初一平行线证明题
初一平行线证明题(精选16篇)
初一平行线证明题 第1篇
初一平行线证明题
用反证法
A平面垂直与一条直线,设平面和直线的交点为p
B平面垂直与一条直线,设平面和直线的交点为Q
假设A和B不平行,那么一定有交点。
设有交点R,那么
做三角形pQR
pR垂直pQQR垂直pQ
没有这样的三角形。因为三角形的内角和为180
所以A一定平行于B
证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c交于一点O又因为a‖b,a‖c所以过O有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同位角相等,两直线平行,可推出:内错角相等,两直线平行。同旁内角互补,两直线平行。因为a‖b,a‖c,所以b‖c(平行公理的推论)
2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有:1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行.2、三角形或梯形的中位线定理.3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4、平行四边形的性质定理.5、若一直线上有两点在另一直线的同旁).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选C认六一值!小人﹃夕叱的一试勺洲洲川JLZE一B/(一、图月一飞/匕一|求且它们到该直线的距离相等,则两直线平行.例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B).例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF.(l)求证:EF//Bc
(1)根据定义。证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
2.两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面
与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。
3.两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。
因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。
两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。
1.两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:
(1)平行—没有公共点;
(2)相交—有无数个公共点,且这些公共点的集合是一条直线。
注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。
2.两个平面平行的判定定理表述为:
4.两个平面平行具有如下性质:
(1)两个平行平面中,一个平面内的直线必平行于另一个平面。
简述为:“若面面平行,则线面平行”。
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
简述为:“若面面平行,则线线平行”。
(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。
(4)夹在两个平行平面间的平行线段相等
用反证法
A平面垂直与一条直线,设平面和直线的交点为p
B平面垂直与一条直线,设平面和直线的交点为Q
假设A和B不平行,那么一定有交点。
设有交点R,那么
做三角形pQR
pR垂直pQQR垂直pQ
没有这样的三角形。因为三角形的内角和为180
所以A一定平行于B
初一平行线证明题 第2篇
1.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.
2.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数
3.如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
4.如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,∠BDC=∠BCD,∠1=∠2,求∠3的度数.
5.如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70°,求∠EDF的度数.
6.如图所示,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行说理.
7.【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC= ;若∠A=n°,则∠BEC= .
【探究】
(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC= ;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请
说明理由;
两道有关平行线的证明经典题例 第3篇
这个几何事实常常被忽视, 其实大有用处, 有时运用起来妙不可言.下面例举两道经典题供大家欣赏.
例1如图2, 在五边形A1A2A3A4A5中, B1是A1对边A3A4的中点, 连接A1B1, 我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.
求证:五边形的每条边都有一条对角线和它平行.
证明:如图3, 取A1A5中点B3, 连接A3B3、A1A3、A1A4、A3A5.
因为A3B1=B1A4,
所以S△A1A2A3=S△A1B1A4.
又因为四边形A1A2A3B1与四边形A1B1A4B5的面积相等,
所以S△A1A2A3=S△A1A4A5.
同理S△A1A2A3=S△A3A4A5,
所以S△A1A4A5=S△A3A4A5.
所以△A3A4A5与△A1A4A5边A4A5上的高相等,
所以A1A3∥A4A5.
同理可证A1A2∥A3A5, A2A3∥A1A4, A3A4∥A2A5, A5A1∥A2A4.
例2如图4, △ABC的面积是10, 点D、E、F (与A、B、C不同的点) 分别位于AB、BC、CA各边上, 而且AD=2, DB=3.如果△ABE的面积和四边形DBEF的面积相等, 求这个相等的面积值.
“平行线及其判定”检测题 第4篇
1. 在同一平面内,两条互不重合的直线的位置关系有种,它们是.
2. 经过直线外一点,有且只有条直线与已知直线平行.
3. 已知直线a∥b,点M到直线a的距离是5cm,到直线b的距离是3cm,那么直线a和直线b之间的距离为.
4. 如果AB∥CD,CD∥EF,那么∥.
5. 如图1.
∵∠1=∠2(已知),
∴∥().
∵∠2=∠3(已知),
∴∥().
6. 如图2,直线a、b都与直线c相交,则能判定a∥b的条件是.(只填一种情况)
7. 如图3.
∵∠2+∠AFD=180°(已知),
∴∥().
∵∠DFC=(已知),
∴ED∥AC().
8. 如图4,若∠1=∠2,则∥,理由是;若∠1=∠3,则∥,理由是.
9. 平面内有三条直线AB、CD和EF,若AB⊥CD,CD⊥EF,则ABEF;若AB⊥CD,CD∥EF,则ABEF.
10. 如图5,直线EF分别与AB、CD相交.
∵∠1+∠2=180°(已知),
∠3+∠2=180°( ),
∴∠1=.
∴AB∥CD().
二、选择题
11. 已知直线a⊥b,b⊥c,则直线a和直线c的关系为().
A. 相交 B. 平行
C. 垂直 D. 以上都不对
12. 在同一平面内有三条直线,若其中有且只有两条直线平行,则它们交点的个数为( ).
A. 0 B. 1
C. 2 D. 3
13. 下列说法中,正确的是( ).
A. 同位角互补,两直线平行
B. 同旁内角相等,两直线平行
C. 内错角相等,两直线平行
D. 内错角互补,两直线平行
14. 在同一平面内有两个直角,它们的顶点不重合,如果它们有一条边在同一条直线上,那么另一条边().
A. 相互平行
B. 相互垂直
C. 相互平行或相互垂直
D. 相互平行或相互垂直或在同一条直线上
15. 图6给出了过直线外一点作已知直线的平行线的方法,其依据是().
A. 同位角相等,两直线平行
B. 内错角相等,两直线平行
C. 两直线平行,同旁内角互补
D. 两直线平行,同位角相等
16. 如图7,下列条件中不能判断直线a∥b的是().
A. ∠1=∠3B. ∠2=∠3
C. ∠4=∠5D. ∠2+∠4=180°
三、解答题
17. 如图8,BE平分∠ABD,DE平分∠BDC,∠1+∠2=90°,那么直线AB、CD的位置关系如何?
18. 如图9,已知AD平分∠BAC,∠1=∠3.试说明:DE∥AC.
19. 如图10,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
平行线证明题讲义 第5篇
平行线证明题
1.已知:如图,AE是一条直线,O是AE上一点,OB、OD分别是∠AOC、∠EOC的平分线。求证:OB⊥OD
第1题图
2.如图,AD⊥BC,EF⊥BC,∠AMD=104°, ∠BAC=76°
求证:∠BEF=∠
ADM
第2题图第3题图
3.(1)画图:(保留画图痕迹,不写作法)
①过C点作CD⊥AB,垂足为D;
②过D点作DE∥BC,交AC于E;
③取BC的中点G,作GF⊥AB,垂足为F。
(2)用量角器量一量∠CDE和∠BGF,它们相等吗?如果相等,请加以证明。(根据画图,写出已知,求证和证明)
4.如图,已知直线AB、CD被直线EF所截,∠1=∠2,∠3=∠4,∠1+∠3=90°.求证:AB∥CD。
第4题图第5题图
5.已知:如图,AD∥BC。求证:∠B+∠C+∠BAC=180°。
6.如图已知:AD∥BC,DC∥BE,∠A=∠D。
求证:∠CBE=∠ABC。
第6题图
7.根据下列证明过程填空:
如下图,BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C
图7
证明:∵BD⊥AC,EF⊥AC()
∴∠2=∠3=90°
∴BD∥EF()
∴∠4=_____()
∵∠1=∠4()
∴∠1=_____()
∴DG∥BC()
∴∠ADG=∠C()
8.阅读下面的证明过程,指出其错误.图8
已知△ABC
求证:∠A+∠B+∠C=180°
证明:过A作DE∥BC,且使∠1=∠C
∵DE∥BC(画图)
∴∠2=∠B(两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°
平行线的性质证明题 第6篇
1、如图,如果AB∥CD平行,试说明1=4。
2、如图所示,已知DC∥AB,AC平分∠DAB,试说明∠1=∠2.A34B2D1CD2 C
3、如图,已知:EF∥GH,∠1+∠3=180°,试说明∠2=∠3.1ABE12AC3FHDGB1、如图(1),在△ABC中,∠C=90°。若BD∥AE,∠DBC=20°,则∠CAE的度数
o16、如图(10),已知AB∥CD,180,则2
如图4,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()
11.(1)如图6,已知AB∥CD,直线L分别交AB、CD•于点E、F,EG平分∠BEF,若∠EFG=40则∠EGF的度数
(2)已知:如图7,AB∥DE,∠E=65°,则∠B+∠C•的度数
1.如图9所示,AD∥BC,∠1=78°,∠2=40°,求∠ADC的度数.A2D1BC2.如图所示,已知AB∥CD,∠ABE=130°,∠CDE=152°,求∠BED的度数.ABECD
如图,AE∥CD,若∠1 = 37°,∠D =54°,求∠2 和∠BAE的度数.1.如图,已知AG//CF,AB//CD,∠A=40,求∠C的度数。
《平行线的判定》证明题 第7篇
1.如图,当∠1=∠2时,直线a、b平行吗,为什么?
2.如图,已知∠ABC=∠BCD,∠ABC+∠CDG=180°,求证:BC∥GD.
3.如图,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE与BF平行吗?为什么?
4.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°. 求证:AB∥CD. 3页)第页(共
5.AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?为什么?
6.如图,已知∠1=30°,∠B=60°,AB⊥AC,将证明AD∥BC的过程填写完整.
7.已知:如图,∠BAD=∠DCB,∠BAC=∠DCA. 求证:AD∥BC.
8.如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠APQ,QH平分∠DQP,并且∠1=∠2,说出图中那些直线平行,并说明理由. 3页)第页(共
9.如图,已知AB⊥BC,BC⊥CD,∠1=∠2.试判断BE与CF的关系,并说明你的理由.
10.AB⊥BC,∠.
初一平行线证明题 第8篇
在之前的学习中,我们曾运用同位角证明一个十分典型的对边平行的图形———等 腰梯形 . 受这个图形的启发,我制作了平行线校对器. 之所以采用圆形框架,主要是通过圆形的对称性, 可以选择在原线段的上面或者下面作平行线,其次,通过调节半径长短及线段与圆的交点的位置可以控制平行线间的距离.
通过制作这个校对器,我发现学习数学,不仅要能够将所学知识与实际生活相结合,更需要考虑实用性以及它的可操作性,将自己的知识与实践结合,进行创造,这样才是真正的学以致用.
“平行线的性质”检测题 第9篇
1. 如图1,若a∥b,∠1=35°,则∠2的大小是.
2. 如图2,若a∥b,∠1=40°,∠2=60°,则∠3的大小是.
3. 如图3,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东42°.工程从甲、乙两地同时开始,若干天后,公路准确接通,则从乙地测量所修公路的走向是南偏西.
4. 如图4,AB∥CD,MF分别交AB、CD于点G、F,∠GFC=60°,∠MEG=20°,则∠M的大小是.
5. 如图5,已知AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,∠EFD的平分线与EP相交于点P,且∠BEP=40°,则∠EFP的大小是.
6. 如图6,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的大小是.
7. 命题“对顶角相等”写成“如果……那么……”的形式是.
二、选择题
8. 下列说法正确的是().
A. 两条直线和第三条直线相交,同位角相等
B. 两条直线和第三条直线相交,内错角相等
C. 两直线平行,内错角相等
D. 两直线平行,同旁内角相等
9. 如图7,已知AB∥CD,∠1=23°,∠2=90°,则∠3等于().
A. 67°B. 77° C. 63° D. 73°
10. 如图8,直线l1∥l2,l3⊥l4.有下列说法:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.上述说法中().
A. 只有①正确B. 只有②正确
C. 只有①和③正确D. ①②③都正确
11. 如图9,直线a与直线b互相平行,则|x-y|的值是().
A. 180B. 120C. 80D. 20
12. 如图10,若AB∥CD,则().
A. ∠1=∠2B. ∠3=∠4
C. ∠1=∠3 D. ∠B+∠BAD=∠180°
13. 如图11,AD∥BC,点E在直线BD上,若∠ADE=155°,则∠DBC的大小为().
A. 155° B. 50°
C. 45° D. 25°
14. 如图12,已知AB∥EF, BC⊥CD于C,∠ABC=30°,∠DEF=45°,则∠CDE等于().
A. 105°B. 75°
C. 135°D. 115°
15. 如图13,把矩形ABCD沿EF折叠,若∠1=50°,则∠DEF等于().
A. 75°B. 65°
C. 60°D. 115°
16. 如果∠1和∠2是同旁内角,且∠1=60°,那么∠2 的大小是().
A. 60°B. 120°
C. 60°或120°D. 不能确定
17. 如图14,AB∥CD,AC⊥BC,图中与∠CAB互余的角有().
A. 1个B. 2个C. 3个D. 4个
三、解答题
18. 如图15,∠3+∠4=180°,试说明∠1=∠2.
19. 如图16,∠EAD=∠ABC,且∠DAC=38°,求∠C的度数.
20. 如图17,CE∥BA,∠1=40°,∠2=45°,分别求∠A、∠B、∠ACB的度数,并求它们的度数和.
21. 如图18,AB∥CD,∠APC、∠PAB和∠PCD之间有什么数量关系?分别加以说明.
《平行线的性质》证明题练习 第10篇
一、基础过关:
1.如图1,a∥b,a、b被c所截,得到∠1=∠2的依据是()
A.两直线平行,同位角相等B.两直线平行,内错角相等
C.同位角相等,两直线平行D.内错角相等,两直线平行
(1)(2)(3)
2.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()
A.互相垂直B.互相平行C.相交D.无法确定
3.如图2,AB∥CD,那么()
A.∠1=∠4B.∠1=∠3C.∠2=∠3D.∠1=∠
54.如图3,在平行四边形ABCD中,下列各式不一定正确的是()
A.∠1+∠2=180°B.∠2+∠3=180°
C.∠3+∠4=180°D.∠2+∠4=180°
5.如图4,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()
A.30°B.60°C.90°D.120°
图5 C D
(4)(5)
6.如图5,AB∥EF,BC∥DE,则∠E+∠B的度数为________.
7.如图5,填空并在括号中填理由:
(1)由∠ABD =∠CDB得∥();
(2)由∠CAD =∠ACB得∥();
(3)由∠CBA +∠BAD = 180°得∥()
10.如图8,推理填空:
(1)∵∠A =∠(已知),AC∥ED();
(2)∵∠2 =∠(已知),∴AC∥ED();
B D
图8
C
(3)∵∠A +∠= 180°(已知),∴AB∥FD();(4)∵∠2 +∠= 180°(已知),∴AC∥ED();
二、综合创新: 8.(综合题)如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.
10.(创新题)(1)如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?
(2)在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.
11.(1)如图6,已知AB∥CD,直线L分别交AB、CD•于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是()
A.60°B.70°C.80°D.90°
(6)(7)
(2)已知:如图7,AB∥DE,∠E=65°,则∠B+∠C•的度数是()A.135°B.115°C.65°D.35°
三、培优: 12.(探究题)如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=•∠5,•延长AB、GF交于点M.试探索∠AMG与∠3的关系,并说明理由.
13.(开放题)已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.
一、探索平移的性质
1.(1)在图1中,画图:把线段AB向左平移4格,得到线段A’B’.(2)线段AB与A’B’叫做对应线段,平移后对应线段之间的位置和数量有什么关系?,(3)点A通过平移得到点A’,点A与点A’是一组对应点.同样的,点B与B’ 是另一组
图
1A
B
对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,2.(1)在图2中,画图:把△ABC向右平移4格,得到△A’B’C’.(2)对应线段AB与A’B’、BC与B’C’、AC与A’C’ 之间的数量与位置有什么关系?,(3)点A与A’是一组对应点,点B与B’、点C与C’是对应点.用红线画出连结各组对应点的线段AA’与BB’,线段AA’与BB’之间的位置和数量有什么关系?,;再用红线画出连结各组对应点的线段CC’,线段AA’与CC’之间的位置和数量有什么关系?,;线段AA’、BB’、CC’之间的位置和数量有什么关系? 结论:如果两条直线平行,那么其中一条直线上的任意两点到的距离相等,这个距离称为.图
2A
B
C
如果两条直线平行,那么其中一条直线上的任意一点到另一条直线的垂线段的长就是平行线间的距离.平行线间的距离处处相等.三、应用平移解决实际问题
1.在长40m、宽30m的长方形地块上,修建如下的宽1m的道路,余下部分种菜,求菜地的面积.(1)如图6,有3条道路.(2)如图7,一条道路是平行四边形.(3)如图8,道路弯曲.图6
图
图
解:
很好的平行线证明题 第11篇
完整.
∵EF∥AD()
∴∠2=.()
又∵∠1=∠2,()
∴∠1=∠3.()
∴AB∥.()
∴∠BAC+= 180°.()
又∵∠BAC=70°,()
∴∠AGD=.()
2.如图,∠BAF46,∠ACE136,CE⊥CD.问CD∥AB吗?为什么?
3.已知:如图,∠ABC=∠ADC,BF、DE是∠ABC、∠ADC的角平分线,DE // BF. 求证:DC // AB.
4.实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.
(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.
(2)在(1)中,若∠1=55°,则∠°;若∠1=40°,则∠°.
(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.请简要说明理由.
a31mb
2n
5.如图,已知:∠A+∠C=∠E.求证: AB//CD.6.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E =∠1,求证:AD平分∠BAC.E
GDC5题图6题图
平行线分线段成比例证明题 第12篇
ADAEDE ABACBC
例2:已知:△ABC中,E、G、D、F分别是边AB、CB上的一点,且GF∥ED∥AC,EF∥AD BGBD求证: BEBC.例
3、已知:△ABC中,AD为BC边上的中线,过C任作一直线交AD于E,交AB于F。AE2AF求证: EDFB
例4:如图,已知:D为BC的中点,AG∥BC,求证:
例5:已知:△ABC中,AD平分∠BAC,求证:
例6:△ABC中,AD平分∠BAC,CM⊥AD交AD于E,交AB于M,求证:
EGAF EDFC
ABBD(过C作CE∥AD交BA的延长线于E).ACDCBDAB DCAM
练习:
1、已知:如图,EF⊥FD,AB⊥FD,CD⊥FD,EF=1.5,AB=2.5,FB=2.2 BD=3.6,求CD的长。
2、已知:如图,四边形AEDF为菱形,AB=12,BC=10,AC=8,求:BD、DC及AF的长。
3、已知:如图,B在AC上,D在BE上,且AB:BC=2:1,ED:DB=2:1 求AD:DF
4、已知,如图,E在BC上,F在AC的延长线上,且AF=BE,ACDEBCDF
求证: 方法1:过E作EG∥AF交AB于G 方法2:过E作EF∥AB交AC于F
平行证明题 第13篇
1.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E、F分别是棱AD、PB的中点,求证:直线EF∥平面PCD
P
D
F
C
E
A
B
2.如下图,在正方体ABCD—A1B1C1D1中,E、F、G分别是AA1、AD、B1C1、的中点。求证:平面EFG∥平面ACB1
C1
D1
1G
B1
D
F
A
B
3.如图,在底面为平行四边形的四棱锥PABCD中,E是PD的中点.求证:PB∥平面AEC
E
A B D
4.如图,已知正三棱柱ABC-A1B1C1中,点D为A1C1的中点。求证:
(1)BC1∥平面AB1D;
(2)若D1为AC的中点,求证平面B1DA∥平面BC1D1.AB1
初一平行线证明题 第14篇
1.如图①,∵∠ = ∠
∴AD∥BC。()(写出一个正确的就可以)
2.如图,已知直线AB、CD被EF所截,且∠EOB+∠DPF=180°.求证:AB∥CD.
解法一:∵∠EOB+∠BOP=180°(已知),∠EOB+∠DPF=180°(已知),∴
∠BOP=∠DPF(等量代换)
∴
().
解法二:由图知∠EOB=∠POA,∠CPO=∠DPF(对顶角相等),∵
∠EOB+∠DPF=180°
(已知)
∴
(等量代换)∴
AB∥CD(同旁内角互补,两直线平行).
3、如图5,(1)∵∠A=(已知)
∴AC∥ED()(2)∵∠2=(已知)∴AC∥ED()(3)∵∠A+ =180°(已知)∴AB∥FD()(4)∵AB∥(已知)∴∠2+∠AED=180°()(5)∵AC∥(已知)∴∠C=∠1()
4.如图,已知:AB∥EF,AB∥CD,求证:∠DCE+∠E=180°.
证明∵
AB∥EF,AB∥CD(已知),∴ EF∥CD()∴
().
5.如图,AB∥DE,求证∠B+∠E=∠BCE.
证明:过点C作CF∥AB,则B____()又∵AB∥DE,AB∥CF,∴____________()∴∠E=∠____()∴∠B+∠E=∠1+∠2 即∠B+∠E=∠BCE.
6.如图,已知AB∥CD,∠1=∠2,求证EP∥FQ. 证明:∵AB∥CD,∴∠MEB=∠MFD()又∵∠1=∠2,∴∠MEB-∠1=∠MFD-∠2,即∠MEP=∠______
∴EP∥_____.()
平行四边形证明题 第15篇
1.四边形ABCD、DEFG都是正方形,连接AE,CG.
(1)求证:AE=CG
(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想
答案:(1)∵四边形ABCD、四边形DEFG都是正方形,∴AD=CD,DE=DG,且∠GDE=∠ADC=90°,则∠ADG+∠GDE=∠ADG+∠ADC,即∠ADE=∠CDG,∴△ADE≌△CDG,∴AE=CG.(2)AE⊥CG.设AE与CG的交点为Q,由(1)中的三角形全等,可以知道∠DEA=∠DGC,∴∠DEA+∠AEF+∠FGD=180°=∠DGC+∠AEF+∠FGD=180°,在四边形GQEF中,由四边形的内角和性质可知,∠GQE=360°-180°-90°=90°,∴AE⊥CG.解题思路:(1)有题中已知的条件,四边形ABCD、四边形DEFG都是正方形知,AD=CD,DE=DG,且∠GDE=∠ADC=90°,所以∠ADG+∠GDE=∠ADG+∠ADC,因此∠ADE=∠CDG,所以△ADE≌△CDG,所以AE=CG,结论得证.(2)AE⊥CG.设AE与CG的交点为Q,由(1)中的三角形全等,可以知道∠DEA=∠DGC,所以∠DEA+∠AEF+∠FGD=180°=∠DGC+∠AEF+∠FGD=180°,在四边形GQEF中,由四边形的内角和性质可知,∠GQE=360°-180°-90°=90°,因此AE⊥CG.易错点:不能很好的利用四边形内角的性质
试题难度:四颗星知识点:多边形的内角和与外角和
2.已知在四边形ABCD中,AD∥BC,∠B=60°,AB=BC,E是AB上的一点,且∠DEC=60°,求证:AD+AE=AB.答案:连结A、C两点,过点E作EF∥AC,∵∠B=60°,AB=BC,∴△ABC、△EBF均为等边三角形,则∠EFC=120°,BE=BF,∴AE=CF,又∵AD∥BC,所以∠EAD=120°,又∵∠DEC=60°,∴∠FEC+∠AED=60°,又∵∠AED+∠ADE=60°,∴∠FEC=∠ADE,∴△AED≌△FCE(AAS),AD=EF,又∵EF=BE,则AD=BE,由AE+BE=AB知,AE+AD=
AB.解题思路:作辅助线,连结A、C两点,过点E作EF∥AC,由于∠B=60°,AB=BC,所以可以知道△ABC、△EBF均为等边三角形,只需证明AD=EF则结论即可证明,由等边三角形的性质,可知∠EFC=120°,BE=BF,所以AE=CF,又因为AD∥BC,所以∠EAD=120°,又因为∠DEC=60°,所以∠FEC+∠AED=60°,又因为∠AED+∠ADE=60°,所以∠FEC=∠ADE,所以△AED≌△FCE(AAS),AD=EF,又因为EF=BE,则AD=BE,由AE+BE=AB知,AE+AD=AB.易错点:不能找到一条合适的辅助线进行有效的解题 试题难度:四颗星知识点:三角形全等的证明
3.如图,在矩形ABCD中,延长BC到E,使BE=BD,F为DE的中点,连接AF、CF,求证AF⊥CF.
答案:如图,连接BF,∵BE=BD,F为DE的中点,∴BF⊥DE,∴∠BFA+∠AFD=90°,又∵CF为直角三角形DCE斜边的中线,∴CF=DF,则∠FDC=∠DCF,∴∠ADF=∠BCF,又∵AD=BC,∴△ADF≌△BCF,∴∠AFD=∠BFC,∴∠BFA+∠BFC=∠AFC=90°,∴AF⊥CF.解题思路:有题中的已知条件可知,如果连接BF,则BF⊥DE,所以应该连接BF,因为BE=BD,F为DE的中点,所以BF⊥DE,所以∠BFA+∠AFD=90°,如果能证明∠AFD=∠BFC,则结论即可得证.由已知条件,CF为直角三角形DCE斜边的中线,则CF=DF,∠FDC=∠DCF,所以∠ADF=∠BCF,又因为AD=BC,所以△ADF≌△BCF,所以∠AFD=∠BFC,所以∠BFA+∠BFC=∠AFC=90°,所以AF⊥CF.易错点:不能连接合适的辅助线进行有效的解题 试题难度:四颗星知识点:矩形
13.已知四边形ABCD,从①AB∥DC;②ABDC;③AD∥BC;④AD
BC;⑤
AC;⑥BD中取出2个条件加以组合,能推出四边形ABCD是平行四边形的有哪几种情况?请具体写出这些组合.
14.如图,在平行四边形ABCD中,E、F、G、H各点分别在AB、BC、CD、DA上,且AEBFCGDH,请说明:EG与FH互相平分.、15.如图所示,以△ABC的三边AB△AB、D△
B、△CE
C,B、C
C在BC的同侧作等边
HG
AE
B
请说明:四边形ADEF为平行四边形.
F
F
A
B
E
16. 如图所示,在平行四边形ABCD中,AE、CF分别是DAB,BCD的平分线,试说明四边形AFCE是平行四边形.
13.解:有以下组合可以得到平行四边形:
①与③;②与④;⑤与⑥;①与②;③与④;①与⑤;①与⑥;③与⑤;③与⑥. 14.提示:经证四边形HEFG为平行四边形. 15. 提示:△BDE≌△ABC≌△ECF,16.解:是平行四边形.理由如下:
四边形ABCD是平行四边形,BADBCD. AE、CF是角平分线,AEBFCE.AE∥CF.
又AF∥CE,四边形AFCE是平行四边形.
面面平行证明题 第16篇
求证:四边形EGFH为平行四边形;
3如图,∥∥,直线a与b分别交,,于点A,B,C和点D,E,F,求证:
ABDE. BCEF第 7 页
4如图所示,在棱长为a的正方体ABCDA1B1C1D1中,Q分别是BC,C1D1,E,F,P,AD1,BD的中点.
(1)求证:PQ//平面DCC1D1.(2)求PQ的长.
(3)求证:EF//平面BB1D1D.如图,在正方体ABCDA1B1C1D1中,E,F,G,H分别棱是CC1,C1D1,D1D,CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足
时,有MN//平面B1BDD1.如图,M、N、P分别为空间四边形ABCD的边AB,BC,CD上的点,且AM∶MBCN∶NBCP∶PD.
求证:(1)AC//平面MNP,BD//平面MNP;(2)平面MNP与平面ACD的交线//AC.
第 8 页
7如图,在正方体ABCDA1B1C1D1中,求证:平面A1BD//平面CD1B1.图,在四棱锥PABCD中,ABCD是平行四边形,M,N分别是AB,PC的中点. 求证:MN//平面PAD.
9如图,正三棱柱ABCA1B1C1的底面边长是2,3,D是AC的中点.求证:B1C//平面A1BD..如图,在正四棱锥PABCD中,PAABa,点E在棱PC上. 问点E在何处时,PA//平面EBD,并加以证明.A
P
AE
C
B
初一平行线证明题
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


