绝对不等式的证明范文
绝对不等式的证明范文第1篇
一.(1)绝对值定义|a|={ -aa<0
绝对值的定义是用分类讨论思想定义的,他可以用来去掉绝对值的符号。
(2) 实数a的绝对值表示在数轴上所对应点A到原点的距离。
(3).请试着归纳出1.解方程|x|=2?|x|=2的几何意义是什么?
(4).能表述|x|>2, |x|<2的几何意义吗?其解集是什么?
二.根据上一 问题可得到
|x|>a的几何意义是到原点的距离大于a的点,
其解集是﹛x|x>a或x<-a﹜
|x|
其解集是﹛x|-a三. 能否归纳|ax+b|>c 与|ax+b|0)型不等式的解法?
|ax+b|>c(c>0)的解法是:先化不等式组ax+b>c 或ax+b<-c,再由不等式的性质求出原不等式的解集。
|ax+b|0) 的解法是:先化不等式组 -c
例题分析
例1 解不等式|3x-5|7
例2解不等式|2x-3|>
4例3 解不等式|1-2x|<5(找两名学生上黑板做)
【注】我们在解|ax+b|>c 与|ax+b|0)型不等式的时候,一定要注意a的正负。当a 为负数时,可先把a 化成正数再求解。
练习
1、解下列不等式
(1)|x-4|9
(2) |3x-3|≥15
2. 解下列不等式
(1) 2|2x+1|-4≥0
绝对不等式的证明范文第2篇
aa+bab或-bab;其二,abab。前者的几何意义是三角形两边之和大于第三边,两边之差小于第三边,后者是数量积的性质,这两个结论用于证明不等式,可以使证明思路清晰明快,过程简单明了之功效。
一、利用a-bab证明不等式
例
1、函数f(x),ab,求证:
f(a)f(b)ab
解析:f(a)f(b)ab
即ab
构造两个向量 a(1,a),b(1,b),可以理解为两个向量的模的差ab,那么ab表示向量c(0,ab)的模,其中ab(1,a)(1,b)(0,ab) 。
因此,原不等式等价于证明abab,其中ab,向量 a和b不可能同向,不取等号。
二 利用abab证明不等式
2222例2 、已知实数mnxy满足mna,xyb
(ab),求mxny得最大值
解析:构造向量a(m,n),b(x,y),
则a abmxny,因为abab,所以mxny
my
nx取最大值。 例
3、已知ab
1,解析: 构造向
量ab1m,n
122 n(1,1),m,。
。mn因为mn
mn
所以,
绝对不等式的证明范文第3篇
(1)理解证明不等式的三种方法:比较法、综合法和分析法的意义;
(2)掌握用比较法、综合法和分析法证明简单的不等式;
(3)能根据实际题目灵活地选择适当地证明方法;
(4)通过不等式证明,培养学生逻辑推理论证的能力和抽象思维能力.教学建议:
1.知识结构:(不等式证明三种方法的理解)==〉(简单应用)==〉(综合应用)
2.重点、难点分析
重点:不等式证明的主要方法的意义和应用;
难点:①理解分析法与综合法在推理方向上是相反的;
②综合性问题证明方法的选择.
(1)不等式证明的意义
不等式的证明是要证明对于满足条件的所有数都成立(或都不成立),而并非是带入具体的数
值去验证式子是否成立.
(2)比较法证明不等式的分析
①在证明不等式的各种方法中,比较法是最基本、最重要的方法.
②证明不等式的比较法,有求差比较法和求商比较法两种途径.
由于a>b<==>a-b>0,因此,证明a>b,可转化为证明与之等价的a-b>0.这种证法就是求差比较法.由于当b>0时,a>b<==>(a/b)>1,因此,证明a>b(b>0),可以转化为证明与之等价的(a/b)>1(b>0).这种证法就是求商比较法,使用求商比较法证明一定要注意(b>0)这一前提条件.
③求差比较法的基本步骤是:“作差变形断号”.
其中,作差是依据,变形是手段,判断符号才是目的.
变形的方法一般有配方法、通分法和因式分解法等,变成能够判断出差的符号是正或负的数(或式子)即可.④作商比较法的基本步骤是:“作商变形判断商式与1的大小关系”,需要注意的是,作商比较法一般用于证明不等号两侧的式子同号的不等式.
(3)综合法证明不等式的分析
①利用某些已经证明过的不等式和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.
②综合法的思路是“由因导果”:从已知的不等式出发,通过一系列已知条件推导变换,推导出求证的不等式.
③综合法证明不等式的逻辑关系是:
(已知)==〉(逐步推演不等式成立的必要条件)==〉(结论)
(4)分析法证明不等式的分析
①从求证的不等式出发,逐步寻求使不等式成立的充分条件,直至所需条件被确认成立,就断定求证的不等式成立,这种证明方法就是分析法.
有时,我们也可以首先假定所要证明的不等式成立,逐步推出一个已知成立的不等式,只要这个推出过程中的每一步都是可以逆推的,那么就可以断定所给的不等式成立.这也是用分析法,注意应强调“以上每一步都可逆”,并说出可逆的根据.
②分析法的思路是“执果导因”:从求证的不等式出发,探索使结论成立的充分条件直至已成立的不等式.它与综合法是对立统一的两种方法.
③用分析法证明不等式的逻辑关系是:
(已知)<==(逐步推演不等式成立的必要条件)<==(结论)
④分析法是证明不等式时一种常用的基本方法.当证明不知从何入手时,有时可以运用分析法而获得解决.特别对于条件简单而结论复杂的题目往往更实用.
(5)关于分析法与综合法关系
①分析法与综合法是思维方向相反的两种思考方法.
②在数学解题中,分析法是从数学题的待证结论或需求问题出发,逐步地推导,最后达到题设的已知条件.即推理方向是:结论已知.
综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题.即:已知 结论.
③分析法的特点是:从“结论”探求“需知”,逐步靠拢“已知”,其逐步推理实际上是要寻找结论的充分条件.
综合法的特点是:从“已知”推出“可知”,逐步推向“未知”,其逐步推理实际上是要寻找已知的必要条件.
④一般来说,对于较复杂的不等式,直接运用综合法往往不易入手,用分析法来书写比较麻烦.因此,通常用分析法探索证题途径,然后用综合法加以证明,所以分析法和综合法经常是结合在一起使用的.
第一课时不等式的证明(比较法)
教学目标
1.掌握证明不等式的方法比较法;
2.熟悉并掌握比较法证明不等式的意义及基本步骤.
教学重点:比较法的意义和基本步骤.
教学难点:常见的变形技巧.
教学方法; 启发引导法.
教学过程:
(-)导入新课
教师提问:根据前一节学过(不等式的性质)的知识,我们如何用实数运算来比较两个实数与的大小?
找学生回答问题.
(学生回答:
,
,
,)
[点评]要比较两个实数 与
的大小,只要考察 与
的差值的符号就可以了,这种证明不等式的方法称为比较法.现在我们就来学习:用比较法证明不等式.
目的:通过教师设置问题,引导学生回忆所学的知识,引出用比较法证明不等式,导入本节课学习的知识.
(二)新课讲授
【尝试探索,建立新知】
教师写出一道(证明不等式)例题的题目
[问题] 求证
教师引导学生分析、思考,研究不等式的证明.
学生研究证明不等式,尝试完成问题.
[本问点评]
①通过确定差的符号,证明不等式的成立.这一方法,在前面比较两个实数的大小、比较式子的大小、证明不等式性质就已经用过.
②通过求差将不等问题转化为恒等问题,将两个一般式子大小比较转化为一个一般式子与0的大小比较,使问题简化.
③理论依据是:
④由
,
,知:要证明
只需证
;需证明
这种证明不等式的方法通常叫做比较法.
目的:帮助学生构建用比较法证明不等式的知识体系,培养学生化归的数学思想.
【例题示范,学会应用】
教师板书例题,引导学生研究问题,构思证题方法,学会解题过程中的一些常用技巧,并点评.
例1. 求证
[分析]由比较法证题的方法,先将不等式两边作差,得
关于的二次函数,由配方法易知函数的最小值大干零,从而使问题获证. ,将此式看作证明:∵
=
=
,
∴
[本例点评] .
①作差后是通过配方法对差式进行恒等变形,确定差的符号;
②作差后,式子符号不易确定,配方后变形为一个完全平方式子与一个常数和的形式,使差式的符号易于确定;
③不等式两边的差的符号是正是负,一般需要利用不等式的性质经过变形后,才能判断;
④例1介绍了变形的一种常用方法配方法.
例2 . 已知都是正数,并且
,求证:
[分析]这是分式不等式的证明题,依比较法证题将其作差,确定差的符号,应通分,由分子、分母的值的符号推出差值的符合,从而得证.
证明:
=
=
.
因为
都是正数,且
,
所以
.
∴
.
即:
[本例点评]
①作差后是通过通分法对差式进行恒等变形,由分子、分母的值的符号推出差的符号;
②本例题介绍了对差变形,确定差值的符号的一种常用方法通分法;
③例2的结论反映了分式的一个性质(若都是正数
1.当
时,
2.当
时,
.)
目的:巩固用比较法证明不等式的知识,学会用比较法证明不等式时,对差式变形的常用方法配方法、通分法.
【课堂练习】
教师指定练习题,要求学生独立思考.完成练习;请甲、乙两学生板演;巡视学生的解题情况,对正确的证法给予肯定和鼓励,对偏差点拨和纠正;点评练习中存在的问题.
练习:1.求证
2.已知 ,
, ,d都是正数,且
,求证
目的:掌握用比较法证明不等式,并会灵活运用配方法和通分法变形差式,确定差式符号.反馈课堂教学效果,调节课堂教学.
【分析归纳、小结解法】
学生和老师一起分析归纳例题和练习的解题过程,小结用比较法证明不等式的解题方法,并让学生记录笔记.比较法是证明不等式的一种最基本、重要的方法.用比较法证明不等式的步骤(作差、变形、判断符号).灵活掌握配方法和通分法对差式进行恒等变形.
(三)小结(培养学生对所学知识进行概括归纳的能力,巩固所学知识)
学生和老师一起小结本节课所学的知识,并让学生记录笔记.
本节课学习的用比较法证明不等式的步骤中,作差是依据,变形是手段,判断符号才是目的.掌握求差后对差式变形的常用方法(配方法和通分法).并在下节课继续学习对差式变形的常用方法.
(四)布置作业
1.课本作业:P14.1,2,3.(供学生巩固基础知识)
2.思考题:已知
,求证:
( 培养其灵活掌握用比较法证明不等式的能力)
3.研究性题:设 ,
, 都是正数,且
(为培养学生创新意识)
作业答实:
思考题:,求证:
,又
,从而得证.
研究性题:.所以
绝对不等式的证明范文第4篇
步骤一:首先把不等式转化关于某变量x的函数,并且求出x的定义域。 步骤二:证明该变量x的函数在其定义域的单调关系。
步骤三:由步骤二可得出该不等式的极小值或极大值,进而求出最小值或最大值。
步骤四:利用最小值或最大值证该不等式是正确。
②利用求等比数列和的方法证明不等式成立。
③利用列式分解法来证明不等式成立(经常用于数列不等式)。
Ⅰ利用分子分母的列式分解法分解。类型应是分子是常数,分母是可由两个因子式的二元一次方程并且该两个因子式相减可得一个常数。通常类型如下:c/a(x+b1)(x+b2) = c/a * 1/(b2-b1) * [1/(x+b1) - 1/(x+b2)] Ⅱ利用根号和列式分解法来证明不等式的成立。
Ⅲ利用对数的性质来进行因式分解。例如ln[n/(n+1)] = ln(n)-ln(n+1); ④利用假说演绎法来证明不等式的成立。
步骤如下(假设有5分,一般都可拿3分):
步骤一:假设该不等式成立。
步骤二:当n = 1 时,该不等式成立。(1分或2分)
步骤三:当n = k+1 时,把他代入左边的参数,再跟与 n = k的不
等式转换。从而验证当n = k+1 时,该不等式也成立。(3分或4分)
步骤四:综上所述,该不等式成立。(0分或1分)
⑤利用放缩法来证明不等式成立。下面有几种常见的关于放缩法的几种类型。 Ⅰ利用已有的列式分解法的知识进行放缩。
Ⅱ利用上述已知的条件进行放缩。
绝对不等式的证明范文第5篇
§14不等式的证明
课后练习
1.选择题
(1)方程x-y=105的正整数解有().(A)一组 (B)二组(C)三组(D)四组
(2)在0,1,2,,50这51个整数中,能同时被2,3,4整除的有().
(A)3个 (B)4个(C)5个(D)6个
2.填空题
(1)的个位数分别为_________及_________.
45422(2)满足不
________. 等式10≢A≢10的整数A的个数是x10+1,则x的值
(3)已知整数y被7除余数为5,那么y被7除时余数为________.
(4)求出任何一组满足方程x-51y=1的自然数解x和y_________.
3.求三个正整数x、y、z满足
22
3.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?
5.求的整数解.
6.求证可被37整除.
7.求满足条件的整数x,y的所有可能的值.
数学教育网http://
8.已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.
9.如果p、q、、都是整数,并且p>1,q>1,试求p+q的值. 课后练习答案
1.D.C.2.(1)9及1.
(2)9.
(3)4.
(4)原方程可变形为x=(7y+1)+2y(y-7),令y=7可得x=50. 2
23.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z都不能是整数.
4.可仿例2解.
5. 分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换的方法. ..
略解:ab2ab,同理bc2bc,ca2ca;三式相加再除以2即得证. 评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧. 如x1222232
2x2x22x3xn2x1x1x2xn,可在不等式两边同时加上
x2x3xnx1.再如证(a1)(b1)(ac)(bc)256abc(a,b,c0)时,可连续使用基本不3322
3等式.
(2)基本不等式有各种变式如(ab
2)2ab
222等.但其本质特征不等式两边的次
数及系数是相等的.如上式左右两边次数均为2,系数和为1.
6.8888≡8(mod37),∴8888
33332222≡8(mod37). 222227777≡7(mod37),7777≡7(mod37),8888
238+7=407,37|407,∴37|N.
223+77773333≡(8+7)(mod37),而237.简解:原方程变形为3x-(3y+7)x+3y-7y=0由关于x的二次方程有解的条件△≣0
及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).
8.∵l+m=n,∴l=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l,n-m=1.于是2222l=n+m=(m+1)+m=2m+1,2m=l-1,2(l+m+1)=2l+2+2m=l+2l+1=(l+1).即2(l+m+1)是完全平方数. 2222
29.易知p≠q,不妨设p>q.令
(4-mn)p=m+2,解此方程可得p、q之值.
绝对不等式的证明范文第6篇
导数及其应用
构造函数法证明不等式
一、教学目标:
1.知识与技能:利用导数研究函数的单调性极值和最值,再由单调性和最值来证明不等式. 2.过程与方法:引导学生钻研教材,归纳求导的四则运算法则的应用,通过类比,化归思想转换命题,抓住条件与结论的结构形式,合理构造函数. 3.情感与态度:通过这部分内容的学习,培养学生的分析能力(归纳与类比)与推理能力(证明),培养学生战胜困难的决心和解题信心。
二、教学重难点:解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。难点:将命题的结论进行转化与化归,变成熟悉的题型。
三、教法学法:变式训练
四、教学过程:
(一)引入课题:
1.复习导数的运算法则:
2.问题探源:
(教材第32页B组题第1题)
利用函数的单调性,证明下列不等式,并通过函数图象直观验证
(3)ex1x(x0)(4)lnxx1(x0)
3.问题探究:
1、直观感知(几何画板演示);(2)推理论证 4高考探究:
例
1、(2013年北京高考)设L为曲线C:ylnx在点(1,0)处的切线. x(I)求L的方程;
(II)证明:除切点(1,0)之外,曲线C在直线L的下方.
(类似还有2011年课标全国卷第21题)
1 选修2-2
导数及其应用
变式练习1:
证明:对任意的正整数n,不等式ln(1)11n111n 都成立
(类似还有2012年湖北高考题第22题)
变式练习2:
若函数yf(x)在R上可导且满足不等式xf/(x)f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b)
变式练习3:
若定义在(0,)上的两函数yf(x),yg(x)均可导,满足f/(x)g(x)f(x)g/(x),且对任意x(0,+),都有f(x)0,(g)x0
变式练习4:
证明当x0时,不等式(1x)
思考题5.(全国卷)已知函数g(x)xlnx 设0ab,证明 :
五.小结: (1)知识点: (2)解题步骤: (3)数学思想方法
11x,设0ab,求证f(a)g(b)f(b)g(a)
e
g(a)g(b)abg()
222 选修2-2
导数及其应用
课后巩固训练:
1、已知函数f(x)12xlnx. 求证:在区间(1,)上,函数f(x)的图象在函数2g(x)
23x的图象的下方;
32、证明:对任意的正整数n,不等式ln(
3. 证明当x0时,(1x)
课后提高训练:
11x1111)23 都成立. nnne1x2
1. 已知m、n都是正整数,且1mn,证明:(1m)n(1n)m
2.(2013年陕西高考最后一题) 已知函数f(x)ex,xR. f(b)f(a)ab设ab, 比较f的大小, 并说明理由. 与
绝对不等式的证明范文
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


