上有银光闪过,仔细一看,发现父亲头发又白了几根,眼角的皱纹又深了几分。每当这时,我都想说:“父亲,您辛苦了大半辈子,该歇歇了。”可愚笨的我始终开不了口。

父亲,在我心中,您永远是伟大而成功的。在您的言传身教下,我会有更大的勇气和力量,去战胜各种各样的魔障,踏上我的成长道路。

傅雷家书读后感篇三:

每一封家书都是文化遗产,《傅雷家书》更不用说了。

家书,顾名思义,是指家人、亲人之间往来的书信。大约在文字产生后,家书就出现了,可以说是源远流长。随着文字语言的逐渐丰富,纸张的发明,家书逐渐流行起来,一直到今天,家书都是维系亲情纽带之一。一封封书信,在表达浓浓亲情的字里行间,映照出美好的人际关系、高尚的生活准则、优良的行为操守与道德传统,拳拳的爱国热情。这些内容,都是中华民族优秀文化的组成部分。

以《傅雷家书》来说,傅雷所写下的近百封家书,总的主题是,教育孩子,立身行事,要以中华文明为准;立志成才,要以报效祖国为要务。整本家书,可以说是对中华民族优秀道德的最好阐释。傅雷家书给我们了解过去历史,开启了一扇窗户,很好地为我们保存那个时代的记忆,正是由于它的存在,才将中华民族优秀道德清楚阐释出来,它不仅是傅雷对孩子的教育,也是我们立身行事的准则。

傅雷家书除了教人们立身行事,还洋溢着浓浓的亲情,字里行间透露的亲情令人感动。我不禁想到我的父母,他们虽不是伟人,不像傅雷那么出名,也不能说出让人立身处事的大道理,但他们事事为我着想,不管做任何事,都会先为我考虑,为我打算。傅雷家书中有着许许多多做人处世的大道理,是一笔宝贵的精神财富,然而,父母日常的教诲又何尝不是立身行事的准则呢?我的父母不像傅雷那样讲道理,然而他们总是为我好。

读了《傅雷家书》后,我学会了许多做人的大道理,还感受到了亲情的伟大。

傅雷家书读后感篇四:

每一封家书都是文化遗产,《傅雷家书》更不用说了。家书,顾名思义,是指家人、亲人之间往来的书信。大约在文字产生后,家书就出现了,可以说是源远流长。随着文字语言的逐渐丰富,纸张的发明,家书逐渐流行起来,一直到今天,家书都是维系亲情纽带之一。

一封封书信,在表达浓浓亲情的字里行间,映照出美好的人际关系、高尚的生活准则、优良的行为操守与道德传统,拳拳的爱国热情。这些内容,都是中华民族优秀文化的组成部分。以《傅雷家书》来说,傅雷所写下的近百封家书,总的主题是,教育孩子,立身行事,要以中华文明为准;立志成才,要以报效祖国为要务。整本家书,可以说是对中华民族优秀道德的最好阐释。

傅雷家书给我们了解过去历史,开启了一扇窗户,很好地为我们保存那个时代的记忆,正是由于它的存在,才将中华民族优秀道德清楚阐释出来,它不仅是傅雷对孩子的教育,也是我们立身行事的准则。

傅雷家书除了教人们立身行事,还洋溢着浓浓的亲情,字里行间透露的亲情令人感动。我不禁想到我的父母,他们虽不是伟人,不像傅雷那么出名,也不能说出让人立身处事的大道理,但他们事事为我着想,不管做任何事,都会先为我考虑,为我打算。傅雷家书中有着许许多多做人处世的大道理,是一笔宝贵的精神财富,然而,父母日常的教诲又何尝不是立身行事的准则呢?我的父母不像傅雷那样讲道理,然而他们总是为我好。

抛物线和圆范文第2篇

(2)重点、难点分析

重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识.难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和内含,相切有外切和内切,学生容易遗漏;而在相交圆的性质应用中,学生容易把“相交两圆的公共弦垂直平分两圆的连心线.”看成是真命题.

2、教法建议

本节内容需要两个课时.第一课时主要研究;第二课时相交两圆的性质.(1)把课堂活动设计的重点放在如何调动学生的主体,让学生观察、分析、归纳概括,主动获得知识;

(2)要重视圆的对称美的教学,组织学生欣赏,在激发学生的学习兴趣中,获得知识,提高能力;

(3)在教学中,以分类思想为指导,以数形结合为方法,贯串整个教学过程.第一课时

教学目标:

1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;

2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;

3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.教学重点:

两圆的五种位置与两圆的半径、圆心距的数量之间的关系.

教学难点:

两圆位置关系及判定.(一)复习、引出问题

1.复习:直线和圆有几种位置关系?各是怎样定义的?

(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的

2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?

(二)观察、分类,得出概念

1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:

(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))

(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))

(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))

(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))

(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例.(图(6))

2、归纳:

(1)两圆外离与内含时,两圆都无公共点.(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一

(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).

教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?

结论:在同一平面内任意两圆只存在以上五种位置关系.

(三)分析、研究

1、相切两圆的性质.让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:

如果两个圆相切,那么切点一定在连心线上.这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明

2、两圆位置关系的数量特征.

设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)

两圆外切d=R+r;

两圆内切d=R-r(R>r);

两圆外离d>R+r;

两圆内含dr);

两圆相交R-r

说明:注重“数形结合”思想的教学.(四)应用、练习

例1:如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米

求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?

(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?

解:(1)设⊙P与⊙O外切与点A,则

PA=PO-OA

∴PA=3cm.(2)设⊙P与⊙O内切与点B,则

PB=PO+OB

∴PB=13cm.

例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.

求证:⊙O与⊙B相外切.

证明:连结BO,∵AC为⊙O的直径,AC=12,

∴⊙O的半径,且O是AC的中点

∴,∵∠C=90°且BC=8,

∴,

∵⊙O的半径,⊙B的半径,

∴BO=,∴⊙O与⊙B相外切.

练习(P138)

(五)小结

知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;

②以及这五种位置关系下圆心距和两圆半径的数量关系;

③两圆相切时切点在连心线上的性质.能力:观察、分析、分类、数形结合等能力.

思想方法:分类思想、数形结合思想.(六)作业

教材P151中习题A组2,3,4题.

第二课时相交两圆的性质

教学目标

1、掌握相交两圆的性质定理;

2、掌握相交两圆问题中常添的辅助线的作法;

3、通过例题的分析,培养学生分析问题、解决问题的能力;

4、结合相交两圆连心线性质教学向学生渗透几何图形的对称美.教学重点

相交两圆的性质及应用.

教学难点

应用轴对称来证明相交两圆连心线的性质和准确添加辅助线.

教学活动设计

(一)图形的对称美

相切两圆是以连心线为对称轴的对称图形.相交两圆具有什么性质呢?

(二)观察、猜想、证明

1、观察:同样相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形.2、猜想:“相交两圆的连心线垂直平分公共弦”.

3、证明:

对A层学生让学生写出已知、求证、证明,教师组织;对B、C层在教师引导下完成.已知:⊙O1和⊙O2相交于A,B.

求证:Q1O2是AB的垂直平分线.

分析:要证明O1O2是AB的垂直平分线,只要证明O1O2上的点和线段AB两个端点的距离相等,于是想到连结O1A、O2A、O1B、O2B.

证明:连结O1A、O1B、O2A、O2B,∵O1A=O1B,

∴O1点在AB的垂直平分线上.又∵O2A=O2B,∴点O2在AB的垂直平分线上.

因此O1O2是AB的垂直平分线.

也可考虑利用圆的轴对称性加以证明:

∵⊙Ol和⊙O2,是轴对称图形,∴直线O1O2是⊙Ol和⊙O2的对称轴.

∴⊙Ol和⊙O2的公共点A关于直线O1O2的对称点即在⊙Ol上又在⊙O2上.

∴A点关于直线O1O2的对称点只能是B点,

∴连心线O1O2是AB的垂直平分线.

定理:相交两圆的连心线垂直平分公共弦.

注意:相交两圆连心线垂直平分两圆的公共弦,而不是相交两圆的公共弦垂直平分两圆的连心线.

(三)应用、反思

1、已知两个等圆⊙Ol和⊙O2相交于A,B两点,⊙Ol经O2。

求∠OlAB的度数.分析:由所学定理可知,O1O2是AB的垂直平分线,

又⊙O1与⊙O2是两个等圆,因此连结O1O2和AO2,AO1,△O1AO2构成等边三角形,同时可以推证⊙Ol和⊙O2构成的图形不仅是以O1O2为对称轴的轴对称图形,同时还是以AB为对称轴的轴对称图形.从而可由

∠OlAO2=60°,推得∠OlAB=30°.

解:⊙O1经过O2,⊙O1与⊙O2是两个等圆

∴OlA=O1O2=AO

2∴∠O1AO2=60°,

又AB⊥O1O2

∴∠OlAB=30°.

2、已知,如图,A是⊙Ol、⊙O2的一个交点,点P是O1O2的中点。过点A的直线MN垂直于PA,交⊙Ol、⊙O2于M、N。

求证:AM=AN.证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D,则OlC∥PA∥O2D,且AC=AM,AD=AN.

∵OlP=O2P,∴AD=AM,∴AM=AN.例

3、已知:如图,⊙Ol与⊙O2相交于A、B两点,C为⊙Ol上一点,AC交⊙O2于D,过B作直线EF交⊙Ol、⊙O2于E、F.

求证:EC∥DF

证明:连结AB

∵在⊙O2中∠F=∠CAB,

在⊙Ol中∠CAB=∠E,

∴∠F=∠E,∴EC∥DF.反思:在解有关相交两圆的问题时,常作出连心线、公共弦,或连结交点与圆心,从而把两圆半径,公共弦长的一半,圆心距集中到一个三角形中,运用三角形有关知识来解,或者结合相交弦定理,圆周角定理综合分析求解.

(四)小结

知识:相交两圆的性质:相交两圆的连心线垂直平分公共弦.该定理可以作为证明两线垂直或证明线段相等的依据.能力与方法:①在解决两圆相交的问题中常常需要作出两圆的公共弦作为辅助线,使两圆中的角或线段建立联系,为证题创造条件,起到了“桥梁”作用;②圆的对称性的应用.

(五)作业教材P152习题A组

7、

8、9题;B组1题.探究活动

问题1:已知AB是⊙O的直径,点O

1、O

2、、On在线段AB上,分别以O

1、O

2、、On为圆心作圆,使⊙O1与⊙O内切,⊙O2与⊙O1外切,⊙O3与⊙O2外切,,⊙On与⊙On-1外切且与⊙O内切.设⊙O的周长等于C,⊙O

1、⊙O

2、、⊙On的周长分别为C

1、C

2、、Cn.(1)当n=2时,判断Cl+C2与C的大小关系;

(2)当n=3时,判断Cl+C2+C3与C的大小关系;

(3)当n取大于3的任一自然数时,Cl十C2十十Cn与C的大小关系怎样?证明你的结论.

提示:假设⊙O、⊙O

1、⊙O

2、、⊙On的半径分别为r、rl、r

2、、rn,通过周长计算,比较可得(1)Cl+C2=C;(2)Cl+C2+C3=C;(3)Cl十C2十十Cn=C.问题2:有八个同等大小的圆形,其中七个有阴影的圆形都固定不动,第八个圆形,紧贴另外七个无滑动地滚动,当它绕完这些固定不动的圆形一周,本身将旋转了多少转?

提示:

1、实验:用硬币作初步实验;结果硬币一共转了4转.

抛物线和圆范文第3篇

湖北省巴东县民族实验中学 李萍

-、学习内容

有关点、直线、圆和圆的位置关系的复习。

二、学习目标

1、了解点和圆、直线和圆、圆和圆的几种位置关系 。

2、进一步理解各种位置关系中,d与R、r数量关系。

3、训练探究能力、识图能力、推理判断能力。

4、丰富对现实空间及图形的认识,发展形象思维,并能解决简单问题。

三、学习重点

切线的判定,两圆外切、内切与两圆圆心距d、半径R、r和的数量关系的联系。

四、学习难点

各知识点之间的联系及灵活应用。

五、学习活动概要

问题情景引入――基础知识重温――综合知识应用

六、学习过程

(一)、图片引入,生活中的圆。

(二)、点与圆的位置关系

1、问题引入:点和圆的位置关系有哪几种?怎样判定。

复习点和圆的位置关系,点到圆心的距离d与半径r的数量关系与三种位置关系的联系。

2、练习反馈

如图,已知矩形ABCD的边AB=3厘米,AD=4厘米。

(1) 以点A为圆心、4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?

(2) 若以A点为圆心作圆A,使B、C、D三点中至少有一点在圆内,且至少有一点在圆外,则圆A的半径r的取值范围是什么?

(三)、直线和圆的位置关系

1、知识回顾:直线和圆的三种位置关系及交点,三种位置关系与圆心到直线的距离d与半径r的数量关系间的联系。

2、分组活动:全班分为三组,各代表相交、相切、相离。当出示的问题是圆与直线的位置关系是哪组代表的,那组的同学起立,看那组同学反应最快。

已知⊙O的半径是5,根据下列条件,判断⊙O与直线L的位置关系。 (1)圆心O到直线L的距离是4 (2)圆心O到直线L的垂线段的长度是5 (3)圆心O到直线L 的距离是6 (4)圆心O到直线L上的一点A的距离是4 (5)(圆心O到直线L上的一点B的距离是5 (6)圆心O到直线L上的一点C的距离是6

3、要点知识重温:圆的切线

出示图形,同学们重温切线的有关性质及判定。

4、知识应用

1)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线。

2)、在以点O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD是圆的线。 (四)圆与圆的位置关系

1、生活中处处有数学。列举反应圆和圆的位置关系的实例,以投篮为例。

2、知识回顾:

1)圆和圆的五种位置关系

2)两圆外切、内切时,圆心距d与半径R、r的位置关系。

3、抢答

1)两圆圆心距为4㎝,两圆半径分别是1㎝、3㎝,则两圆位置关系是---- 2)两圆外切,半径分别是1㎝、3㎝,则圆心距为――

3)两圆半径分别是1㎝、3㎝,圆心距是2㎝,则两圆位置关系是――

4)两圆相切,半径分别是3㎝、1㎝,则圆心距是――

5)两圆内切,圆心距为4㎝,一圆半径是5㎝,则另一圆的半径是――

4、活动与探究

已知图中各圆两两相切,⊙O的半径为2R,⊙O

1、⊙O2的半径都是R,求⊙O3的半径。

关 于 复 习 教 学 的 认 识 及 作 法

湖北省巴东县民族实验中学

李萍

新课改中考要求:知识考查“基础化”,题材选择“生活化”,能力要求“综合化”。中考命题范围是以《课标》要求确定的。我们对课标中的“探索并掌握”、“能”、“会”、“灵活运用”等要求的内容,要进行较为扎实的复习、抓落实,并围绕课本的相关内容进行适当的变式。现在我就一节复习课谈一点认识及作法。

一、 问题情景引入

在复习课引入复习内容时,注重从学生的实际生活材料入手,要求学生列举生活的实例,力图为学生创设一个贴近生活实际的“生活化”问题情景。《新课标》指出:“数学教学要紧密联系学生得生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动”当数学和学生的现实生活密切结合时,数学才是活的,富有生命力的。

二、 基础知识重温

在第一轮复习中,注重对基础知识的复习巩固,全面复习基础知识,加强技术技能训练,做到全面、扎实、系统、形成知识网络。复习时要注意引导学生根据个人具体情况把遗忘的知识重温一遍,加深记忆,还要引导学生弄清概念的内涵和外延。但对于学生掌握较好的基础知识,可以让其中的某位同学带领大家一起回忆复习,对课本中的概念、性质等进行再理解、再识别、再重现。在复习过程中,适当地加入活动,调节课堂气氛,在宽松的环境下对知识要点进行理解。

三、 综合知识应用

在中考数学中会出现一两道难度较大、综合性较强的数学问题,解决这类问题所用到的知识都是同学们学过的基础知识,并不依赖于那些特别的,没有普遍性的解题技巧。所以要引导学生进行“思”和想,让学生学会思考。会思考是要学生自己“悟”出来,自己“学”出来的,教师能教的,是思考问题的方法和带有普遍性的解题技巧。然后让学生用学到的方法和策略,在解决具有新情境问题的过程中,感悟出如何进行正确的思考。复习课中,在基础知识得以理解的技术上,要有相应的巩固练习,活动探究。如复习直线与圆的位置关系相切后,安排两个证明直线是圆的切线的练习,让学生进一步掌握如何证明直线是圆的切线基本的思路与方法,以便能正确的思考、解决。如果在练习巩固的过程中,大多数学生遇到困难,不能正确解答时,可以让学生展开讨论,相互学习,取长补短,共同探究,共同提高。

总之,要切实提高复习实效,要因地制宜地拟定好复习计划,充分发挥备课组的集体智慧,群策群力,

抛物线和圆范文第4篇

第二课时

教学目标:

1、使学生了解用量角器等分圆心角来等分圆,从而可以作出圆内接或圆外切正多边形.

2、使学生会用尺规作圆内接正方形和正六边形,在这个基础上能作圆内接正八边形、正三角形、正十二边形.

3、通过画图培养学生的画图能力;

4、通过画正方形到会画正八边形,通过画六边形到画三角形、正十二边形,培养学生观察、抽象、迁移能力.

5、通过画图中需减小积累误差的思考与操作,培养学生解决实际问题的能力. 教学重点:

(1)用量角器等分圆心角来等分圆,然后作出圆内接或圆外切正多边形;(2)用尺规作圆内接正方形和正六边形. 教学难点:

准确作图. 教学过程:

一、新课引入:

前几课我们学习了正多边形的定义、概念、性质、判定,尤其学习了正多边形与圆关系的两个定理,而后我们又学习了正多边形的有关计算,本堂课我们一起学习画正多边形.

二、新课讲解:

由于正多边形在生产、生活实际中有广泛的应用性,所以会画正多边形应是学生必备能力之一,前面已学习了正多边形和圆的关系的第一个定理,即把圆分成n(n≥3)等份,依次连结各分点所得的多边形是这个圆的内接正n边形;过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形,所以想到只要知道外接圆半径R或内切圆半径rn,画出圆来,然后n等分圆周就能画出所需的正n边形.

n等分圆周的方法有两种,一种是量角器法,这一种方法简单易学,它是一种常用的方法.其根据是因为相等的圆心角所对弧相等,所以使用量角器等分圆心角,可以达到把圆任意等分的目的,由于学生已具备使用量角器的能力,所以只要讲明根据,让学生动手操作即可.

另一种方法是用尺规等分圆周法,其实质也是等分圆心角,但尺规不能任意等分圆,只适用于一些特殊情况,其中重点是正方形和正六边形的作法,这是因为正八边形、正三角形、正十二边形都是由此作基础而画出来的.

由于尺规作图在理论上准确,但在实际操作中有误差积累,如何减少误差使图形趋于准确?这是一个锻炼学生解决问题的好时机,应让学生亲手实验、观察对比,从而得出结论.

(三)重点、难点的学习与目标完成过程

复习提问:1.哪位同学记得正多边形与圆关系的第一个定理?(安排中下生回答)2.哪位同学记得在同圆或等圆中,相等的圆心角所对的弧有什么性质?(安排中下生回答:相等的圆心角所对的弧相等) 现在我们要画半径为R的正n边形,从正多边形与圆关系的第一个定理中,你有什么启发?(安排学生相互讨论后,让中等生回答:只要把半径为R的圆n等分,依次连结n个等分点就得正n边形)那么怎样把半径为R的圆n等分呢?从刚才复习的第二问题中,你又受到什么启发?大家相互间讨论.(安排中等生回答:把360°的圆心角n等分)如果要作半径2cm的正九边形,你打算如何作呢?大家互相讨论看看.(安排中等生回答:先画半径2cm的圆,然后把360°的圆心角9等份,每一份40°),用什么工具可得到40°角呢?(安排中下生回答:量角器)我们本堂课所讲画正多边形的第一种方法就是用量角器等分圆,大家用量角器画出半径为2的内接正九边形.

学生在画图实践中必然出现两种情况:其一是依次画出相等的圆心角来等分圆,这种方法比较准确,但是麻烦;其二是先用量角器画一个40°的圆心角,然后在圆上依次截取40°圆心角所对弧的等弧,于是得到圆的9等分点,这种方法比较方便,但画图的误差积累到最后一个等分点,使画出的正九边形的边长误差较大.对此学生必然迷惑不解,在此教师应肯定作法理论上的正确性,然后讲出图形不够准确的原因是由于误差积累的结果,然后引导学生讨论,研究减小误差积累的二个途径:其一,调整圆规两脚间的距离,使之尽可能准确的等于所画正九边形的边长.其二,若有可能,尽可能减少操作次数,减少产生误差的机会.

大家想想如何画一个半径为2cm的正方形呢?(安排中下生回答:先画半径2cm的圆,用量角器作90°的圆心角.)画出∠AOB=90°后,方法1,可依次作90°圆心角;方法2,用圆规依次截取等于AB的弧,大家观察有没有更好的方法?(安排中等生回答:将AO与BO边延长交⊙O于C、D).正方形一边所对的圆心角是90°角,不用量角器用尺规能不能做出90°的圆心角呢?用尺规如何作半径为2cm的正方形?(安排中上等生回答,先作半径2cm的圆,然后画两条互相垂直的直径)

请同学们用尺规画出半径为2cm的正方形.

大家想想看,借助这个图形,能否作出⊙O的内接正八边形?同学们互相研究研究,(安排中上生回答:能,过圆心O作正方形各边的垂线与圆相交即得⊙O的八等分点)为什么?根据什么定理?(安排中上等生回答:垂径定理) 还有什么方法?(安排中上等生作各直角的角平分线.) 请同学们用此二法在图上画出正八边形.

照此方法,同学们想想看,你还能画出边数为几的正多边形?(安排中下生回答:16边形等) 综上所述及同学们的画图实践可知:只要作出已知⊙O的互相垂直的直径即得圆内接正方形,再过圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相交,即得圆接正八边形,照此方法依次可作正十六边形、正三十二边形、正六十四边形

大家再思考一个问题:如何画半径为2cm的正六边形呢?你都有哪些方法?大家讨论.

方法1.画半径2cm的⊙O,然后用量角器画60°的圆心角,依次画下去即六等分圆周.

方法2.画半径2cm的⊙O,然后用量角器画出60°的圆心角,

如果有同学想到方法3更好,若无则提示学生:前面在研究正多边形的有关计算时,得到正六边形的半径与边长有一种什么样的数量关系?(安排中下生回答:相等)那么哪位同学可不用量角器,仅用尺规作出半径2cm的圆内接正六边形?(安排一名中等生到黑板画图,其余在下面画图)

在学生画图完毕后展示两种不同的画法:其一,在⊙O上依次截取AB=BC=CD=DE=EF,由于误差积累AB≠FA,其二,首先画出⊙O的直径AD,然后分别以A、D为圆心,2cm长为半径画弧交⊙O于B、F、C、E.画出图形比较准确.

请同学们用第二种方法画半径3cm的圆内接正六边形(安排学生在练习本上画)如果我们沿用由正方形画正八边形的思路同学们想想看,会画正六边形就应会画正多少边形?(安排中下生回答:正十二边形,正二十四边形)理论上我们可以一直画下去,但大家不难发现,随着边数的增加,正多边形越来越接近于圆,正多边形将越来越难画.

大家再观察,会画正六边形,除上述正多边形外,还可得到正几边形?(安排中等生回答:正三角形) 画半径为2cm的正三角形,尺规作图时必得先画出正六边形吗?哪位同学有好方法?(安排举手同学回答:画出⊙O直径AB,以A为圆心,2cm为半径画弧交⊙O于C、D,连结B、D、C即可) 请同学们按此法画半径为2cm的正三角形.

请同学们思考一下如何用尺规画半径为2cm的正十二边形?

在学生充分讨论研究的多种方案中送出:先作互相垂直的直径,然后分别以直径的四个端点为圆心2cm长为半径画弧,交⊙O的各点即得⊙O的12等分点.引导学生观察∠DOE=∠DOB-∠EOB ∠DOB=90°,∠EOB=60°∴∠DOE=30°. ∴ DE是⊙O内接正12边形一边.

三、课堂小结:

这堂课你学了哪些知识?(安排中等生回答:1.用量角器等分圆周作正n边形;2.用尺规作正方形及由此扩展作正八边形、用尺规作正六边形及由此扩展作正12边形、正三角形)

抛物线和圆范文

抛物线和圆范文第1篇傅雷家书读后感篇一:我读了《傅雷家书》1961年5月1日的信。这封信主要讲了傅雷寄给傅聪的几本书所作的介绍和希望傅聪...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部