奥数问题鸡兔同笼
奥数问题鸡兔同笼(精选8篇)
奥数问题鸡兔同笼 第1篇
第6讲 鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
【例题讲解及思维拓展训练题】
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。
答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。
【思维拓展训练一】 1、100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人? 分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。
2、彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以
买普通文化用品 24÷8=3(套),买彩色文化用品 16-3=13(套)。
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
例2 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。
现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。解:有兔(2×100——20)÷(2+4)=30(只),有鸡100——30=70(只)。
答:有鸡70只,兔30只。
【思维拓展训练二】
1、现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。解:小瓶有(4×50-20)÷(4+2)=30(个),大瓶有50-30=20(个)。
答:有大瓶20个,小瓶30个。
2、一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。解:4×36÷(45-36)×45=720(吨)。
答:这批钢材有720吨。
例3 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
【思维拓展训练三】
1、小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了
12×(2+3)=60(下)。
可求出小乐每分钟跳
(780——60)÷(2+3+3)=90(下),小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780——270×2=240(下)。
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
【课堂巩固训练题】
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本?
4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天?
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
7.振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?
8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有118条腿和20对翅膀。问:每种小虫各有几只?
10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?
学习,就是努力争取获得自然没有赋予我们的东西。/ 4
奥数问题鸡兔同笼 第2篇
1.鸡兔同笼,有20个头,54条腿,鸡,兔各有多少只? 用方程解
2.鸡兔同笼,共有45个头,146只脚。笼中鸡兔各有多少只?
分析 题目中给出了鸡、兔共45只。如果假设这45只全都是兔子,那么就应该有180只脚。而题目只告诉我们有146只脚,我们算的180只脚和实际相比多算了34只脚。为什么呢?因为一只鸡是两只脚,而我们把它当成4只脚算了。如果用一只鸡来置换一只兔,就要减少2之脚,那么,34只脚里包含多少个2只脚,也就是我们把多少只鸡当成了兔子,显然34÷2=17(只)。所以鸡有17只,兔子有28只。当然,我们也可以把45只都假设成是鸡,把以上问题反过来考虑。
解法一 假设全是兔子。
(4×45-146)÷(4-2)=17(只)——鸡 45-17=28(只)——兔 解法二 假设全是鸡。
(146-2×45)÷(4-2)=28(只)——兔 45-28=17(只)——鸡 答:鸡有17只,兔子有28只。
解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。通常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算,直到求出结果。概括起来,解“鸡兔同笼问题”的基本公式是:
鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数 二.随堂练习
1.盒子里有大、小两种钢珠共10个,共重28克,已知大钢珠每个4克,小钢珠每个2克。盒中大钢珠、小钢珠各有多少个?
分析 假设全部都是大钢珠,则共重:10×4=40(克); 比原来的克数重:40-28=12(克);
小钢珠的个数是:12÷(4-2)=6(个)大钢珠的个数是:10-6=4(个)
同样,也可以假设全部都是小钢珠。算法一样。解法一 假设全是大钢珠。
(10×4-28)÷(4-2)=6(个)——小钢珠 10-6=4(个)——大钢珠
2.一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析 先假定买来的100张邮票全部是20分一张的,那么总值应是2000分,比原来的总值多120分。而多的120分,是把10分一张的看作是20分的一张的,每张多算10分。因此可以先求出10分一张的邮票有多少张。解 10分一张的邮票的张数有:
(2000-1880)÷(20-10)=12(张)20分一张的邮票张数有: 100-12=88(张)
答:10分一张的邮票有12张,20分一张的邮票有88张。3.买2支钢笔的价钱等于买8支圆珠笔的价钱。如果买3支钢笔和5支圆珠笔共花17元,问两种笔每支各多少元?
分析 根据“买2支钢笔的价钱等于买8支圆珠笔的价钱”,可知“买1支钢笔的价钱等于买4支圆珠笔的价钱”,买3支钢笔的价钱可以买(4×3)支圆珠笔。这样,我们就可以将买钢笔的支数转换为买圆珠笔的支数了。从而顺利地求出每支圆珠笔的价钱。解 一支圆珠笔的价钱:
5+(8÷2)×3=17(支)17÷17=1(元)一支钢笔的价钱: 1×8÷2=4(元)
答:一支钢笔4元,一支圆珠笔1元。
4. 蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?
解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成“8条腿”与“6条腿”两种.利用公式就可以算出8条腿的 蜘蛛数=(118-6×18)÷(8-6)=5(只).因此就知道6条腿的小虫共 18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式
蝉数=(13×2-20)÷(2-1)=6(只).因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉.三.课堂习题
1.龟鹤共有100个头,350只脚.龟、鹤各多少只?
2.学校有象棋、跳棋共26副,恰好可供120个学生同时进行活 动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副?
3.学校买来3个排球和2个足球,共花去111元。每个足球比每个排球贵3元。每个排球和每个足球各多少元?
“鸡兔同笼问题”说课稿 第3篇
1.教材分析。 (人教版六年级上册) “鸡兔同笼问题”编排在“数学广角”中, 意在借助我国古代的数学名题, 向学生渗透数学思想方法, 让学生从数学的角度, 主动尝试运用所学知识和方法, 寻求解决问题的策略, 经历猜想实验、推理等数学探索过程, 体会解题策略的多样性和用代数方法解答的一般性, 进而激发学生学习数学的兴趣和欲望。
2.学情分析。六年级学生已具备一定的猜想验证和推理能力, 接触过多种解题策略;在学习方法和技巧方面, 学生已初步具备自主探究、小组合作交流探讨等方面的能力, 但学生存在个体差异, 发展不够均衡, 少数学生在解决问题时思维不够开阔, 语言表达与思维存在一定的差距等。因此, 营造轻松愉快、富有激励性的活动氛围, 鼓励学生积极思考、大胆表达非常重要。
二、说教学目标
基于以上认识, 确定本课的教学目标为:
知识目标:经历猜想、验证和推理的过程, 尝试用不同的方法解决“鸡兔同笼问题”, 体会解题策略的多样性和代数方法解答的一般性。
能力目标:通过自主探究, 合作交流, 积累解决问题的经验, 提高解决问题的策略意识, 体会化繁为简的数学思想方法。
情感目标:感受古代数学问题的趣味性, 获得解决问题的成功体验, 增强学好数学的信心。
教学难点:理解各种方法的算理, 体会代数方法的一般性。
三、说教法学法
《数学课程标准 (实验稿) 》指出:在数学教学活动中, 教师要帮助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识和技能、数学思想和方法, 获得广泛的数学活动经验。学生是学习的主人, 教师是数学学习的组织者、引导者与合作者。因此, 在教法、学法上要努力做到以下几点。
1.创设现实有趣的情境, 激发学生的强烈探究欲望。
2.营造自主探索、合作交流的学习氛围, 让学生主动参与到数学活动中。
3.充分发挥教师的主导作用和学生的主体地位, 师生互动, 适时点拨, 关注课堂生成。
4.评价激励:要求适度, 关注差异。
四、说教学程序
(一) 教学准备。
1.为保证课堂高效进行, 结合本课内容特点, 制作多媒体课件辅助教学、整合教学资源。
2.为了给学生的合作探究和展示交流有足够的空间, 要准备答题纸、小白板。
(二) 教学流程。
1.创境激趣, 尝试体验。
笼子里有鸡和兔, 从上面看, 有3个头, 从下面看, 有8只脚, 猜一猜, 鸡兔各几只。谈话引入课题“鸡兔同笼”。 (课件出示课本第112页主题图。) 从学生已有生活经验出发, 通过“猜猜鸡兔各几只”激发兴趣, 引入课题。
2.自主探究, 交流建模。
(1) 弄清问题, 尝试猜测, 引出例1。引导学生读懂主题图的意思 (今有雉兔同笼, 上有三十五头, 下有九十四足, 鸡兔各几何。) 让学生猜猜鸡兔各几只。如果学生不能很快猜出结果, 就引导他们把题中数字变小, 出示例1:今有鸡兔同笼, 从上面数, 有8个头, 从下面数, 有26只脚, 鸡兔各几只?在猜测的基础上, 引发学生思考解题方法。此环节旨在通过“猜一猜”活动, 让学生经历猜想的过程, 渗透化繁为简的数学思想方法, 激起学生的探究欲望, 激发学生参与探究的兴趣, 为下一步自主探究与合作交流做好准备。同时, 在“猜测验证”的过程中, 学生逐步感受到如果总的脚数猜多了, 就要多猜鸡的只数, 少猜兔的只数;如果总的脚数猜少了, 要多猜兔的只数, 少猜鸡的只数, 从而使解决问题的思路更明了。
(2) 自主探究, 交流建模。学生独立思考后, 在小组内讨论交流自己想到的方法。此时, 老师要走到学生中间参与交流讨论, 并给以适当的引导和点拨。如果有的学生茫然无绪, 教师可启发学生思考:假设笼子里都是鸡或者都是兔, 脚数有什么变化呢?如果设鸡有x只, 则兔有几只 (怎么列方程) ?由此即可进入猜想比较, 如果鸡有1只, 兔有7只, 脚就有30只, 与题中的26只脚相差4只。于是根据脚的总只数进行调整。如果鸡有2只, 兔有6只, 脚的总只数28只, 仍不符合题意, 类似地引导推理, 让学生根据以上思路思考, 有针对性地解决了问题。接着各组用小白板 (或答题纸) 交流汇报解题方法。汇报时, 老师要注意要求学生清楚地表达思考的过程和解决问题的方法, 其他同学可以提问或补充。这一环节, 旨在给学生一个自主探究和合作交流的空间, 让学生根据自己的思维方法体验和思考问题, 在交流辨析中逐步形成解题策略, 使学生亲历解决问题的全过程, 不断积累数学活动和解决问题的经验, 获得学习成功的体验。接着在引导学生观察展示交流的基础上, 可以让学生选一种自己喜欢的方法讲给同桌听。要求重点说解题思路和过程, 进一步感受不同方法的思维特点, 充分理解不同解题策略的思路和过程, 建立数学模型。
3.巩固新知, 回归生活。
(1) 先引导学生回归到《孙子算经》中的原题, 选择最快捷的解决方法, 并在小组内交流订正。接着引导学生学例1后的阅读资料 (即“抬脚法”) 。此环节的设计, 不仅是对解决此类问题策略的巩固, 还能让学生感受到我国数学文化的源远流长, 体会数学问题的趣味性, 从中受到思想教育。
(2) 接着用课件出示以下题目, 先在小组内说说它们与例题的相同之处 (题中什么相当于“鸡”, 什么相当于“兔”) , 并选其中一题用自己喜欢的方法独立完成。教师巡视辅导, 特别注意对“学困生”的辅导, 最后再在小组内交流。
题A.小明的储蓄罐里有1角和五角的硬币共27枚, 价值5.1元, 1角和五角的硬币各有多少枚?
题B.运动会上, 有8张球桌共22人正在进行单打、双打乒乓球比赛。单打的球桌有几张?双打的球桌有几张?
题C.六一班一共38人到公园玩, 共租了8条船, 大船乘6个人, 小船乘4人, 每条船都坐满了。大船小船各租了几条?
在此环节中, 通过列举生活中类似“鸡兔同笼”的事例, 让学生感受“鸡兔同笼问题”在生活中的广泛应用。既巩固了解题模型, 也让学生感受到学习“鸡兔同笼问题”的价值, 让学生尝试用自己喜欢的方法解决其中的一个问题, 既尊重学生个体差异, 又满足不同学生的学习需要, 让不同的学生得到不同的发展, 获得成功的学习体验, 树立学好数学的信心。
4.全课小结, 感悟深化。
(1) 本节课你学到了哪些知识?
(2) 有哪些感悟和困惑?
此环节旨在引导学生回顾本节课所学内容, 感悟解题的方法和建模过程, 深化对这一知识的理解。
五、说板书设计
板书以假设和列方程为主, 凸显两种解题方法。
六、说教学评价
有的放矢、恰如其分地评价是课堂活动, 特别是以学生自主探究合作交流为主的课堂活动得以高效、生动进行的催化剂。因此, 本节课在教学评价上我考虑着重体现以下几点。
l.评价的激励性:让评价能触动学生的心弦, 唤起学生内心的激情, 建立自信。
2.评价的及时性:在学生讨论、交流、协作解决问题时, 通过观察, 就个别或整体参与活动的态度和表现做出及时的评价。
3.评价的差异性:关注个体差异, 鼓励不同的学生采用不同的方法, 关注每个孩子的学习起点和成长体验, 即使是学困生也一样可以获得成功的体验。
4.评价的多元性:除教师评价外, 课堂中适当引入小组评价和自我评价。
鸡兔同笼问题新探 第4篇
关键词:小学数学;应用题;鸡兔同笼;解题方法
鸡兔同笼并不是一种题目,而是一类题目的总称,指的是把两种有联系的事物放在一起,已知这两种事物的总和与它们本身特有的数量关系,然后分别求解这两种事物数量的一种题型。教师在教学的过程中应该注重鸡兔同笼问题的变式训练,以使小学生在理解的基础上真正掌握该类题型,做到举一反三。
一、《九章算术》中的鸡兔同笼问题
小学数学中的鸡兔同笼问题来自于古代数学的《九章算术》,解题方法多样化,分为假设法、列表法与方程法等,在现阶段的小学数学教学中,一般采用的是方程法。教师在教学的过程中应根据小学生的不同知识水平与性格特点,教授给他们不同的解题方法,以便小学生更好地掌握知识。
例如在应用题“已知笼子里有一些鸡和兔子,它们的总数为24只,从笼子下面数脚的只数为62,试求鸡和兔子分别有多少只”中,教师可进行如下教学设计:
师:通过题目我们发现,鸡的数量+兔子的数量=24,一只鸡有两只脚,一只兔子有四只脚,大家思考一下,应该怎么计算呢?
生1:要是笼子里全部都是鸡就好了,都是2只脚比较容易计算。
生2:都是鸡的话,脚的数量就是2×24=48只,比62少14只。
生3:这样的话,再增加兔子的数量就好了,我们可以列出表格:
生4:通过表格,可以得出鸡的只数为17,兔子的只数为7。其实,减少一只鸡增加一只兔子,脚的数量就会增加2,这样的话用(62-2×24)÷2=7,也可以得出兔子的数量,进一步再求鸡的数量就可以了。
生5:那我们也可以假设笼子里全部都是兔子。
师:大家都总结得很好,这是我们鸡兔同笼问题中常用的假设法。那还有没有其他的解题方法呢?比如说我们之前学过的方程法。
生1:可以假设鸡的数量为x,兔子的数量就是24-x。列算式的话是2x+4(24-x)=62。
生2:也可以假设兔子的数量为x,鸡的数量就是24-x,列算式4x+2(24-x)=62。
师:相对来说,方程法比假设法还要简单一点。那么还有没有其他的方法呢?
在上述案例中,学生较好地掌握了鸡兔同笼问题中的假设法与方程法。这样教师在教学的过程中还应注意让小学生总结与思考不同解题方法的优缺点,以便在后续做题中做到有的放矢。
二、变式训练中的鸡兔同笼问题
鸡兔同笼问题中涉及的变式题较多,例如例题中是鸡和兔子两种动物,但在有的题型中会涉及三种动物。这样教师在教学的过程中就应该设计多样化的变式题题组,帮助小学生掌握与深化所学知识。
例如在应用题“鸡、鸭、狗三种动物一共有34个头,108只脚,试求狗的数量有多少只”中,小学生潜意识里会觉得要分别求出鸡、鸭、狗的数量,才可以解决问题。但是涉及三种动物的应用题之前没有学过,难免会不知道如何下手。教师在教学的过程中要善于引导小学生,进行如下教案设计:
师:要想求狗的数量应该怎么计算呢?
生:需要知道鸡和鸭分别是多少只,才能根据题目的已知条件求出狗的数量。
师:那我们可不可以求出鸡和鸭的总数,然后再进一步求狗的数量呢?
生1:这样做也是可以的,而且题目里面没有让我们求解鸡和鸭各有多少只,求它们的总数就可以了。
生2:这样的话,我们就可以把鸡和鸭看作是一种动物了,反正鸡与鸭都只有两只脚,这样就可以按照鸡兔同笼问题进行解答了。
生3:我们可以通过列方程的形式来快速求解,即设狗的数量为x,那么鸡和鸭的数量总和就是(34-x),可以列出算式4x+2(34-x)=108,可以得出狗有20只,鸡和鸭一共有14只。
师:是的,在遇到变式题目的时候,我们首先要做的就是看能不能根据已经学过的鸡兔同笼问题进行计算。例如,在如下变式题中,蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀,现在三种昆虫共有22只,腿和翅膀的数量分别为140条和28对,试求三种昆虫各有多少只?这道题根据我们所学的鸡兔同笼问题应该怎么计算呢?
生1:题目中不仅有动物腿之间的关系,还有翅膀之间的关系,这应该怎么计算啊?
生2:可以根据变式训练1进行计算,反正蜻蜓和蝉都有6条腿,先求出它俩的总数,再根据翅膀分别求就可以了。
师:是的,在遇到比较有难度的数学应用题时,还是应该保持良好的解题心态,一步一步解决就好了。那大家知道怎么列算式了吗?
综合上述案例,教师在教学的过程中,还可在鸡兔同笼问题的基础上设计更多有趣味性的题目,一方面激发小学生学习的积极性与主动性,另一方面还能有效提升小学生的数学思维与能力,取得较好的教学效果。
三、多样化练习中的鸡兔同笼问题
当然,鸡兔同笼问题的变式题并不是简单地与动物相关的题目,只要题目中所涉及的事物之间有一定的联系,都可以看作是鸡兔同笼问题的变式题。教师在教学的过程中应该组织小学生做好多样化练习题的训练,真正锻炼他们解决实际问题的能力,有效提高数学课堂教学的效率。
四年级奥数鸡兔同笼问题 第5篇
例【1】 鸡兔同笼,共有45个头,146只脚。笼中鸡兔各有多少只?
例【2】 盒子里有大、小两种钢珠共30个,共重266克,已知大钢珠每个11克,小钢珠每个7克。盒中大钢珠、小钢珠各有多少个?
例【3】 一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
例【4】 学校买来3个排球和2个足球,共花去111元。每个足球比每个排球贵3元。每个排球和每个足球各多少元?
例【5】 买2支钢笔的价钱等于买8支圆珠笔的价钱。如果买3支钢笔和5支圆珠笔共花17元,问两种笔每支各多少元?
小结 解“鸡兔同笼问题”的常用方法是“替换法”、“转换法”、“置换法”等。通常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算,直到求出结果。概括起来,解“鸡兔同笼问题”的基本公式是:
鸡数=(每只兔脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数
一.练练你的基本功。
1.有鸡兔关在一个笼子里,数头共有6个头,数脚共有20只,那么鸡和兔个有多少只?
2.笼子里有鸡和兔,一共有9个头,26只脚,那么鸡和兔个有多少只?
二.试试你的综合能力
3.有三轮车和摩托车共15辆,数一数一共有38个轮子,那么三轮车和摩托车各多少辆?
4.有10分和20分的邮票共30张,总面值5元,两种邮票各多少张?
5.一只蛐蛐有6条腿,一只蜘蛛8条腿。现有蜘蛛和蛐蛐共10只。共有68条腿。那么蛐蛐有几只?蜘蛛有几只?
练习:
1、鸡、兔共50只,共有教160只。鸡、兔各多少只?
2、某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。共有12道题,王刚得了84分。王刚做错了几题?
3、某玻璃杯厂要为商场运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这个不但不给运费,而且要赔偿3元。结果运到目的地后结算时,玻璃杯厂共得运费920元。求打碎了几个玻璃杯?
4、学校买来4个篮球和5个排球,共用了185元。已知1个篮球比1个排球贵8元,那么篮球每个多少元?排球每个多少元?
5、某场球赛赛售出40元、30元、50元的门票共400张,收入15600元。其中40元和50元的张数相等,每种门票各售出多少张?
6、一批钢材,用小车装,要用35辆,用大车装只用30辆,每辆小车比大车少装3吨,这批钢材有多少吨?
7、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟个有多少只?
8、有甲、乙、丙三种练习薄,价钱分别为7角、3角和2角,三种练习薄一共买了47本,付了21元2角。买乙种练习薄的本数是丙种练习薄的2倍,三种练习薄个买了多少本?
奥数问题鸡兔同笼 第6篇
鸡兔同笼问题
例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?
分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。
解:①鸡有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:鸡有28只,免有18只。
我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:
鸡数=(每只兔脚数× 兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
当然,也可以先假设全是鸡。
例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?
分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?
假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:鸡与兔分别有80只和20只。
例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?
分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。
结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和 42人。
分析2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?
解法2:(135+ 5+ 7)÷3
=147÷3
=49(人)
49-5=44(人),49-7=42(人)
答:三年级一班、二班、三班分别有44人、49人和42人。
想一想:根据解法
1、解法2的思路,还可以怎样假设?怎样求解?
例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
分析 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。
③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条)
10-9=1(条)
答:有9条小船,1条大船。
例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?
分析 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?
6×18=108(条)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蝉共有多少只?
18-5=13(只)
④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
四年级奥数 鸡兔同笼 第7篇
教学内容:第14讲 鸡兔同笼问题
知识网络
鸡兔同笼问题是我国古代数学著作《孙子算经》中的一个流传甚广的数学趣题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?翻译成现代汉语语言为:今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只。问鸡、兔各有几只?这一古老的数学问题在现实生活中普遍存在,解法也多种多样,但一般采用的是假设法。
在解答应用题时,有时要采用“假设”的思想来分析,以找到解题途径。用假设思想解应用题,首先要根据题意去正确地判断应该怎样假设,并根据所做的假设,注意数量关系发生的变化,从所给的条件与变化了的数量关系的比较中做出适当的调整,来找到正确答案。
重点·难点
运用假设法是求解这类可以转化为鸡兔同笼问题的应用题的关键。
学法指导
用假设法解应用题的步骤:一是要根据题意正确地判断怎样“假设”,二是依据假设,按照题目所给的数量关系进行推算,所得结果与题中对应的数量不符时,要能够正确地运用别的已知量加以调整,三是进而得出正确的答案。
经典例题
[例1]一个农夫有若干只鸡和兔,它们共有50个头和140只脚,问鸡、兔各有多少?
思路剖析
鸡兔同笼问题适用的基本方法是假设法。假设这笼里全是鸡,那么鸡脚的总数应为:50×2=100(只),与实际相比较,脚减少的数为140-100=40(只)。脚减少的原因是每把一只兔当作一只鸡时,要少4-2=2(只)脚。所以实际的兔数是40÷(4-2)=20(只),若先假设的全是鸡,则先求出的是兔数。
解答
☆解法一:
设全是鸡,那么相应的鸡脚数:50×2=100(只)与实际相比,脚减少的数:140-100=40(只)
兔脚与鸡脚的差4-2=2(只)
实际兔数为40÷2=20(只)
那么实际的鸡数:50-20=30(只)
答:有鸡30只,有兔20只。
☆解法二:
利用方程求解:
设农夫有鸡x只,那么有免(50-x)只。那么鸡有脚2×x只,兔有脚4×(50-x)只。
列方程为2×x+4×(5-x)=140
解方程2×x+200-4×x=140
2×x=60 x=30
50-x=50-30=20
则鸡有30只,兔有20只。
☆解法三:
(不拘于传统的解法,让我们的思维发散,更具有创造性。)
农夫想知道鸡、兔分别有多少只,他做了一个有趣的设想,就是假设每只兔子又长出一个头来,把它劈开,变成“一头两脚”的两只“半兔”,半免和鸡都有两只脚,因而共有140÷2=70(只)头,从而多出了70-50=20(只)头,这就是兔子的数目,鸡的只数就是50-20=30(只)。
☆解法四:
兔有4只脚,而鸡有2只脚,不过鸡有2只翅膀,如果把翅膀也当作脚,则鸡、兔都有4只脚,于是脚有50×4=200(只),但题中翅膀不算脚,因而有翅膀200-140=60(只),每只鸡有两只翅膀,则鸡数为60÷2=30(只),兔有50-30=20(只)。
☆解法五:
农夫惊讶地看到鸡、兔们非凡的表演:每只鸡都用一只脚站立着,每只兔都用两只后腿站立起来。这种情况下,地上的总腿数是原来的一半,即70只腿,鸡的脚数与头数相同,而兔的脚数是头数的两倍,因此从70里减去总的头数,剩下来的就是兔的头数:70-50=20(只),即有20只兔,那么有鸡30只。
☆解法六:
我们还可以想像鸡、兔们经过专门训练后具有一些“特殊技能”,当它们听到哨音后,鸡飞起来,兔立即双脚站立起来。这时立在地上的应该都是兔,它的脚数:140-50×2=40(只)。因此有免:40÷2=20(只),鸡有:50-20=30(只)。
[例2]现有2分和5分的硬币共40枚,共值125分,问两种硬币各多少放?
思路剖析
利用假设法,假设40枚硬币全是2分的,则面值为80分,与实际相比减少了125-80=45(分),是由于把每个5分硬币少算了5-2=3(分)造成的,则可知有5分硬币45÷3=15(枚)。
解答
设全为2分的,则共值2×40=80(分)
与实际相比少125-80=45(分)
由于假设造成的差值5-2=3(分)
则有5分硬币45÷3=15(枚),2分硬币40-15=25(枚)。
答:有5分硬币15枚,2分硬币25枚。
点津
由假设造成的与实际的差值45分,是与把5分硬币当作2分硬币产生的差值相关的,而不是仅与5分硬币有关。
[例3]某次的小学数学奥林匹克竞赛,共有20道题,评分标准是:每做对一题得5分,每做错或不做一题扣3分。小贝贝参加了这次竞赛,得了68分,问:小贝贝做对了几道题?
思路剖析
假设小贝贝20道题全做对了,他应该得20×5=100(分),比实际上多了100-68=32(分),产生这一差异的原因是把做错或没做的题也算作做对的了,需要注意的是,做错或不做一题比做对一题应少得5+3=8(分),因此小贝贝做错或不做的题数:
32÷8=4(道)。
解答
20-(5×20-68)÷(5+3)
=20-32÷8=20-4
=16(道)
答:小贝贝做对了16道题。
点津
由于做错和不做的题不但不得分,还要扣掉分数,那么与做对一道题相比,就不是简单相减的关系,而应该求和得出。类似于零上5℃与零下3℃相差是8℃,而不是2℃。
[例4]农场工人上山植树造林,绿化祖国,晴天时每人每天植树20棵,雨天时每人每天植树12棵,工人张宁接连几天共植树112棵,平均每天植树14棵。问:张宁植树这些天共有几个雨天?
思路剖析
题目中虽然没有问张宁工作了几天,但总共做了多少天是一个关键量,须先求出来。天数=总量÷平均数=112÷14=8(天)。要求有多少个雨天,可假设每天都是晴天,那么应植20×8=160(棵),与实际相比,多植160-112=48(棵),是把雨天植树量当作20棵造成的,20-12=8(棵)是实际植树量与假设的差值。因此有雨天:48÷8=6(天)。
解答
[20×(112÷14)-112]÷(20-12)
=(160-112)÷8=48÷8
=6(天)
答:张宁植树这些天总共有6个雨天。
[例5]“和尚分馒头”题,记载于我国明代《算法统宗》。现代文译文:大和尚与小和尚共100名,分配100个馒头,大和尚每位给3个,小和尚3个人给1个,问大、小和尚各有多少人?
思路剖析
假设都是小和尚。因为小和尚3个人给1个馒头,分配100个馒头,应该有小和尚3×l00=300(人),比实际多了300-100=200(人)。是由于把大和尚看做小和尚造成的,由于大和尚每位给3个馒头,相当于给9位小和尚的量。由于假设出现的差值即为9-l=8(人),那么大和尚的人数220÷8=25(人)。
解答
(3×100-100)÷(3×3-1)
=(300-100)÷8=200÷8
=25(人)
100-25=75(人)
答:大和尚有25人,小和尚有75人。
点津
本题中给出的条件“大和尚每位给3个,小和尚3个人给1个”,无法直接求出大、小和尚在人数或在馒头数上的差值,需通过条件中给出的比例关系求得。
[例6]四年级某班有学生68人,为了更好地学习,同学们自愿结成了14个学习小组。这些小组有的3人,有的5人,有的7人。而且3人组与5人组的组数相同。问三种学习小组各有几组?
思路剖析
前面的例题中,总体中的数量总是“非此即彼”只有两种,而本题中出现了3种,似乎有些复杂。但题目中有个很重要的条件“而且3人组与5人组的组数相同”,是否可以利用这个条件将此题也转化成我们熟悉的鸡兔同笼题呢?我们将“3人组与5人组组数相同”这个条件,转化为将他们组成4人组,那么组数应为这两组的组数和,因为4是3和5的平均数。
那么分组情况可以看做是两类:4人组和7人组。假设都是4人组,那么应有人数:4×14=56(人),与实际人数的差值:68-56=12(人),由于假设出现的差值:7-4=3(人),则7人组的组数:12÷3=4(组)。
解答
(68-4×14)÷(7-4)
=(68-56)÷3=12÷3
=4(组)
那么3人组与5人组的组数(14-4)÷2=5(组)
答:学习小组中3人组和5人组各有5组,7人组有4组。
[例7]有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿、两对翅膀,蝉6条腿、一对翅膀),问蜻蜒有多少只?
思路剖析
依照例6的思路,我们应当将三种昆虫分成两类,从而将题目转化成与鸡兔同笼结构相同的题。分析题中的已知条件,找到可以归成一类的突破口。三种昆虫有两种有翅膀,一种没翅膀,显然不能按此划分。三种昆虫都有腿,而且其中两种腿数相同,与例6思路相同,将三种昆虫按腿数分成两类:8腿虫和6腿虫。假设18只昆虫都是8腿虫,则有腿8×18=144(条),与实际腿数的差值144-118=26(条),由于假设造成的差值8-6=2(条),那么有6腿虫:26÷2=13(只),知道了6腿虫的总数,就可以按翅膀对数再将它们分成两类:2对翅膀和1对翅膀。则又转化成一道鸡兔同笼结构的题目。假设13只昆虫都有2对翅膀,则有2×13=26(对),与实际翅膀数的差值26-20=6(对),由于假设造成的差值2-1=1(对),那么蝉(一对翅膀)有:6÷1=6(只)。
解答
(8×18-118)÷(8-6)
=(144-118)÷2=26÷2
=13(只)„„6腿虫数
(2×13-20)÷(2-1)
=(26-20)÷1
=6(只)„„1对翅膀虫数
13-6=7(只)„„2对翅膀虫数
答:蜻蜓有7只。
点津
恰当地把多组事物根据其特点划分成两类,转化成鸡兔同笼结构的题目是解题的关键。当组数大于2时,有时需要在同一题中解决多于1次的鸡兔同笼结构的题目,才能求得最终结果。
发散思维训练
1.动物园里有一群鸵鸟和大象,它们共有36只眼睛和52只脚,问鸵鸟和大象各有多少?
2.养殖场共养鸡、兔180只,已知鸡脚总数比兔脚总数多180只。问养的鸡、兔各多少只?
3.学校有象棋、跳棋共20副,2人下一副象棋,6人下一副跳棋,恰好可供60个学生进行活动。问象棋与跳棋各有多少副?
4.鸡、兔共有脚140只,若将鸡换成兔,兔换成鸡,则共有脚160只。问原有鸡、兔各几只?
5.老师教同学们练跳绳,若一次能连续跳8个,老师奖给同学4块巧克力;若跳不够8个,则退给老师2块。王芳同学一共练了10次,得到28块巧克力。问王芳有几次没跳够8个?
6.有6个谜语,让50人猜,共猜对了202个。已知每人至少猜对2个,且猜对2个的有5人,猜对4个的有9人,猜对3个和5个的人数一样多,那么,6个全猜对的有多少人?
7.现有大、小水桶共50个,每个大桶可装水6千克,每个小桶可装水3千克,大桶比小桶总共多装水30千克。问大、小桶各多少个?
8.小张是车工,平均每天车某种零件50个,每车好一个正品,可为企业创造财富14元,但车坏一个要损失96元。某天,他为企业创造了480元的财宝,这一天他车出的正品是多少个?
9.模拟考试已举行了24次,共出了试题426道,每次出的试题数不同,或者25题,或者16题,或者20题,那么,其中有25道试题的有多少次?
10.传说九头鸟有九头一尾,九尾鸟有九尾一头。今有头510个,尾590个,问:两种鸟各有多少个?
参考答案
发散思维训练
1.解:
由于每只动物有两只眼睛,由题意可知动物园里鸵鸟和大象的总数为:36÷2=18(只),假设鸵鸟和大象一样也有4只脚,那么脚总数为:18×4=72(只),与实际的差值为:72-52=20(只),由假设引起的差值:4-2=2(只),则鸵鸟数:20÷2=10(只),大象数:18-10=8(头)。
答:鸵鸟有10只,大象有8头。
2.解:
假设180只全是鸡,则兔脚数为0,则鸡脚数比兔脚数多:2×180=360(只),与实际相比:360-180=180(只),由假设造成的差值:2+4=6(只)。
那么实际的兔数是:180÷6=30(只)
鸡数为:180-30=150(只)
答:养的鸡为150只,兔为30只。
3.解:
假设象棋也可供6个人下,则可供6×20=120(人)学生进行活动。与实际相比,120-60=60(人),由假设造成的差值:6-2=4(人)。
那么实际的象棋数为60÷4=15(副)
跳棋数为20-15=5(副)
答:象棋有15副,跳棋有5副。
4.解:
由于鸡换成兔,兔换成鸡,脚的只数增加了20只。故原来的兔比鸡少20÷2=10(只),减去这10只鸡,则鸡、兔一样多,并且共有脚:140-2×10=120(只)。假设鸡、兔各有3只脚(鸡、兔脚数的平均数),那么鸡、兔共有120÷3=40(只),鸡、兔各有40÷2=20(只),实际的鸡数为:
20+10=30(只)。
答:原有鸡30只、兔20只。
5.解:
假设王芳10次都跳够8个,则应得巧克力4×10=40(块)。与实际相比,40-28=12(块)。由于跳不够,不但没得到巧克力,还要返还2块。
那么由假设造成的差值为4+2=6(块)。王芳没有跳够的次数:12÷6=2(次)。
答:没跳够8个的次数为2次。
6.解:
猜谜情况总共有5种,其中已知猜对2个的有5人、猜对4个的有9人,则猜对3、5、6个的人数:50-5-9=36(人),共猜对的题数:202-2×5-4×9=156(个)。
由于猜对3个和5个的人数一样多,可以把他们看作为猜对4个的人。
假设36个人都猜对了6个,那么共猜对的题数为6×36=216(个),与实际相比,216-156=60(个),由假设造成的差值6-4=2(个),则猜对4个的人数:60÷2=30(人),那么猜对6个的人数:36-30=6(人)。
答:有6人全猜对。
7.解:
假设50个桶都是大桶,则共装水6×50=300(千克),而此时小桶装水为0,与实际相比,相差300-30=270(千克)。若将大桶换成小桶,则每换一个,大桶装的水就减少6千克,小桶装的水增加3千克,大桶比小桶多装的重量就减少:6+3=9(千克),那么小桶的个数:270÷9=30(个)大桶的个数:50-30=20(个)
答:大桶有20个,小桶有30个。
8.解:
假设小张这天车出的零件全部是正品,那么应创造的财富为:14×50=700(元),可实际只有480元,其差额是700-480=220(元)。
根据题意:如果车坏一个零件要减少14+96=110(元),那么车坏零件的个数:220÷l10=2(个),零件正品个数:50-2=48(个)。
答:他车出的正品是48个。
9.解:
假设24次考试,每次都是16题,则并考了试题16×24=384(题),与实际考题数相比,426-384=42(题)。而考25题的每次多考25-16=9(题),考20题的每次多考20-16=4(题),这样有9×A+4×B=42,其中A表示考25题的次数,B表示考20题的次数。根据奇偶性分析,A只能是2。
答:考25题的次数是2次。
10.解:
尾数590个大于头数510个,说明九尾鸟多于九头鸟。590-510=80(个),两种鸟的尾数差为9-l=8(个),那么九尾鸟比九头鸟多80÷8=10(只)。除去这10只,剩下九头鸟与九尾鸟的数量相等,为(510-10)÷(9+l)=50(只),九尾鸟有50+10=60(只)。
奥数问题鸡兔同笼 第8篇
一、“鸡兔同笼”解题法中隐含的数学思想
解决“鸡兔同笼”的办法有很多, 既有古代流行的抬脚法, 也有现代人新创的猜想法、列表法、图画法、假设法、建模法、方程法等。“鸡兔同笼”的多样解题法彰显了数学思想在数学教育中的重要地位。作为教师, 我们需要深入研读教材, 把隐含在课本公式、习题间的数学思想准确地提炼出来, 在课堂教学过程中潜移默化地引导学生感悟, 促使学生尝试运用数学思想分析与解决问题。
二、“鸡兔同笼”解决法分析
(一) 猜想法
也可称为凑数法, 即让学生根据题目中提供的“头”的数量先猜鸡与兔的数量, 再通过题目提供的“脚”的数量予以印证。在此过程中, 学生会慢慢领会“若鸡与兔的脚数量猜测得多, 则应该增加鸡的猜测数量而减少兔的数量。反之, 若是脚的数量少了, 就要增加兔的猜测数量而减少鸡的数量。在这种不断修正猜测结论的过程中, 学生自主学习的积极性得到提高, 慢慢变得大胆, 思路也更加开阔。
(二) 列表法
列表法可以看作是猜测法的延续, 将猜测的数值按照一定顺序 (一般是从小到大) 排列为表格, 根据表格数据可以发现规律“鸡的数量减少一只、兔的数量增加一只的情况下, 脚的数量就会增加两只”。在现实生活中, 当一些问题暂时不能找到最恰当的数学模型时, 以列表的办法往往能够得到结果, 这也为后面的数学建模奠定了基础。
(三) 画图法
画图法是最直观形象的办法, 首先画出35个头与94只脚, 然后先给所有的头配上两只脚, 接着将多出来的24只脚加在其中的12个头上, 答案出现。通过上面画图的过程, 新的解题法——假设法已经初步呈现。画图在小学生的数学学习过程中是一个十分必要也相当有用的办法, 学生在动手绘图的过程中能够逐渐领悟解题思路, 在一定程度上拓展想象空间, 从而体会的掌握其中的数学思想。
(四) 假设法
新课程标准的提示内容中有“假设笼子里全是鸡, 则全部的脚的数量就应该是70只, 这会多出24只脚, 一只兔子比一只鸡多两条只脚, 则24÷2=12, 这就是兔子的数量, 那么鸡就有23只”。根据这种提示, 学生可以反向思维:“如果笼子里全是兔子, 那就应该有140只脚, 这样就少了46只脚, 一只鸡比一只兔子少两只脚, 46÷2=23, 这是鸡的数量, 那么兔子就是12只。”
假设法解题相对于之前几种解题法而言更加快捷迅速, 并且有利于促进小学生创新性思考能力的发展。但假设的方向一定要正确, 假设的目标对象必须顺应题目而非自相矛盾, 否则不仅得不到正确答案, 反而会让解题人陷入混乱。
(五) 建模法
这种办法是在假设法的基础上得到的, 在“假设”的过程中, 学生可以得出以下规律:“鸡的数量= (所有头的数量×4-所有脚的数量) ÷ (4-2) , 兔的数量= (所有脚的数量-所有头的数量×2) ÷ (4-2) ”。这个规律就是一个数学模型。这个模型可以解决所有与“鸡兔同笼”问题类似甚至有所扩展的问题。建模法已经是一种相对成熟的解决现实问题的常用数学思想方法, 该法从“形”和“量”的角度分析现实问题, 以相对简化了的抽象形式确立解题参数与参量, 结合数学定理 (定义) 将现实问题与之关联, 此时, 一个数学 (或现实) 问题就成为一个极简的数模。小学生对于建模的问题相对难以理解, 但教师应当尝试让学生初步对建模产生大致的印象, 从而为后续的深入学习做好铺垫。
(六) 方程式解题法
方程式的应用在四年级已有了初步的认识, 这种方法也是使用最广泛和最便捷的数学思想方法之一, 具体到“鸡兔同笼”的问题, 可以设兔的数量为X, 鸡为Y, 则鸡头数量则为35-X, 那么, 兔子的脚就是4X, 鸡脚就是2 (35-X) , 则方程式为4X+2 (35-X) =94, 解X=12, Y=23。
方程式作为解决现实问题最有效的数模, 具有直接、简便、以易解难的优势, 其在现代社会各行业均有广泛应用, 此法的应用重点在于将问题中的已经量与未知量通过列方程建立起关联, 最终通过已知量计算得到未知量, 此即为方程式思想方法的由来。
三、通过分析“鸡兔同笼”教会学生数学思想
从上述猜想法到方程式法不难看出, 这些由浅及深的数学思想方法之间存在着层层递进、由具象到抽象、由低层级往高层级发展的关联。粗看之下, “猜想、列表、画图”显得幼稚, 似乎很“笨”, 而且一旦头和脚的数量上了百只, 那么仅在画图表上耗费的时间就已经无法想象, 更遑论后续的解题措施。然而, 这些略显笨拙的解题法作为小学生学习数学思想的必然过程却是必不可少的, 正因有了这些“笨”办法, 才为后面的假设、建模与方程式奠定了基础。教师需要通过这样循序渐进的教学方法化繁为简, 进一步让学生明白所谓的“笨”办法与后面精炼简洁的数模之间其实有着千丝万缕的联系, 从而让学生了解“数学思想之间并非孤立存在”的深刻内涵。
四、结束语
分析“鸡兔同笼”的目的在于让小学生掌握不同数学思想的内涵, 教师应充分挖掘与延伸“鸡兔同笼”的潜在价值, 引导小学生领会及掌握不同数学思想方法间的联系, 为更高层级的学习奠定坚实的基础。
摘要:“鸡兔同笼”是一道古代趣题, 今人新创的解题法各不相同。本文介绍了“鸡兔同笼”解题法中隐含的数学思想, 分析了不同解题法的过程, 挖掘“鸡兔同笼”解题过程隐含的数学思想, 提倡教师在教学过程中注重数学思想的渗透, 以此培养学生的数学思维能力, 促进学生数学素养的全面提升。
关键词:小学数学,鸡兔同笼,解法探析
参考文献
[1]谢清霖.亲历问题解决过程深入感悟数学思想——“鸡兔同笼”问题蕴涵的一些数学思想方法教学例谈[J].小学数学教育, 2013 (2) .
奥数问题鸡兔同笼
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


