故障件分析处理
故障件分析处理(精选12篇)
故障件分析处理 第1篇
变压器运行时,铁心、夹件等构件对地会产生悬浮电位,大到一定程度时会出现其对绕组或地放电。因此,变压器铁心、夹件必须进行有效接地。同时应避免多点接地,否则接地点之间可能形成闭合回路,产生环流,造成变压器油分解,加速老化,严重时会导致局部烧毁,造成设备损毁。本文将结合一起对220kV变压器夹件多点接地故障的处理为例,对变压器夹件多点接地故障进行了分析判断,对处理方法做出了简单介绍。
2 故障现象及临时处理
SFSZ9-180000/220型号的变压器是变压器厂生产的220kV主变。2011年9月,检修人员对某站该型号主变进行预防性试验,当测量夹件对地绝缘电阻时,绝缘电阻达到600MΩ时摇表指针突然归零,经多次测试情况都存在该现象。现场对绝缘油色谱分析符合要求,对比历次的油试验数据也未见异常,调出该变压器交接试验报告中绝缘电阻测量数据来看,其铁心对地、夹件对地、铁心和夹件间的绝缘电阻值都符合要求。现场使用500V、1000V、2500V摇表对夹件进行绝缘电阻的测试,以综合判断夹件对地的绝缘状况。
各次的测试结果数据如表1所示。对比相关的标准,如表2所示,排除了夹件绝缘受潮的可能性,可判断出夹件对地可能存在不稳定的接地点。据此,初步认定可能是主变器身中油泥、杂质沉积所致,尝试使用冲击放电法消除缺陷,夹件进行了第一次放电冲击(电压为3kV),再次测量夹件对地绝缘,数据如表3所示,绝缘电阻进一步降低,排除杂物搭接的可能性,为避免夹件绝缘受到进一步损伤,不再进行冲击放电。
考虑到该站负荷较重,停电时间短,现场采用在夹件外引接地回路上串接电阻并加装了一套CAM-3型主变铁芯多点接地故障监视器,限制它的环流,等到变电站负荷允许情况下对缺陷进行彻底排查处理。在之后巡查中,未发现夹件接地电流增大,并多次取油样进行油色谱分析,结果正常。
2011年12月,决定对该主变夹件多点接地故障进行处理,查阅了该主变的图纸、运输、安装及试验记录及相关文献资料,对该主变的故障进行了分析判断:认为出现夹件多点接地的可能有以下两点:(1)夹件接地引线过长并损坏;(2)有载调压开关头部法兰处与其托板间的间隙过小。参照该型号主变发生夹件多点接地的情况,开关头部法兰处与其托板间的间隙过小被列为重点。
为能尽快查出故障位置缩短检修时间,降低因环境变化对变压器造成的安全风险,现场决定采用不完全排油处理的方法,即将变压器本体油箱中的绝缘油排放至距油箱顶约60cm处,然后由技术人员进入箱体,检查夹件情况。变压器内部结构如图3所示。
步骤1:由于排出的油量较少,将需排出的绝缘油通过真空滤油机直接灌到主变本体储油柜中存放,故障处理后由储油柜直接补油到油箱本体。排油前关闭储油柜、散热器与本体连接的管道阀门,减少排油量。
步骤2:在油箱中油位下降到预定位置后,拆开夹件引出套管,现场检查套管无破损、无放电痕迹,夹件引出线正常、绝缘包扎良好。测试夹件绝缘电阻,无放电异响。
步骤3:检修人员进入箱体检查变压器内上部夹件情况,由于该变压器入孔位置较低(距本体箱盖顶部约1.1m),考虑到排油量较大、时间较长,人员进出也相对困难、危险,故决定依次拆除变高B相、变高中性点、变中B相、变中中性点套管及升高座,从升高座安装孔进入排查及处理故障。
在变高中性点升高座安装孔检查处理过程中,发现有载调压开关头部法兰处与其托板间的间隙过小,造成测量绝缘电阻时出现阻值由高至低直到击穿归零的现象,并伴有轻微的放电痕迹。因设计、安装工艺等原因,此间隙无法调节,且空间狭窄,检修人员在有载调压开关两侧间隙,用备好的绝缘纸板垫于它们中间,并用布带绑扎牢固,以提高夹件对地绝缘电阻。
处理工作的过程如图1、图2所示,处理完成后,经2500V摇表测量,夹件对地的绝缘电阻已上升为800MΩ。据此判定夹件的多点接地故障已基本消除。恢复运行后,截止目前,该变压器运转正常。
3 结束语
变压器夹件包括铁心多点接地故障是变压器多见的故障,但接地点的查找和处理相当困难,应结合设备历史运行、检修状况,根据现场检查情况、试验验数据等,制定准确、合理、有效的处理方案,以提高今后处理该类故障的效率和经济性。新投入运行的变压器需要测量夹件对地的绝缘电阻,由施工方进行测量、记录,从源头把好安全生产的第一道关,在变压器投运后加强监视接地电流,及时发现问题,采取措施,保证电网安全稳定运行。
参考文献
[1]山东,成日常.大型变压器铁心接地故障的综合判断与现场处理.
[2]刘相枪,郭慧浩,梁耀升.一起进口500kV变压器夹件接地电流过大的处理[J].广东电力,2009.
[3]高俊.一起110KV变压器铁芯接地故障的处理方法[J].云南电力技术,2006.
通信常见故障分析处理办法 第2篇
—— 李 智
一、站与站之间光通道不通故障
在设备开站调试的时候,站与站之间出现会出现不通的情况。
1、利用红光笔和OTDR确认光缆是否中断,若之间有断点,根据OTDR测算的长度和隐蔽记录资料判断故障点并处理;
2、利用光源光功率计测量纤芯的衰耗是否合格,不合格的故障点多半是ODF的法兰,可能未安装好也可能是法兰本身问题;
备注:按照施工规范光缆成端后是需要进行测试的,如果施工前按照要求进行测试,能够为设备调试节省不少时间。
3、线路通但是设备还是不通,先确保物理链路不存在问题,比如尾纤、光模块(长距、短距、型号)等,咨询厂家是否需要加装光衰。不出意外,光看设备指示灯,应该是连接成功。
4、光太强,造成过载,加装光衰
注:1)建议以后ODF多采用LC适配器,减少人为接纤造成的故障.2)一对光纤两端收光要平衡,一般相差不大于2dB,同一径路的 1+1两对纤也是。
在联接光纤时要注意这点。
二、传输设备2M通道故障
2M通道故障一般为存在误码和不通。
1、误码:导致的原因较多,如焊接质量、2M头质量(氧化)、2M线长度及损伤(为其他专业提供通道的长度不宜过长,一般控制在100米以下)、接地等,在确保链路上无问题后基本能解决;
2、2M通道不通(一般为LOS告警)常见处理方式2M端口收发倒换,用户侧(这样可以判断2M线是否有故障)2M环回网管上查看告警情况,告警消失说明通道无问题,若未消失,DDF侧环回判断2M线是否有问题,2M线可能出现线序、虚焊、断裂的情况导致不通。
3、光路有光过低或过高,也会影起误码。
4、相连的设备接地没有接入位同一等电位或地线没接好也会影起误码。
三、传输设备一FE通道故障 如:
如图,在连镇进行远动调试的时候出现A站通,B站、C站(不具备调试条件)、D站调试不通的情况。
1、检查物理链路,IP设置等,确保无问题;
2、网管检查数据配置是否存在问题,根据这个组网图,通道数据是分为好几条的,中心―A站、A站―B站、B站―C站、C站―D站,网管可能是未仔细检查,未发现B站―C站这条数据未做导致不通的。这个只是列举的例子,当时站点较多,通道数量多,容易导致遗漏。
备注:这个是上海局利用传输网提供的通道,与哈局利用数据网提供方式的不一样。
3、端口不匹配,传输出的常用接口有ACCESS、TRUNK两种,ACCESS 接一台电脑,ACCESS允许一个vlan通过;TRUNK用于汇聚口接交换或路由器,TRUNK允许多个vlan通过。网管仔细检查,不能用错。(还有华为有 Hybrid混合接口用得较少)
(注:为什么,PC无法访问Server?默认情况下设置端口为trunk时,pvid自动设为1,而设为access时,pvid自动设置为vlan号。因为PC发出的数据包没有vid标签,端口1接受后,打上vid=1的标签,这样相当于PC和Server分属于不同的vlan,无法访问。)
4、vlan标识不对。
5、电路时隙用错或时隙对应错误,特别是不同厂家传输对接时容易出错,甚至出现过没有通道时隙。
6、因两个设备软件兼容性问题:造成电力、电气化SCADA通道不通问题原因:汉十SCADA组网方式为区间传输设备汇聚至相邻两个车站,由车站传输设备传至车站交换机,采用传输+数据网方式组网,因两个设备软件兼容性问题,经常性出现丢包或通道中断问题。
解决方式:厂家工作人员,按传输顺序逐一排查丢包位置,查找原因后,由厂家负责优化相关软件。
四、传输设备托管故障
在调试期间,经常会出现某站托管的情况:一般从电和光纤2方面考虑:
1、站与站之间还是属于链状,出现托管的原因2种可能都有;
2、传输网已形成环网(网管---A站---B站---C站---A站),出现B站托管的原因基本判断是断电,A站与B站和B站与C站间的光缆同时中断的可能性较小。
备注:提前判断下有利于人员安排和携带的工具。
五、ONU传输通道图及故障处理
端口状态使用“ONU与OLT设备端口状态查询”文本文档中的命令查看
---------------------------------------------↓ONU机房
ONU设备
↓ ↑
↓ ↑
传输DDF子架
↓ ↑--------环回(从传输DDF子架向传输设备端环回,可以查看DDF子架到OLT端口是否正常,正常则ONU至子架2M有问题,故障则继续向前查看)
↓ ↑
传输设备
↓ ↑--------外环回(从ONU机房传输设备上向OLT机房传输设备环回,可以查看ONU机房传输设备到OLT端口是否正常,正常则ONU至传输设备之间2M有问题,故障则继续向前查看)
----------------------------------↑ONU机房
↓ ↑
室外光路
↓ ↑
----------------------------------↓OLT机房
↓ ↑
传输设备
↓ ↑---------外环回(从OLT机房传输设备上向OLT设备环回,可以查看OLT机房传输设备到OLT端口是否正常,正常则ONU至OLT机房传输设备之间2M或传输业务有问题,故障则继续向前查看)
↓ ↑
传输DDF子架
↓ ↑--------环回(从OLT机房传输DDF子架向OLT设备环回,可以查看OLT机房传输DDF子架到OLT端口是否正常,正常则ONU至OLT机房传输DDF子架之间2M或传输业务有问题,故障则继续向前查看)
↓ ↑
OLT-DDF子架
↓ ↑--------环回(从OLT机房OLT-DDF子架向OLT设备环回,可以查看OLT机房OLT-DDF子架到OLT端口是否正常,正常则ONU至OLT机房OLT-DDF子架之间2M或传输业务有问题,故障则是OLT-DDF子架至OLT设备之间有故障需检查)
↓ ↑
↓ ↑
OLT设备
----------------------------------------------↑OLT机房
六、自动电话通话故障
以已开通的自动电话故障为例:判断自动电话故障是个别还是整栋楼。
1、整栋楼:ONU设备故障,从2方面查找原因,通道和供电,最极端(较少)的一种可能是ONU设备本身出现故障;
2、个别:一般就是缆线故障,检查卡线端子及墙壁接口等容易出现故障的地方。还有一个特别难以处理的情况,自动电话杂音多,一般就是缆线出现受潮、氧化,目前哈尔滨站采用地插的电话已出现几例了,无法解决,除非换线。
3、L3地址,V5标识电话号码不对,同时和程控交换机侧对应,七、调度电话通话质量故障
1、以中软的调度台为例:哈站改开通的机务候班楼的2M数字话机经常会出现通话质量不好、杂音较多的情况(有时候重启能恢复正常),用了多种方法来尝试解决,换线、换端口、换备用话机等方式,而且把这一情况告知厂家也未分析出原因,最后我们猜测是因为距离接触网较近(不足20米)导致的干扰。把话机换成按键式调度台得以解决此故障。
从这个故障中,以后需要注意距离接触网近的地方尽量不要使用话机,话机虽说便宜但是稳定性不如按键式调度台。
2、调度电话分机(电调)通话故障
3、调度电话供电不足故障
调度电话还有一个常见的故障:调度台与调度分系统距离较远,一般大于500米,需要加装远供模块,确保电压充足。
哈站改二候搬迁时,站台的调度电话缆线割接后,未能立刻接通,新敷设缆线也无误,但是还是忽视一个问题,新敷设的缆线与既有的缆线线径不一致,既有的粗,缆线割接后在末端测量的电压无法达到工作电压,由于线径不足采用并线解决。
八、数据网设备通信故障
数据网设备技术成熟,设备稳定,一般不会出现故障,目前遇到过的就是光模块故障。供货商所供的光模块质量不一定会好,当出现故障了更换就行(有出现过好几次,万兆的光模块)
九、GSM-R移动数字通信系统故障
1、GSM-R移动数学通信系统设备本身也不容易出现故障,一般在开通的时候经常会有驻波比告警,这个在馈缆本身质量没问题的情况下一般就重新做接头就行。
在施工过程中,需要注意几点就是防水和接地。
2、另外也有一个特别需要注意的地方开通C3的线路,2M通道需要进行接口监测,施工时不要遗漏。
G网需要4个2M通道的站点需要等2M端口明确后再成端,避免像连镇全线返工的情况。
3、天线驻波比较大,驻波比测试仪显示无问题,基站网管显示异常
问题原因:驻波比显示仪无法测量靠近仪器处的驻波异常。
解决方式:驻波比测试仪测试时,将功分器代入测量,增加测量距离,可显示机房侧馈线头故障。
4、分布式基站BUA与BUB天线位置,设计悬挂高度不明确,导致现场安装位置不满足现场覆盖要求。
问题原因:网管显示与现场设备不相符,导致多次调整天线角度。
解决方式:明确BUA及BUB天线悬挂位置及切换区。
5、过江(湖)大桥场强覆盖较差,易造成水面衍射,导致反复调整天线方位角及俯仰角。
问题原因:水面无线信号衍射,导致切换区乒乓切换。解决方式:切换区尽量避开干扰区。
十、摄像头调试故障
通信专业的摄像头在调试的过程中发现有不少网线头施工质量不好导致的摄像头不通,处理这种故障需要把安装完成的摄像头拆开处理,比较麻烦,这种麻烦在今后的施工中尽量避免,网线成端质量必须保证过硬,提高调试效率。
摄像头的命名需要和接管单位沟通好,避免重新修改。IP地址分配好不能冲突,密码设置也要统一。
十一、UPS设备调试故障
1、相序有误:哈站改通信综合楼在UPS加电时出现告警,告警信息相序有误。在告知电力专业后由于时间紧迫协调解决时间较长,通过调整线序UPS正常工作。
在施工中,电力专业经常会与我们共同确认某某站已供电,需要注意的是在确认的时候相序也要确认,确保通信设备正常加电,较少麻烦。
2、UPS设备调试时一定要有(设置)断电又以来电后自动重起功能,不管接没接电池都要有这功能(招标时要求)
十二、各种通道调试不通故障
信号、电力、信息等其他专业通道在调试经常会出现不通的情况,遇到此类问题无非就是网管数据不对或者物理链路的问题。
在处理这类问题,在确保尾纤、缆线、端口、物理接口等无误后与网管沟通一般都能解决。
在施工过程中,故障的发生一般是施工、材料设备质量引起的,因此只有把好质量关才能减少故障的发生,把一些重点、注意点提前注意了,才能避免不少故障,减少人工材料成本,也能为开通节省不少时间。
在设备招标时对ODF、DDF、EDF、VDF(MDF)的质量一定要注意不能图价低购买质量差的,对ODF及光中间配线柜强烈建议采用LC适配器,减少人为接纤造成的故障.。特别是光衰耗不平衡故障由FC适配器造成的太多。
负荷控制终端故障分析与处理 第3篇
【关键词】电力负荷控制终端;通信信道;故障原因;处理方法
在日常的电力系统工作中,要对相关的数据进行采集、整理和分析。如果用户的电表或者是一些设备出现问题的时候,电力符合终端就可以在第一时间对其进行检测,发现产生故障的原因。但是在现如今的电力行业发展过程中,只有对负荷控制终端常见的故障进行分析判断,才能提出较为完善的解决方案和防治措施。
1、故障的分析及处理方法
负荷控制终端故障可以分为多种类型,包括系统故障、设备故障、安装故障等,但是每一种故障中都会包含很多细小的问题,这些问题足以导致整个电力系统的崩溃。为了解决这一问题,需要选择合适的仪器来进行调试,比如万用表、功率计等,同时也可以采用多种方法来对故障进行检查和分析。
1.1对比法。这种方法通常也被称为替换法,主要是运用正常的部件来替换那些可能会出现问题的部件。这种方法是较为常见的,只需要对替换的部件进行确定,保证其可以投入到正常的工作中。
1.2排除法。控制终端如果发生故障,其现象就会非常复杂。因此对于这一问题,工作人员应该采用排除法来进行。要先将一些确定没有问题的部件进行排除,然后在逐一进行检查。这种方法的运用可以在一定程度上缩小排查范围,提高工作效率。
1.3折半法。如果在具体的工作中,故障问题牵涉的部件较多,而且没有办法完全排除,这时就需要采用折半法对故障进行分析。这种方法通常会应用到查线的环节。对简单的部位进行检查,确定故障所在的位置,同样能够缩小工作范围。
1.4信号注入法。在对电台和终端脉冲电路进行检查的时候总是应用这种方式。在对故障部件进行查找的时候,加入信号驱动部件,然后对其进行观察,可以明确工作情况。
1.5加载法和减载法。如果电力系统发生了故障,通常可以采用这两种方式。具体是指拆掉外围电路,只剩下最小工作电路,然后进行电路的加载;或者是减去外围电路的负载,从而找到引起故障的位置。最常见的现象就是抄表或者电源发生故障的情况下会经常运用。
1.6原理分析法。这种方法主要是以工作的原理为依据,通过查看相关的指示,运用仪表来对故障部位进行测量,最终找到故障的关键点。
2、负荷控制终端常见故障及处理
2.1如果在开机之后出现运行灯不亮的现象,那只有两种可能。首先,对电源进行从测试,包括插座和熔丝,如果电源没有直流电输入,难么就说明开关电源出现问题,要进行及时地更换;如果指示灯和复位灯都亮,那么肯定是软件发生了故障问题,要及时更换芯片或者是主控单元。
2.2任何部位都正常工作,但是显示缺不正常也是非常常见的故障现象之一。通常情况下,主要是由于显示线断开或者是驱动单元的故障问题,另外也和液晶板故障有直接的关系。要对这几种情况进行判断,然后需要更换的要进行及时地更换。
(1)检测故障仪器
1)发送功率“P入”的测试。工作电台实际预见功率,设置功率档为200W,20W,4W档设置在20W挡。功率测量档设置在FWD处。按下话筒按钮使电台发射机工作,W540功率计所显示的功率即为发送功率。
2)反射功率P反的测试。功率档设置在4W档;功率测量档设置在REF档;按下话筒按钮使发射机工作,W540功率计所显示的功率即为天馈线系统的反射功率,它反映出电台、高频电缆及天线的匹配状态。对于功率为25W及其以下的设备,一般其REF功率应控制在0.5W以下较。
3)驻波比SWR的测试。功率计的量程设置在实际测试的功率量程档,POWER档设置为FWD,功能档设置在CAL 处。按下话筒,调整旋钮CALIBRATION使指针达满刻度CAL处,再将功能按钮投至SWR挡,此时所显示的值即为终端系统的驻波比。其值一般应控制在1.2以下。
(2)负荷控制终端与主站通信故障
用功率计判别天馈线系统故障。先将功率计TX一端接测试电台,ANT一端接标准负载,接线功率计接入标准负载测试电台。
1)若驻波比>1.5>全反射,则阻抗失配判断是电台、天线故障或开路,需进一步检查天线联接头是否完好;驻波比<1.5,有两种故障原因是天线坏增益下降或场强太小,处理方面是在ANT端用馈线取代标准负载进行测试,接线图功率计接天馈线进一步测试;若驻波比是全反射,则故障是天馈线短路,处理方法是重新做电缆联接头或更换天线;驻波比无功率,先用万用表测量馈线屏蔽层和芯是否短路,如果短路就需要更换天线。
2)电台工作正常,终端收不到主台信号。故障现象:主台发送后,终端主板上CD,RD状态指示灯没有任何反应。此故障处理方法有以下几种方法:
a.终端电台的工作频道与系统主站设置频道不一致,进一步核实频道已系统一致。
b.终端的天线、馈线是否故障,可采用W540功率计来进行测量,测得参数后进一步确定天线、馈线的好坏。
c.终端电台收机故障,通常是失锁。需要更换电台。
d.终端电源转换直流输入到电台的电源无输出,此时电台应该没有上电指示。用万用表测量电源输出,输出无电确定是终端电源故障,需更换终端电源。
3)终端接收到主台信号,但不产生回码信号。故障现象:主台发送后,终端上CD,RD状态指示灯闪烁后,RTS和TD信号无反应,此故障处理方法有以下几种方法:
a.数据传输速率不匹配。主台发送指令的数据运行(传输)速率与终端数据运行速率不同,如主台发送速率为1200bit/s,而终端运行速率为600bit/s。更改主台的串口速率设置。
b.终端地址开关设置错误,终端实际设置的终端地址与系统所要求的终端地址数不符,可以采用终端显示面板上所显示的终端地址数与所要求的地址进行检验核对,可能是地址开关拨错或地址开关损坏引起,重拨地址或更换终端的地址开关。
3、总结
总而言之,负荷控制终端故障问题较为普遍,因此,为了保证电力系统的正常运行,必须对故障问题进行分析,采用科学合理的方法和先进的技术来处理。只有这样才不会对人们的正常生活造成影响。要对具体的问题进行具体分析,根据终端故障的不同采取不同的处理方法。对故障进行处理之后要进行严格的检测才可以正常使用,同时对于相关的数据要进行核实。相信,随着科技的进步,对于符合控制终端故障的处理方法会更加先进,我国的电力行业也会有所发展。参考文献
[1]电力工业部计划用电办公室组.无线电电力负荷控制技术[M].水利电力出版社,1993,10.
[2]张晶,郝为民,周昭茂.电力负荷管理系统技术及应用.中国电力出版社,2009,8.
表箱进水故障分析及处理 第4篇
2013年5月25日一夜雨后, 接到辖区内用户电话称家中突然停电, 邻居家也停电。经现场查看, 该户为16号表箱出线用户, 同表箱其他两户也停电。17号表箱所带用户测得电压为226 V, 正常。
2 事故原因分析
该类事故原因一般有以下几种。
(1) 表箱门封闭不严, 导致下雨时表箱进水造成短路烧毁开关。
(2) 进表箱电缆无防水弯, 导致雨水随电缆渗入表箱造成短路烧毁开关。
(3) 开关进出线接线端子压接不牢或开关接线桩头螺丝松动, 造成接触不良长期发热烧毁开关。
(4) 用户用电负荷增大导致开关长期超负荷运行烧毁开关。
(5) 用户漏电、过流、短路故障造成开关带负荷频繁跳闸, 触点烧蚀后接触不良从而烧毁开关。
经现场勘察, 用户无增大负荷现象, 配电室进出线三相电压正常。拉开配电室出线开关做好安全措施后, 打开表箱检查发现表箱内总开关烧毁, 开关进线端潮湿并且有水珠, 进表箱电缆无防水弯, 初步诊断为雨水随电缆进入开关导致开关烧毁。将接户线、电缆重新做好防水弯, 更换开关后送电测得用户端电压为222 V, 正常, 家用电器也运行正常。
3 预防措施
(1) 加强对线路、设备的巡视检查, 对跳闸原因、用户负荷进行细致调查, 密切掌握用户用电情况, 及时排除隐患。
(2) 对电能表箱存在的雨水倒流现象, 将接户线与配电线路连接处改为上弓子线, 进表箱电缆与接户线连接处采用电缆线上S弯, 接户线与线路、进表箱电缆连接处内层用高压自粘带外层用防水胶带进行绝缘恢复, 对表箱开关接线进行检查, 及时处理松动现象。
通过对接户线、表箱存在的装置性违章进行整改处理, 大大减少了表箱开关烧毁所造成的停电故障, 有效保障了居民生产生活用电, 提高了供电可靠性, 降低了设备维修成本。
图1改造后的进表箱电缆与接户线
变频器故障分析与处理 第5篇
目前人们所说的交流调速系统,主要指电子式电力变换器对交流电动机的变频调速系统。变频调速系统以其优越于直流传动的特点,在很多场合中都被作为首选的传动方案,现代变频调速基本都采用16位或32位单片机作为控制核心,从而实现全数字化控制,调速性能与直流调速基本相近,但使用变频器时,其维护工作要比直流复杂,一旦发生故障,企业的普通电气人员就很难处理,这里就变频器常见的故障分析一下故障产生的原因及处理方法。
一、参数设置类故障
常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。
1、参数设置
常用变频器,一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行:
(1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
(2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。
(3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。
(4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。
2、参数设置类故障的处理
一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同。
二、过压类故障
变频器的过电压集中表现在直流母线的支流电压上。正常情况下,变频器直流电为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压Ud= 1.35 U线=513V。在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。
1、输入交流电源过压
这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。
2、发电类过电压
这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。
(1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通断。并联直流母线吸收型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生能量,这些能量通过并联母线被处于电动状态的电机吸收。能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。
(2)多个电动施动同一个负载时,也可能出现这一故障,主要由于没有负荷分配引起的。以两台电动机拖动一个负载为例,当一台电动机的实际转速大于另一台电动机的同步转速时,则转速高的电动机相当于原动机,转速低的处于发电状态,引起故障。在纸机经常发生在榨部及网部,处理时需加负荷分配控制。可以把处于纸机传动速度链分支的变频器特性调节软一些。
三、过流故障
过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。
四、过载故障
过载故障包括变频过载和电机器过载。其可能是加速时间太短,直流制动量过大、电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。
五、其他故障
1、欠压
说明变频器电源输入部分有问题,需检查后才可以运行。
2、温度过高
如电动机有温度检测装置,检查电动机的散热情况;变频器温度过高,检查变频器的通风情况。
一、变频器控制回路的抗干扰措施
由于主回路的非线性(进行开关动作),变频器本身就是谐波干扰源,而其周边控制回路却是小能量、弱信号回路,极易遭受其他装置产生的干扰,造成变频器自身和周边设备无法正常的工作。因此,变频器在安装使用时,必须对控制回路采取抗干扰措施。
1. 变频器的基本控制回路
变频器同外部进行信号交流的基本回路有模拟与数字两种:
①4~20mA电流信号回路(模拟);1~5V/0~5V电压信号回路(模拟)。②开关信号回路,变频器的开停指令、正反转指令等(数字)。外部控制指令信号通过上述基本回路导入变频器,同时干扰源也在其回路上产生干扰电势,以控制电缆为媒体入侵变频器。
2. 干扰的基本类型及抗干扰措施
(1)静电耦合干扰:指控制电缆与周围电气回路的静电容耦合,在电缆中产生的电势。
措施:加大与干扰源电缆的距离,达到导体直径40倍以上时,干扰程度就不大明显。在两电缆间设置屏蔽导体,再将屏蔽导体接地。
(2)静电感应干扰:指周围电气回路产生的磁通变化在电缆中感应出的电势。干扰的大小取决干扰源电缆产生的磁通大小,控制电缆形成的闭环面积和干扰电缆与控制电缆间的相对角度。
措施:一般将控制电缆与主回路电缆或其他动力电缆分离铺设,分离距离通常在30cm以上(最低为10cm),分离困难时,将控制电缆穿过铁管铺设。将控制导体绞合间距越小,铺设的路线越短,抗干扰效果越好。
(3)电波干扰:指控制电缆成为天线,由外来电波在电缆中产生电势。
措施:同(1)和(2)所述。必要时将变频器放入铁箱内进行电波屏蔽,屏蔽用铁箱要接地。
(4)接触不良干扰:指变频器控制电缆的电接点及继电器接触不良,电阻发生变化在电缆中产生的干扰。
措施:对继电器采用并联触点或镀金触点继电器或选用密封式继电器。对电缆应定期做拧紧加固处理。
(5)电源线传导干扰:指各种电气设备从同一电源系统获得供电时,由其他设备在电源系统直接产生电势。
措施:变频器的控制电源由另外系统供电,在控制电源的输入侧装设线路滤波器或隔离变压器,且屏蔽接地。
(6)接地干扰:指机体接地和信号接地。对于弱电压电流回路及任何不合理的接地均可诱发干扰,比如设置两个以上接地点,接地处会发生电位差,产生干扰。
措施:速度给定的控制电缆取一点接地,接地线一作为信号的通路使用。电缆的接地在变频器侧进行,使用专设的接地端子,不与其他接地端子共用,并尽量减少接地端子引接点的电阻,一般不大于100ω。
3. 其他注意事项
(1)装有变频器的控制柜,应尽量远离大容量变压器和电动机。其控制电缆线路也应避开这些漏磁通大的设置。
(2)弱电压电流控制电缆不要接近易产生电弧的断路器和接触器。(3)控制电缆建议采用1.25mm×2或2mm×2屏蔽绞合绝缘电缆。
(4)屏蔽电缆的屏蔽要连续到电缆导体同样长。电缆在端子箱中连接时,屏蔽端子要互相连接。
二、变频器常见故障分析
1. 变频器充电启动电路故障
通用变频器一般为电压型变频器,采用交一直一交工作方式,即是输入为交流电源,经三相整流桥后变为直流电压,然后再经三相桥式逆变电路变换为调压调频的三相交流电输出到负载。当变频器刚上电时,由于直流侧的平波电容容量非常大,充电电流很大,通常采用一个启动电阻来限制充电电流,常见的变频启动两种电路,如图1所示。充电完成后,控制电路通过继电器的触点或晶闸管将电阻短路,启动电路故障一般表现为启动电阻烧坏,变频报警显示为直流母线电压故障,一般在设计变频器时,为了减少变频器的体积,启动电阻值选择在10~50ω,功率为10~50ω。
当变频器的交流输入电源频繁通断,或者旁路接触器的触点接触不良时,以及旁路晶闸管导通阻值变大时,都会导致启动电阻烧坏。如遇此情况,可购规格的电阻换届之,同时必须找出引出电阻烧坏的原因,才能将变频器投入使用。
2. 变频器无故障显示,但不能高速运行
某厂一台变频器状态正常,但调不到高速运行,经检查,变频器并无故障,参数设置正确,调速输入信号正常,上电运行时测试出现变频器直流母线电压只有450V左右,正常值为580~600V,再测输入侧,发现缺了一相,原因是输入侧的一个空气开关的一相接触不良造成的。实际上变频器缺一相输入时,是可以工作的,因多数变频器的母线电压下限为400V,只有当直流母线电压降至400V以下时,变频器才报告直流母线低电压故障。当两相输入时,直流母线压为380×1.2=456>400V。当变频器不运行时,由于平波电容的作用,直流电压也可达到正常值。新型的变频器都是采用PWM控制技术,调压调频的工作在逆变桥完成,虽然在低频段输缺相时仍可以正常工作,但因为输入电压低使输出电压低,造成异步电机转矩低,频率上不去,所以不能高速运行。
3. 变频器显示过流故障
出现这种故障显示时,首先检查加速时间参数是否太短,力矩提升参数是否太大,然后检查负载是否太重。如果无这些现象,可以断开输出侧的电流互感器和直流侧的霍尔电流检测点,复位后运行,看是否出现过流现象,如果出现的话,很可能是含有过压过流、欠压、过载、过热、缺相、短路等保护功能的IPM模块出现故障,一般更换IPM模块即可。
4.变频器显示过压故障
这种故障一般是雷雨天气出现,由于雷电串入变频器的电源中,使变频器直流侧的电压检测器动作而跳闸,在这种情况下,通常只须断开变频器电源1min左右,再合上电源,即可复位;另一种情况是变频器驱动大惯性负载,就出现过压现象,这时变频器的减速停止属于再制动,在停止过程中,变频器的输出频率按线性下降,而负载电机的频率高于变频器的输出频率,负载电机处于发电状态,机械能转化为电能,并被变频器直流侧的平波电容吸收,这种能量足够大时,就会产生所谓的“泵升现象”,变频器直流侧的电压会超过直流母线的最大电压而跳闸,对于这种故障,一是将减速时间参数设置长些或增大制动电阻或增加制动单元;二是将变频器的停止方式设置为自由停车。
5.电机发热,变频器显示过载
对于已经投入运行的变频器如果出现这种故障,就必须检查负载的状况.新安装的变频器可能是V/F曲线设置不当或电气参数设置有问题,如一台新装变频器,其驱动的是一台变频电机,电机额定参数为220V/50Hz,而变频器出厂时设置为380V/50Hz,由于安装人员没有正确变频器的V/F参数,导致电机运行一段时间后转子出现磁饱和,致使电机转速降低,发热而过载。在使用变频器的无速度传感器矢量控制方式时,没有正确的设置负载电机的额定电压、电流、容量等参数及设置的变频器载波率过高时,均会导致电机发热过载,另处设计者设计变频器常常在低频段工作,而没有考虑到在低频段工作的电机散热变差的问题,致使电机工作一段时间后发热过载,对于是种情况,需加装散热装置。
交流变频速以其节能显著、保护完善、控制性能好、过载能力强、使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流。变频调速在我国已进入推广应用阶段。然而由于认识上的局限,人们在VVVF(变频变压)变频器的实际应用中还存在许多错误。怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成人们关注的焦点。现结合工程应用中的故障实例,对变频器在应用中普遍存在的问题进行分析。
一、故障实例
1、误操作故障
某水泥厂7#水泥回转窑篦式冷却机设计选用两台Y250M-830kW电动机分别传动两级篦床,变频调速控制,其控制原理如图1所示。图中VVVF是日产富士FRNO37P7-4EX57kVA通用变频频器,装于低压配电室内,其电源接触器及运转命令上冷却机现场和控制室两地操作,KA是篦冷机与破碎机联锁触点。变频器系统试车时,因工艺需要,操作人员在主控室操作SB4断开变频器电源接触器KM,使处于集中控制的篦冷机停车。重新开车时,两台变频器均进入OH2(外部故障)闭锁状态,故障历史查询显示OH2和LU(低电压),检查端子THR随联接良好,电源电压正常,按RESET键复位无效,测量主电路直流电压为518V。经分析故障前篦冷机工作于集中控制状态,参与系统联锁,操作员停变频器电源实现停车时,计算机进行内部数据读操作并获取正转指令,但此时主回路直流电压尚未建立,CPU检测后封锁输出,发出OH2故障信号,因此,导致故障的真正原因是错误操作,而非现场技术人员认为的由电源接触器频繁起动变频器所致。故障原因明确以后,针对现场情况规定了操作程序,开停车使用控制室内的S2(集中控制时)或SB5、SB6开停车按钮,将集中控制室内变频器电源接触器控制按钮SB3、SB4用胶带贴封,仅当停机检修时启用,以避免误操作现象出现,系统运行正常。图1
2、使用条件造成的故障
一家油田某采区所用的九台变频器在短期内烧毁三台,故障都是变频器控制的变压器烧毁导致主板等部件损坏。据了解,该地区电网电压有时高达480V,远超过手册规定的+10%的电压上限,使绝缘裕度较小的控制变压器烧毁。这是一个变频器用于严重过压条件下而损坏的曲型事例。因此,使用变频器时,应对使用现场的电网质量、环境温度、粉尘、干扰等条件认真调查,外部条件不能满足要求时应采取有效措施加以解决。
二、变频器应用中的常见问题及处理方法
1、变频器电源开关的设置与控制
变频器用户手册规定,在电源与主电路端子之间,一定要接一个开关,这是为了确保检修安全。对这一点,一般用户能够按手册要求做。但容易忽视的是手册还建议在开关后装设电磁接触器,其目的是在变频器进入故障保护状态时能及时切断电源,防止故障扩散。在实际使用中,有的用户没有安装,有的使用不合理;如图1方案中电源接触器仅被用来实现远地停送电及变频器的过负荷保护;有些方案则仅用于起、停电动机。这都是不恰当的。由于变频器价格较高,使用时应在电源接触器控制回路中串接变频器故障报警接触器动断触点控制回路中串接变频器故障报警接链接触器动断触点(如富士P7/G7系列的B30、C30触点),这对大容量变频器尤为重要。
变频器电源进线端一定要装设开关,使用中宜优选刀熔开关,该开关有明显的断点,集电源开关、隔离开关、应急开关和是路保护于一体,性能优于目前采用较多的单一熔断器、刀开关或自动空气开关等方案。对大容量变频器应选配快速熔断器以保护整流模块。
变频器电源侧设置接触器应选配快速熔断器以保护整流模块。
变频器电源侧设置接触器并参与故障联锁时,应将控制电源辅助输入端子接于接触器前,以保证变频器主电路断电后,故障显示和集中报警输出信号得以保持,便于实现故障检索及诊断。
2、不应用电源侧接触器频繁起、停电动机
实际应用中,有许多控制方案设置外围电路控制电源侧接触器实现系统软起动特性,图2是某杂志一篇文章推荐的日产三垦(SANKEK)变频器的控制方案。由图可知,该方案电动机起动时按SB2,其触点闭合,KA1得电,其动合触点分别发出变频器运行和时间继电器KT的激励命令,KT延时断开动合触点提供继电器KA2激励命令,KA2动合触点控制KM吸合,变频器得电起动电动机。停车时按SB1发出停车命令,KA1断电,其动合触点复位,取消运行命令并使KT断电,KT动合触点延时20s复位,电源接触器KM断电,实现当KM起动时,先闭合KA1,停止时先断开KA1的办法,可达到起动、停止软特性,从而避免电动机反馈电压侵入变频器。图2 上述方案建议利用电源接触器直接起动变频器来实现电动机起动、停止的软特性是错误的。由图3可知,当电压型交-直-交变频器通电时,主电路将产生较大充电电流,频繁重复通断电,将产生热积累效应,引起元件的热疲劳,缩短设备寿命。因此上述方案不适用于频繁起动的设备。对不频繁起动的设备也无优越性(某些大容量变频器根本无法起动,如例1所述),因为变频器本身具有优越的控制性能,实现软起动特性应优先考虑利用正、反转命令和通过加、减速速时间设定实现,无谓地增加许多外围电路器件,不但浪费资金而且降低了系统的可靠性,大大降低了响应速度,加大维护工作量,增加损耗,是不足取的。图3
3、电动机过载保护宜优先选择电子热继电器
一部分专业人员认为,变频器内部的过载保护只是为保护其自身而设,对电动机过载保护不适用,为了保护电动机,必须另设热继电器。在实际应用中,笔者所见各种变频调速控制方案也绝大多数在电路的不同位置设置了热继电器,以完成所控单台电动机的过负荷保护,这显然又是一种误解。对一台变频器控制一台标准四极电动机的控制方案而言,使用变频器电子热过载继电器保护电动机过载,无疑要优于外加热继电器,对普通电动机可利用其矫正特性解决低速运行时冷却条件恶化的问题,使保护性能更可靠。尤其是新型高机能变频器(如富士9S系列)现已在用户手册中给出设定曲线,用户可根据工艺条件设定。通常,考虑到变频器与电动机的匹配,电子热过载继电器可在50%~105%额定电流范围内选择设定。
只有在下列情况时,才用常规热继电器代替电子热继电器:
所用电动机不是四极电动机。
使用特殊电动机(非标准通用电动机)
一台变频器控制多台电动机。电动机频繁起动。
但是,如果用户有丰富的运行经验时,笔者仍建议通过电子热继电器的合理设定(引入校正系数)来完成单台电动机变频调速的过载保护。
当变步器选用外部热继电器进行电动机过载保护时,热继电器应装设于变频器输出侧,常见的装于输入侧的方案起不到保护作用(变频器的变频变压特性使 其低频时输入电流远远小于输出电流)。过载保护应根据设备工艺要求情况,采用变频器停止命令(断开CM)或空转停车(断开BX)命令实现停车,不宜通过电源接触器实现。
4、变频器与电动机间不宜装设接触器
装设于变频器和电动机间的接触器在电动机运行时通断,将产生操作过电压,对变频器造成损害,因此,用户手册要求原则上不要在变频器与电动机之间装设接触器。但是,当变频器用于下列情况时,仍有必要设置:
当用于节能控制的变频调速系统时常工作于额定转速,为实现经济运行需切除变频器时。
参与重要工艺流程,不能长时间停运,需切换备用控制系统以提高系统可靠性时。
一台变频器控制多台电动机(包括互为备用的电动机)时。变频器输出侧设置电磁时,设计外围电路应避免接触器在变频器有输出时动作,任何时候严禁将电源接入变频器输出端。
目前,有些用户为了方便测试负荷电缆和电动机绝缘,在变频器输出侧设置自动空气开关,用以在测试时切除变频器,该法弊大于利。由于变频器输出电缆(线)要求选用屏蔽电缆或穿管敷设,缆线故障几率很小,通常情况下测量电动机及电缆绝缘时,可选用铅丝或软铜线将变频器输入、输出、直流电抗器和制动单元联接端子可靠短接后进行测试,仅在需要测量电缆相间绝缘时拆线检测,确无必要增加投资,否则还要采取可靠措施,防止在运行中误操作。
5、电流检测时电汉互感器的设置及电流表的选择
由于设计人员或用户容易忽视变频器输出频率的变化特性,在电流检测及仪表选型上经学出现错误。变频器输出侧电流测量应使用电磁经系仪表,以获得所需的测量精度。例如,某杂志刊登的《一起变频器不能复位的故障处理》一文,提出变频器输出侧不能使用普通电流互感器,这是错误的论点。在变频器输出侧使用普通电流互感器是可以完成输出电流检测的。由电流互感器铁心磁通密度计算公式Bmake=K2/4.44fSmW2可知,铁心的磁通密度与交流电流频率的变化成反比,忽略次要因素时,其电流误差(即变化误差)和相位误差可看作与电流频率变化成反比,只是当电流频率超过1kHz时,铁心温度会增高。但是,由于互感器正常运行时激磁电流设计得很小(主要为了减小误差),因此,普通电流互感器用于50Hz频率附近时,其电流误差是很小的。通过实际校验对比可知,当变频器输出频率在10~50Hz之间变化时,电磁系电流表指示误差很小,实测误差在1.27%以下,并与电流频率变化成反比(以变频器输出电流指示为基准),能够满足输出电流监视的要求。此外,尤其是当变频调速系统驱动负载变化不太大的往复运动设备时,由于设备传动力矩的周期性变化,使变频器输出电流产生一定波动,变频器的LED数码显示电流值跳字严重,造成观察读数困难,采用模拟电流表可有效地解决这个问题。
应当注意的是,使用指针式电流表测量变频器输出侧电流时,必须选择电磁经系仪表(手册通常称作动铁式),使用时应严格按用户手册的规定选择安装,以保证应有的精度。如选用整流系仪表(该错误非常普遍)时,经实测在19~50Hz区间,指示误差为69.7%~16.66%,且为负偏差。
此外,由于变频器的输入电流一般不大于输出电流,因此,输入侧设置电流监视意义不大,一般有信号灯指示电源即可,如电压不稳时可设电压表监视。大容量变频器低频运行时,其输入侧电流表可能无指示。
如今,变频器已具有很强的功能,但是,国内的应用情况在很大程度上与录像机一样,其功能的开发与正确应用十分有限,许多地方仅限于能够开停车和调速的应用。因此,迅速提高技术人员的应用水平,对发挥变频器的节能和优良的控制性能是十分重要的。
1、加速时:
外部原因可能有:输出回路有接地或相间短路现象。若是则排除之。若是矢量控制变频器,则可能是参数没有辨识或辨识不准确,需重新进行参数辨识。
若是V/F控制方式,则可能有如下原因: A、加速时间过短,使变频器的输出电压上升太快,解除办法是延长加速时间, 若工艺要求快速起动则需选用大一档的型号。B、手动提升转矩设置不合适。另外还可能和下列因素相关:
A、电压是否偏低?若是则将电压调至正常范围。
B、是否对正在运行的电机起动?若是则选择转速跟踪再起动或等电机停止后起动
C、起动过程是否有突加负载?若是则取消突加负载。D、变频器型号是否选小?若是则选择合适型号。
2、减速时:
变频器减速时过电流一般都是由电机惯性负载造成,当电机一下子从高速变为低速时,由于负载存在惯性,电机变成发电机向变频器回馈电能所致,解除办法是延长减速时间,或増加制动单元。 fhdjf(2007-6-06 12:37:32)在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试
1、测试整流电路
找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R、S、T,应该有大约几十欧的阻值,且基本平衡。相反将黑表棒接到P 端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。将红表棒接到N端,重复 以上步骤,都应得到相同结果。如果有以下结果,可以判定电路已出现异常,A.阻值 三相不平衡,可以说明整流桥故障。B.红表棒接P端时,电阻无穷大,可以断定整流桥 故障或起动电阻出现故障。
2、测试逆变电路
将红表棒接到P端,黑表棒分别接U、V、W上,应该有几十欧的阻值,且各相阻值基 本相同,反相应该为无穷大。将黑表棒接到N端,重复以上步骤应得到相同结果,否则 可确定逆变模块故障
二、动态测试
在静态测试结果正常以后,才可进行动态测试,即上电试机。在上电前后必须注意 以下几点:
1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
2、检查变频器各接播口是否已正确连接,连接是否有松动,连接异常有时可能导致变频器出现故障,严重时会出现炸机等情况。
3、上电后检测故障显示内容,并初步断定故障及原因。
4、如未显示故障,首先检查参数是否有异常,并将参数复归后,进行空载(不接电机)情况下启动变频器,并测试U、V、W三相输出电压值。如出现缺相、三相不平衡等情况,则模块或驱动板等有故障
5、在输出电压正常(无缺相、三相平衡)的情况下,带载测试。测试时,最好是满负载测试。
三、故障判断
1、整流模块损坏
一般是由于电网电压或内部短路引起。在排除内部短路情况下,更换整流桥。在现场处理故障时,应重点检查用户电网情况,如电网电压,有无电焊机等对电网有污染 的设备等。
2、逆变模块损坏
一般是由于电机或电缆损坏及驱动电路故障引起。在修复驱动电路之后,测驱动波
形良好状态下,更换模块。在现场服务中更换驱动板之后,还必须注意检查马达及连接电缆。在确定无任何故障下,运行变频器。
3、上电无显示
一般是由于开关电源损坏或软充电电路损坏使直流电路无直流电引起,如启动电阻损坏,也有可能是面板损坏。
4、上电后显示过电压或欠电压
一般由于输入缺相,电路老化及电路板受潮引起。找出其电压检测电路及检测点,更换损坏的器件。
5、上电后显示过电流或接地短路
一般是由于电流检测电路损坏。如霍尔元件、运放等。
6、启动显示过电流
一般是由于驱动电路或逆变模块损坏引起。
7、空载输出电压正常,带载后显示过载或过电流
该种情况一般是由于参数设置不当或驱动电路老化,模块损伤引起.
一、变频器的空载通电
1.1 将变频器的接地端子接地。
1.2 将变频器的电源输入端子经过漏电保护开关接到电源上。
1.3 检查变频器显示窗的出厂显示是否正常,如果不正确,应复位,否则要求退换。
1.4 熟悉变频器的操作键。
一般的变频器均有运行(RUN)、停止(STOP)、编程(PROG)、数据P确认(DATAPENTER)、增加(UP、▲)、减少(DOWN、“)等6个键,不同变频器操作键的定义基本相同。此外有的变频器还
有监视(MONITORPDISPLAY)、复位(RESET)、寸动(JOG)、移位(SHIFT)等功能键。
二、变频器带电机空载运行
2.1 设置电机的功率、极数,要综合考虑变频器的工作电流。
2.2 设定变频器的最大输出频率、基频、设置转矩特性。VPf类型的选择包括最高频率、基本频率和转矩类型等项目。最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的
VPf 类型图和负载特点,选择其中的一种类型。通用变频器均备有多条VPf 曲线供用户选择,用户在使用时应根据负载的性质选择合适的VPf 曲线。如果是风机和泵类负载,要将变频器的转矩运行代码设置成变转矩和降转矩运行特性。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持VPf 为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。一般变频器均由用户进行人工设定补偿。日立J300 变频器则为用户提供两种选择:自行设定和自动转矩提升。
2.3 将变频器设置为自带的键盘操作模式,按运行键、停止键,观察电机是否能正常地启动、停止。
2.4 熟悉变频器运行发生故障时的保护代码,观察热保护继电器的出厂值,观察过载保护的设定值,需要时可以修改。变频器的使用人员可以按变频器的使用说明书对变频器的电子热继电器功能进行设定。电子热继电器的门限值定义为电动机和变频器两者的额定电流的比值,通常用百分数表示。当变频器的输出电流超过其容许电流时,变频器的过电流保护将切断变频器的输出。因此,变频器电子热继电器的门限最大值不超过变频器的最大容许输出电流。
三、带载试运行
3.1 手动操作变频器面板的运行停止键,观察电机运行停止过程及变频器的显示窗,看是否有异常现象。
3.2 如果启动P停止电机过程中变频器出现过流保护动作,应重新设定加速P减速时间。电机在加、减速时的加速度取决于加速转矩,而变频器在启、制动过程中的频率变化率是用户设定的。若电机转动惯量或电机负载变化,按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。检查此项设定是否合理的方法是先按经验选定加、减速时间进行设定,若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间。另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。
3.3 如果变频器在限定的时间内仍然保护,应改变启动P停止的运行曲线,从直线改为S 形、U 形线或反S 形、反U 形线。电机负载惯性较大时,应该采用更长的启动停止时间,并且根据其负载特性设置运行曲线类型。
3.4 如果变频器仍然存在运行故障,应尝试增加最大电流的保护值,但是不能取消保护,应留有至少10 %~20 %的保护余量。
3.5 如果变频器运行故障还是发生,应更换更大一级功率的变频器。
3.6如果变频器带动电机在启动过程中达不到预设速度,可能有两种情况:
(1)系统发生机电共振,可以从电机运转的声音进行判断。
采用设置频率跳跃值的方法,可以避开共振点。一般变频器能设定三级跳跃点。VPf 控制的变频器驱动异步电机时,在某些频率段,电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护使得电机不能正常启动,在电机轻载或转动惯量较小时更为严重。普通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在VPf 曲线上设置跨跳点及跨跳宽度。当电机加速时可以自动跳过这些频率段,保证系统能够正常运行。
(2)电机的转矩输出能力不够,不同品牌的变频器出厂参数设置不同,在相同的条件下,带载能力不同,也可能因变频器控制方法不同,造成电机的带载能力不同;或因系统的输出效率不同,造成带载能力会有所差异。对于这种情况,可以增加转矩提升量的值。如果达不到,可用手动转矩提升功能,不要设定过大,电机这时的温升会增加。如果仍然不行,应改用新的控制方法,比如日立变频器采用VPf 比值恒定的方法,启动达不到要求时,改用无速度传感器空间矢量控制方法,它具有更大的转矩输出能力。对于风机和泵类负载,应减少降转矩的曲线值。
四、变频器与上位机相连进行系统调试
在手动的基本设定完成后,如果系统中有上位机,将变频器的控制线直接与上位机控制线相连,并将变频器的操作模式改为端子控制。根据上位机系统的需要,调定变频器接收频率信号端子的量程0~5V 或0~10V ,以及变频器对模拟频率信号采样的响应速度。如果需要另外的监视表头,应选择模拟输出的监视量,并调整变频器输出监视量端子的量程。 1过流(OC)
过流是变频器报警最为频繁的现象。1.1现象
(1)重新启动时,一升速就跳闸。这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。(2)上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。
(3)重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。1.2 实例
(1)一台LG-IS3-4 3.7kW变频器一启动就跳“OC”
分析与维修:打开机盖没有发现任何烧坏的迹象,在线测量IGBT(7MBR25NF-120)基本判断没有问题,为进一步判断问题,把IGBT拆下后测量7个单元的大功率晶体管开通与关闭都很好。在测量上半桥的驱动电路时发现有一路与其他两路有明显区别,经仔细检查发现一只光耦A3120输出脚与电源负极短路,更换后三路基本一样。模块装上上电运行一切良好。(2)一台BELTRO-VERT 2.2kW变频通电就跳“OC”且不能复位。
分析与维修:首先检查逆变模块没有发现问题。其次检查驱动电路也没有异常现象,估计问题不在这一块,可能出在过流信号处理这一部位,将其电路传感器拆掉后上电,显示一切正常,故认为传感器已坏,找一新品换上后带负载实验一切正常。
二、过压(OU)
过电压报警一般是出现在停机的时候,其主要原因是减速时间太短或制动电阻及制动单元有问题。(1)实例
一台台安N2系列3.7kW变频器在停机时跳“OU”。
分析与维修:在修这台机器之前,首先要搞清楚“OU”报警的原因何在,这是因为变频器在减速时,电动机转子绕组切割旋转磁场的速度加快,转子的电动势和电流增大,使电机处于发电状态,回馈的能量通过逆变环节中与大功率开关管并联的二极管流向直流环节,使直流母线电压升高所致,所以我们应该着重检查制动回路,测量放电电阻没有问题,在测量制动管(ET191)时发现已击穿,更换后上电运行,且快速停车都没有问题。
三、欠压(Uu)欠压也是我们在使用中经常碰到的问题。主要是因为主回路电压太低(220V系列低于200V,380V系列低于400V),主要原因:整流桥某一路损坏或可控硅三路中有工作不正常的都有可能导致欠压故障的出现,其次主回路接触器损坏,导致直流母线电压损耗在充电电阻上面有可能导致欠压.还有就是电压检测电路发生故障而出现欠压问题。3.1 举例
(1)一台CT 18.5kW变频器上电跳“Uu”。
分析与维修:经检查这台变频器的整流桥充电电阻都是好的,但是上电后没有听到接触器动作,因为这台变频器的充电回路不是利用可控硅而是靠接触器的吸合来完成充电过程的,因此认为故障可能出在接触器或控制回路以及电源部分,拆掉接触器单独加24V直流电接触器工作正常。继而检查24V直流电源,经仔细检查该电压是经过LM7824稳压管稳压后输出的,测量该稳压管已损坏,找一新品更换后上电工作正常。
(2)一台DANFOSS VLT5004变频器,上电显示正常,但是加负载后跳“ DC LINK UNDERVOLT”(直流回路电压低)。
分析与维修:这台变频器从现象上看比较特别,但是你如果仔细分析一下问题也就不是那么复杂,该变频器同样也是通过充电回路,接触器来完成充电过程的,上电时没有发现任何异常现象,估计是加负载时直流回路的电压下降所引起,而直流回路的电压又是通过整流桥全波整流,然后由电容平波后提供的,所以应着重检查整流桥,经测量发现该整流桥有一路桥臂开路,更换新品后问题解决。
四、过热(OH)
过热也是一种比较常见的故障,主要原因:周围温度过高,风机堵转,温度传感器性能不良,马达过热。举例
一台ABB ACS500 22kW变频器客户反映在运行半小时左右跳“OH”。分析与维修:因为是在运行一段时间后才有故障,所以温度传感器坏的可能性不大,可能变频器的温度确实太高,通电后发现风机转动缓慢,防护罩里面堵满了很多棉絮(因该变频器是用在纺织行业),经打扫后开机风机运行良好,运行数小时后没有再跳此故障。
五、输出不平衡
输出不平衡一般表现为马达抖动,转速不稳,主要原因:模块坏,驱动电路坏,电抗器坏等。5.1举例
一台富士 G9S 11KW变频器,输出电压相差100V左右。
分析与维修:打开机器初步在线检查逆变模块(6MBI50N-120)没发现问题,测量6路驱动电路也没发现故障,将其模块拆下测量发现有一路上桥大功率晶体管不能正常导通和关闭,该模块已经损坏,经确认驱动电路无故障后更换新品后一切正常。
六、过载
过载也是变频器跳动比较频繁的故障之一,平时看到过载现象我们其实首先应该分析一下到底是马达过载还是变频器自身过载,一般来讲马达由于过载能力较强,只要变频器参数表的电机参数设置得当,一般不大会出现马达过载.而变频器本身由于过载能力较差很容易出现过载报警.我们可以检测变频器输出电压。
七、开关电源损坏
这是众多变频器最常见的故障,通常是由于开关电源的负载发生短路造成的,丹佛斯变频器采用了新型脉宽集成控制器UC2844来调整开关电源的输出,同时UC2844还带有电流检测,电压反馈等功能,当发生无显示,控制端子无电压,DC12V,24V风扇不运转等现象时我们首先应该考虑是否开关电源损坏了。
八、SC故障
SC故障是安川变频器较常见的故障。IGBT模块损坏,这是引起SC故障报警的原因之一。此外驱动电路损坏也容易导致SC故障报警。安川在驱动电路的设计上,上桥使用了驱动光耦PC923,这是专用于驱动IGBT模块的带有放大电路的一款光耦,安川的下桥驱动电路则是采用了光耦PC929,这是一款内部带有放大电路,及检测电路的光耦。此外电机抖动,三相电流,电压不平衡,有频率显示却无电压输出,这些现象都有可能是IGBT模块损坏。IGBT模块损坏的原因有多种,首先是外部负载发生故障而导致IGBT模块的损坏如负载发生短路,堵转等。其次驱动电路老化也有可能导致驱动波形失真,或驱动电压波动太大而导致IGBT损坏,从而导致SC故障报警。
九、GF—接地故障
接地故障也是平时会碰到的故障,在排除电机接地存在问题的原因外,最可能发生故障的部分就是霍尔传感器了,霍尔传感器由于受温度,湿度等环境因数的影响,工作点很容易发生飘移,导致GF报警。
十、限流运行
在平时运行中我们可能会碰到变频器提示电流极限。对于一般的变频器在限流报警出现时不能正常平滑的工作,电压(频率)首先要降下来,直到电流下降到允许的范围,一旦电流低于允许值,电压(频率)会再次上升,从而导致系统的不稳定。丹佛斯变频器采用内部斜率控制,在不超过预定限流值的情况下寻找工作点,并控制电机平稳地运行在工作点,并将警告信号反馈客户,依据警告信息我们再去检查负载和电机是否有问题。 过电流跳闸的原因分析
(1)重新起动时,一升速就跳闸。这是过电流十分严重的表现。
主要原因有:
1)负载侧短路
2)工作机械卡住
3)逆变管损坏
4)电动机的起动转矩过小,拖动系统转不起来
(2)重新起动时并不立即跳闸,而是在运行过程中跳闸
可能的原因有:
1)升速时间设定太短
2)降速时间设定太短
3)转矩补偿设定较大,引起低速时空载电流过大
4)电子热继电器整定不当,动作电流设定得太小,引起误动作
电压跳闸的原因分析
(1)过电压跳闸,主要原因有:
1)电源电压过高
2)降速时间设定太短
3)降速过程中,再生制动的放电单元工作不理想
a.来不及放电,应增加外接制动电阻和制动单元
b.放电支路发生故障,实际并不放电
(2)欠电压跳闸,可能的原因有:
1)电源电压过低
2)电源断相
3)整流桥故障 电动机不转的原因分析
(1)功能预置不当
1)上限频率与最高频率或基本频率和最高频率设定矛盾
2)使用外接给定时,未对”键盘给定/外接给定“的选择进行预置
3)其他的不合理预置
(2)在使用外接给定时,无”起动"信号
(3)其它原因:
1)机械有卡住现象
2)电动机的起动转矩不够
3)变频器的电路故障
在变频器的使用中,由于对变频器的选型及使用不当,往往会引起变频器不能正常运行、甚至引发设备故障,导致生产中断,带来不必要的经济损失。本文以富士FRNP7/G7变频器为例,讲述变频器使用应注意的几个问题。1选型
一台喂料油隔泵采用变频控制,电机型号为JR127_
10、115kW,Ue=380V,Ie=231A,使用FRNll0P7-4EX变频器。运行中发现有时虽然给定频率高,但实际频率调不上去、变频器跳闸频繁,故障指示为“OLl”,即变频器过载。经检查,变频器的额定电流为210A,而油隔泵电机在高下料量时运行电流在220A左右波动,驱动转矩达到极限设定,使频率不能上调,运行电流大于变频器额定电流,变频器过流跳停。分析认为其原因是变频器容量选择偏小。变频器的选型应满足以下条件:(1)电压等级与控制电机相符。
(2)额定电流为控制电机额定电流的1.1~1.5倍。(3)根据被控设备的负载特性选择变频器的类型。
油隔泵为恒转矩负载,最好选用驱动转矩极限范围宽的G7变频器。选择FRNl60G7_4EX,变频器额定电压为400V,额定输出电流为304A,驱动转矩极限为150%,改用FRNl60G7。4EX后,上述问题再也没有发生。2安装环境
由于变频器集成度高,整体结构紧凑,自身散热量较大,因此对安装环境的温度、湿度和粉尘含量要求高。山西铝厂的变频器安装于操作室内,因安装车间属于干法车间,变频器运行环境差,操作室粉尘多,夏季室内温度高,曾多次发生变频器故障。在对操作室进行密封和加冷却设施后,情况大为改善。后来因操作室集中空调冷凝水较多,距离柜子太近,发生了一起变频器控制板元件损坏的故障。可见在安装变频器的同时,必须为变频器提供一个好的运行环境。3参数设定
变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。
(1)外加起停按钮及电位器调频无效。变频器出厂时设定为通过键盘面板操作,外部控制无效,端子FWD_CM用短接片短接。选择外部起停及调频控制时,必须将该短接片去掉。出现上面问题,可能是FWD,CM短接片未取掉,操作方式和调频方式参数选择错误所致,应重点对该部分进行检查。
(2)变频器在电机空载时工作正常,但不能带载起动。这种问题常常出现在恒转矩负载。山西铝厂一台FRNl60P7。4EX变频器在试车时电机空试正常、但一带负荷即跳闸,提高了加减速时间后仍无法带载。继续检查转矩提升值,将转矩提升值由“2”改为“7”后,提高了低频时的电压输出。改善了低频时的带载特性,电机带载正常。遇到上述问题时应重点检查加、减速时间设定及转矩提升设定值。(3)变频器投入运行、电机还未起动就过载跳停。山西铝厂一台7.5kW_6极电机采用变频控制,变频器在投入运行起动时、频繁跳停。经查原设定时将偏置频率设定为2H2、变频器在接到运行指令但未给出调频信号之前、受控电机将一直接收2H2的低频运行指令而无法起动。经测定该电机的堵转电流达到47A,约为电机额定电流3倍,变频器过载保护动作属正常。改偏置频率为0Hz,电机起动正常。
(4)频率已经达到较大值,但电机转速仍不高。一台新投用的变频器频率设置显示已经很大,但电机转速明显较同频率下其它电机低。检查频率增益设定值为150%。由频率设定信号增益定义可知:设定增益为设定模拟频率信号对输出频率的比率,假设设定频率为30Hz,实际输出频率仅为20H2。将设定增益改为100%后,问题得到解决。
(5)频率上升到一定数值,继续向上调节时,频率保持在一定值不断跳跃,转速不能提高。变频器工作时,将自动计算输出转矩,并将输出转矩限制在设定值内。如果驱动转矩设定值偏小,将可能因输出转矩受到限制,使变频器输出频率达不到给定频率。遇到上面的问题,应检查驱动转矩设定值是否偏小,变频器的容量是否偏小,再设法解决。4故障诊断
变频器拥有较强的故障诊断功能,对变频器内部整流、逆变部分,CPU及外围通讯与电动机等故障进行保护。变频器在保护跳闸后故障复位前,将一直显示故障代码。根据故障指示代码确定故障原因,可缩小故障查找范围,大大减少故障查找时间。
(1)一台变频器在清扫后启动时,显示“OH2”故障指示跳停,OH2指变频器外部故障。出厂时连接外部故障信号的端子“THR”与“CM”之间用短接片短接,因这台变频器没有加装外保护,THR_CM仍应短接。经检查,由于66THR”与“CM’之间的短接片松动,在清扫时掉下。恢复短接片后变频器运行正常。
(2)变频器一启动就跳停,故障指示为“OCl”、OCl为加速时过电流,怀疑为电机故障,将变频器与电机连接线断开,检查电机绕组匝间短路。更换电机后变频器运行正常。
(3)夏季如果变频器操作室的制冷、通风效果不良,环境温度升高,则经常发生“OHl”、“OH3”过热保护跳停。这时应检查变频器内部的风扇是否损坏,操作室温度是否偏高,应采取措施进行强制冷却,保证变频器安全过夏。
(4)变频器在频率调到15Hz以上时,“LU”欠电压保护动作。“LU”保护信号指整流电压不足。我们从整流部分向变频器电源输入端检查,发现电源输入侧缺相,由于电压表从另外两相取信号,电压表指示正常,没有及时发现变频器输入侧电源缺相。输入端缺相后,由于变频器整流输出电压下降,在低频区、因充电电容的作用还可调频,但在频率调至一定值后,整流电压下降较快、造成变频器“LU”跳闸。5维护
变频器运行过程中,可以从设备外部目视检查运行状况有无异常,专职点检员可以通过键盘面板转换键查阅变频器的运行参数,如输出电压、输出电流、输出转矩、电机转速等,掌握变频器日常运行值的范围,以便及时发现变频器及电机问题。此外,还要注意以下几点:
(1)设专人定期对变频器进行清扫、吹灰,保持变频器内部的清洁及风道的畅通。(2)保持变频器周围环境清洁、干燥。严禁在变频器附近放置杂物.
(3)每次维护变频器后,要认真检查有无遗漏的螺丝及导线等,防止小金属物品造成变频器短路事故。
(4)测量变频器(含电机)绝缘时,应当使用500V兆欧表。如仅对变频器进行检测,要拆去所有与变频器端子连接的外部接线。清洁器件后,将主回路端子全部用导线短接起来,将其与地用兆欧表试验,如果兆欧表指示在5M欧以上,说明是正常的,这样做的目的是减少摇测次数。
自80年代通用变频器进入中国市场以来,在短短的十几年时间里得到了非常广泛的应用。目前,通用变频器以其智能化、数字化、网络化等优点越来越受到人们的青睐。随着通用变频器应用范围的扩大,暴露出来的问题也越来越多,主要有以下几方面: ① 谐波问题
② 变频器负载匹配问题 ③ 发热问题
以上这些问题已经引起了有关管理部门和厂矿的注意并制定了相关的技术标准。如谐波问题,我国于1984年和1993年通过了“电力系统谐波管理暂行规定”及GB/T-14549-93标准,用以限制供电系统及用电设备的谐波污染。针对上述问题,本文进行了分析并提出了解决方案及对策。2 谐波问题及其对策
通用变频器的主电路形式一般由三部分组成:整流部分、逆变部分和滤波部分。整流部分为三相桥式不可控整流器,逆变器部分为IGBT三相桥式逆变器,且输出为PWM波形。对于双极性调制的变频器,其输出电压波形展开式为:(1)式中:n—谐波的次数n=1,3,5„„;a1—开关角,i=1,2,3„„N/2;Ed—变频器直流侧电压;N—载波比。
由(1)式可见,各项谐波的幅值为(2)令n=1,则得出变频器输出电压的基波幅值为:(3)从(1)、(2)、(3)式可以看出,通用变频器的输出电压中确实含有除基波以外的其他谐波。较低次谐波通常对电机负载影响较大,引起转矩脉动,而较高的谐波又使变频器输出电缆的漏电流增加,使电机出力不足,故变频器输出的高低次谐波都必须抑制。
如前所述,由于通用变频器的整流部分采用二极管不可控桥式整流电路,中间滤波部分采用大电容作为滤波器,所以整流器的输入电流实际上是电容器的充电电流,呈较为陡峻的脉冲波,其谐波分量较大。为了消除谐波,可采用以下对策: ① 增加变频器供电电源内阻抗
通常情况下,电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用。这种内阻抗就是变压器的短路阻抗。当电源容量相对变频器容量越小时,则内阻抗值相对越大,谐波含量越小;电源容量相对变频器容量越大时,则内阻抗值相对越大,谐波含量越大。对于三菱FR-F540系列变频器,当电源内阻为4%时,可以起到很好的谐波抑制作用。所以选择变频器供电电源变压器时,最好选择短路阻抗大的变压器。② 安装电抗器
安装电抗器实际上从外部增加变频器供电电源的内阻抗。在变频器的交流侧安装交流电抗器或在变频器的直流侧安装直流电抗器,或同时安装,抑制谐波电流。表一列出了三菱FR-A540变频器安装电抗器和不安装电抗器的含量对照表。③ 变压器多相运行
通用变频器的整流部分是六脉波整流器,所以产生的谐波较大。如果应用变压器的多相运行,使相位角互差30°如Y-△、△-△组合的两个变压器构成相当于12脉波的效果则可减小低次谐波电流28%,起到了很好的谐波抑制作用。④ 调节变频器的载波比
从(1)、(2)、(3)式可以看出,只要载波比足够大,较低次谐波就可以被有效地抑制,特别是参考波幅值与载波幅值小于1时,13次以下的奇数谐波不再出现。⑤ 专用滤波器
该专用滤波器用于检测变频器谐波电流的幅值和相位,并产生一个与谐波电流幅值相同且相位正好相反的电流,通到变频器中,从而可以非常有效地吸收谐波电流。负载匹配问题及其对策
生产机械的种类繁多,性能和工艺要求各异,其转矩特性是复杂的,大体分为三种类型:恒转矩负载、风机泵类负载和恒功率负载。针对不同的负载类型,应选择不同类型的变频器。① 恒转矩负载
恒转矩负载是指负载转矩与转速无关,任何转速下,转矩均保持恒定。恒转矩负载又分为摩擦类负载和位能式负载。
摩擦类负载的起动转矩一般要求额定转矩的150%左右,制动转矩一般要求额定转矩的100%左右,所以变频器应选择那些具有恒定转矩特性,并且起动和制动转矩都比较大,过载时间长和过载能力大的变频器。如三菱变频器FR-A540系列。位能式负载一般要求大的起动转矩和能量回馈功能,能够快速实现正反转,变频器应选择具有四象限运行能力的变频器。如三菱变频器FR-A241系列。② 风机泵类负载
风机泵类负载是目前工业现场应用最多的设备,虽然泵和风机的特性多种多样,但是主要以离心泵和离心风机应用为主,通用变频器在这类负载上的应用最多。风机泵类负载是一种平方转矩负载,其转速n与流量Q,转矩T与泵的轴功率N有如下关系式:(4)这类负载对变频器的性能要求不高,只要求经济性和可靠性,所以选择具有U/f=const控制模式的变频器即可。如三菱变频器FR-F540(L)系列。风机负载在实际运行过程中,由于转动惯量比较大,所以变频器的加速时间和减速时间是一个非常重要的问题,可按下列公式进行计算:(5)(6)式中:tACC—加速时间(s);tDEC—减速时间(s);GD2—折算到电机轴上的转动惯量(N·m2);g—重力加速度,g=9.81(m/s2);TM—电动机的电磁转矩(N.m);TL—负载转矩(N.m);nAS—系统加速时的初始速度(r/min);nAE—系统加速时的终止速度(r/min);nDS—系统减速时的初始速度(r/min);nDE—系统减速时的终止速度(r/min)。
从上式可以看出,风机负载的系统转动惯量计算是非常重要的。变频器具体设计时,按上式计算结果,进行适当修正,在变频器起动时不发生过流跳闸和变频器减速时不发生过电压跳闸的情况下,选择最短时间。
泵类负载在实际运行过程中,容易发生喘振、憋压和水垂效应,所以变频器选型时,要选择适于泵类负载的变频器且变频器在功能设定时要针对上述问题进行单独设定: 喘振:测量易发生喘振的频率点,通过设定跳跃频率点和宽度,避免系统发生共振现象。
憋压:泵类负载在低速运行时,由于系统憋压而导致流量为零,从而造成泵烧坏。在变频器功能设定时,通过限定变频器的最低频率,而限定了泵流量的临界点处的系统最低转速,这就避免了此类现象的发生。水垂效应:泵类负载在突然断电时,由于泵管道中的液体重力而倒流。若逆止阀不严或没有逆止阀,将导致电机反转,因电机发电而使变频器发生故障报警烧坏。在变频器系统设计时,应使变频器按减速曲线停止,在电机完全停止后再断开主电路电,或者设定“断电减速停止”功能,这样就避免了该现象的发生。③ 恒功率负载
恒功率负载是指转矩大体与转速成反比的负载,如卷取机、开卷机等。利用变频器驱动恒功率负载时,应该是就一定的速度变化范围而言的,通常考虑在某个转速点以下采用恒转矩调速方式,而在高于该转速点时才采用恒功率调速方式。我们通常将该转速点称为基频,该点对应的电压为变频器输出额定电压。从理论上讲,要想实现真正意义上的恒功率控制,变频器的输出频率f和输出电压U必须遵循U2/f=const协调控制,但这在实际变频器运行过程中是不允许的,因为在基频以上,变频器的输出电压不能随着其输出频率增加,只能保持额定电压,所以只能是一种近似意义上的恒功率控制。4 发热问题及其对策
变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热,通常采用以下方法: ① 采用风扇散热:变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行。
② 降低安装环境温度:由于变频器是电子装置,内含电子元、电解电容等,所以温度对其寿命影响比较大。通用变频器的环境运行温度一般要求-10℃~-50℃,如果能够采取措施尽可能降低变频器运行温度,那么变频器的使用寿命就延长,性能也比较稳定。
我们采取两种方法:一种方法是建造单独的变频器低压间,内部安装空调,保持低压间温度在+15℃~+20℃之间。另一种方法是变频器的安装空间要满足变频器使用说明书的要求。
以上所谈到的变频器发热是指变频器在额定范围之内正常运行的损耗。当变频器发生非正常运行(如过流,过压,过载等)产生的损耗必须通过正常的选型来避免此类现象的发生。对于风机泵类负载,当我们选择三菱变频器FR-F540时,其过载能为120%/60秒,其过载周期为300秒,也就是说,当变频器相对于其额定负载的120%过载时,其持续时间为60秒,并且在300秒之内不允许出现第二次过载。当变频器出现过载时,功率单元因其流过的过载电流而升温,导致变频器过热,这时必须尽快使其降温以使变频器的过热保护动作消除,这个冷却过程就是变频器的过载周期。不同的变频器,其过载倍数、过载时间和过载周期均不相同,并且其过载倍数越大,过载时间越短,请见表2所示: 对于变频器所驱动的电机,按其工作情况可分为两类:长期工作制和重复短时工作制。长期工作制的电机可以按其名牌规定的数据长期运行。针对该类负载,变频器可根据电机铭牌数据进行选型,如连续运行的油泵,若其电机功率为22kW时,可选择FR-F540-22k变频器即可。重复短时工作制电机,其特点是重复性和短时性,即电机的工作时间和停歇时间交替进行,而且都比较短,二者之和,按国家规定不得超过60秒。重复短时工作制电机允许其过载且有一定的温升。此时,若根据电机铭牌数据来选择变频器,势必造成变频器的损坏。针对该类负载,变频器在参考电机铭牌数据的情况下要根据电机负载图和变频器的过载倍数、过载时间、过载周期来选型。如重复短时运行的升降机,其电机功率为18.5kW,可选择FR-A540-22k变频器。
变频调速系统的主要电磁干扰源及途径 2.1 主要电磁干扰源
电磁干扰也称电磁骚扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的。变频器的整流桥对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。另外,变频器的逆变器大多采用PWM技术,当其工作于开关模式并作高速切换时,产生大量耦合性噪声。因此,变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。另一方面,电网中的谐波干扰主要通过变频器的供电电源干扰变频器。电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。变频器的供电电源受到来自被污染的交流电网的干扰后,若不加以处理,电网噪声就会通过电网电源电路干扰变频器。供电电源对变频器的干扰主要有过压、欠压、瞬时掉电;浪涌、跌落;尖峰电压脉冲;射频干扰。其次,共模干扰通过变频器的控制信号线也会干扰变频器的正常工作。2.2 电磁干扰的途径
变频器能产生功率较大的谐波,对系统其他设备干扰性较强。其干扰途径与一般电磁干扰途径是一致的,主要分电磁辐射、传导、感应耦合。具体为:①对周围的电子、电气设备产生电磁辐射;②对直接驱动的电动机产生电磁噪声,使得电动机铁耗和铜耗增加,并传导干扰到电源,通过配电网络传导给系统其他设备;③变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。下面分别加以分析。(1)电磁辐射
变频器如果不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。
当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。而辐射场中的金属物体还可能形成二次辐射。同样,变频器外部的辐射也会干扰变频器的正常工作。(2)传导
上述的电磁干扰除了通过与其相连的导线向外部发射,也可以通过阻抗耦合或接地回路耦合将干扰带入其它电路。与辐射干扰相比,其传播的路程可以很远。比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。(3)感应耦合
感应耦合是介于辐射与传导之间的第三条传播途径。当干扰源的频率较低时,干扰的电磁波辐射能力相当有限,而该干扰源又不直接与其它导体连接,但此时的电磁干扰能量可以通过变频器的输入、输出导线与其相邻的其他导线或导体产生感应耦合,在邻近导线或导体内感应出干扰电流或电压。感应耦合可以由导体间的电容耦合的形式出现,也可以由电感耦合的形式或电容、电感混合的形式出现,这与干扰源的频率以及与相邻导体的距离等因素有关。3 抗电磁干扰的措施
据电磁性的基本原理,形成电磁干扰(EMI)须具备电磁干扰源、电磁干扰途径、对电磁干扰敏感的系统等三个要素。为防止干扰,可采用硬件和软件的抗干扰措施。其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的耦合通道、降低系统对干扰信号的敏感性。具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。(1)隔离
所谓干扰的隔离是指从电路上把干扰源和易受干扰的部分隔离开来,使它们不发生电的联系。在变频调速传动系统中,通常是在电源和放大器电路之间的电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。(2)滤波
设置滤波器的作用是为了抑制干扰信号从变频器通过电源线传导干扰到电源及电动机。为减少电磁噪声和损耗,在变频器输出侧可设置输出滤波器。为减少对电源的干扰,可在变频器输入侧设置输入滤波器。若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器,以免传导干扰。(3)屏蔽
屏蔽干扰源是抑制干扰的最有效的方法。通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。输出线最好用钢管屏蔽,特别是以外部信号控制变频器时,要求信号线尽可能短(一般为20m以内),且信号线采用双芯屏蔽,并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽。为使屏蔽有效,屏蔽罩必须可靠接地。(4)接地
实践证明,接地往往是抑制噪声和防止干扰的重要手段。良好的接地方式可在很大程度上抑制内部噪声的耦合,防止外部干扰的侵入,提高系统的抗干扰能力。变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,要注意不要因为接地不良而对设备产生干扰。
单点接地指在一个电路或装置中,只有一个物理点定义为接地点。在低频下的性能好;多点接地是指装置中的各个接地点都直接接到距它最近的接地点。在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。变频器本身有专用接地端子PE端,从安全和降低噪声的需要出发,必须接地。既不能将地线接在电器设备的外壳上,也不能接在零线上。可用较粗的短线一端接到接地端子PE端,另一端与接地极相连,接地电阻取值<100Ω,接地线长度在20m以内,并注意合理选择接地极的位置。当系统的抗干扰能力要求较高时,为减少对电源的干扰,在电源输入端可加装电源滤波器。为抑制变频器输入侧的谐波电流,改善功率因数,可在变频器输入端加装交流电抗器,选用与否可视电源变压器与变频器容量的匹配情况及电网允许的畸变程度而定,一般情况下采用为好。为改善变频器输出电流,减少电动机噪声,可在变频器输出端加装交流电抗器。图1为一般变频调速传动系统抗干扰所采取措施。以上抗干扰措施可根据系统的抗干扰要求来合理选择使用。若系统中含控制单元如微机等,还须在软件上采取抗干扰措施。(5)正确安装
由于变频器属于精密的功率电力电子产品,其现场安装工艺的好坏也影响着变频器的正常工作。正确的安装可以确保变频器安全和无故障运行。变频器对安装环境要求较高。一般变频器使用手册规定温度范围为最低温度-10℃,最高温度不超过50℃;变频器的安装海拔高度应小于1000m,超过此规定应降容使用;变频器不能安装在经常发生振动的地方,对振动冲击较大的场合,应采用加橡胶垫等防振措施;不能安装在电磁干扰源附近;不能安装在有灰尘、腐蚀性气体等空气污染的环境;不能安装在潮湿环境中,如潮湿管道下面,应尽量采用密封柜式结构,并且要确保变频器通风畅通,确保控制柜有足够的冷却风量,其典型的损耗数一般按变频器功率的3%来计算柜中允许的温升值。安装工艺要求如下: ① 确保控制柜中的所有设备接地良好,应该使用短、粗的接地线(最好采用扁平导体或金属网,因其在高频时阻抗较低)连接到公共地线上。按国家标准规定,其接地电阻应小于4欧姆。另外与变频器相连的控制设备(如PLC或PID控制仪)要与其共地。
② 安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。
③ 使用屏蔽导线或双绞线连接控制电路时,确保未屏蔽之处尽可能短,条件允许时应采用电缆套管。
④ 确保控制柜中的接触器有灭弧功能,交流接触器采用R-C抑制器,也可采用压敏电阻抑制器,如果接触器是通过变频器的继电器控制的,这一点特别重要。⑤ 用屏蔽和铠装电缆作为电机接线时,要将屏蔽层双端接地。
⑥ 如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。为达到最优效果,滤波器与安装金属板之间应有良好的导电性。变频控制系统设计中应注意的其他问题
除了前面讨论的几点以外,在变频器控制系统设计与应用中还要注意以下几个方面的问题。
(1)在设备排列布置时,应该注意将变频器单独布置,尽量减少可能产生的电磁辐射干扰。在实际工程中,由于受到房屋面积的限制往往不可能有单独布置的位置,应尽量将容易受干扰的弱电控制设备与变频器分开,比如将动力配电柜放在变频器与控制设备之间。
(2)变频器电源输入侧可采用容量适宜的空气开关作为短路保护,但切记不可频繁操作。由于变频器内部有大电容,其放电过程较为缓慢,频繁操作将造成过电压而损坏内部元件。
(3)控制变频调速电机启/停通常由变频器自带的控制功能来实现,不要通过接触器实现启/停。否则,频繁的操作可能损坏内部元件。
(4)尽量减少变频器与控制系统不必要的连线,以避免传导干扰。除了控制系统与变频器之间必须的控制线外,其它如控制电源等应分开。由于控制系统及变频器均需要24V直流电源,而生产厂家为了节省一个直流电源,往往用一个直流电源分两路分别对两个系统供电,有时变频器会通过直流电源对控制系统产生传导干扰,所以在设计中或订货时要特别加以说明,要求用两个直流电源分别对两个系统供电。
(5)注意变频器对电网的干扰。变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响,而进线电抗器可以由变频器供应商配套提供,但在订货时要加以说明。(6)变频器柜内除本机专用的空气开关外,不宜安置其它操作性开关电器,以免开关噪声入侵变频器,造成误动作。
(7)应注意限制最低转速。在低转速时,电机噪声增大,电机冷却能力下降,若负载转矩较大或满载,可能烧毁电机。确需低速运转的高负荷变频电机,应考虑加大额定功率,或增加辅助的强风冷却。
(8)注意防止发生共振现象。由于定子电流中含有高次谐波成分,电机转矩中含有脉动分量,有可能造成电机的振动与机械振动产生共振,使设备出现故障。应在预先找到负载固有的共振频率后,利用变频器频率跳跃功能设置,躲开共振频率点。
变频器故障分类
根据变频器发生故障或损坏的特征,一般可分为两类;一种是在运行中频繁出现 的自动停机现象,并伴随着一定的故障显示代码,其处理措施可根据随机说明书 上提供的指导方法,进行处理和解决。这类故障一般是由于变频器运行参数设定不合适,或外部工况、条件不满足变频器使用要求所产生的一种保护动作现象; 另一类是由于使用环境恶劣,高温、导电粉尘引起的短路、潮湿引起的绝缘降低或击穿等突发故障(严重时,会出现打火、爆炸等异常现象)。这类故障发生后,一般会使变频器无任何显示,其处理方法是先对变频器解体检查,重点查找损 坏件,根据故障发生区,进行清理、测量、更换,然后全面测试,再恢复系统,空载试运行,观察触发回路输出侧的波形,当6组波形大小、相位差相等后,再加 载运行,达到解决故障的目的。本文主要阐述第二类故障的分析和处理方法。3.1.1 主电路故障
根据对变频器实际故障发生次数和停机时间统计,主电路的故障率占60%以上;运 行参数设定不当,导致的故障占20%左右;控制电路板出现的故障占15%;操作失 误和外部异常引起的故障占5%。从故障程度和处理困难性统计,此类故障发生必 然造成元器件的损坏和报废。是变频器维修费用的主要消耗部分。(1)整流块的损坏
变频器整流桥的损坏也是变频器的常见故障之一,早期生产的变频器整流块均以 二极管整流为主,目前部分整流块采用晶闸管的整流方式(调压调频型变频器)。中、大功率普通变频器整流模块一般为三相全波整流,承担着变频器所有输出 电能的整流,易过热,也易击穿,其损坏后一般会出现变频器不能送电、保险熔 断等现象,三相输入或输出端呈低阻值(正常时其阻值达到兆欧以上)或短路。在更换整流块时,要求其在与散热片接触面上均匀地涂上一层传热性能良好的硅导热膏,再紧固螺丝。如果没有同型号整流块时,可用同容量的其它类型的整流 块替代,其固定螺丝孔,必须重新钻孔、攻丝,再安装、接线。例如,一台80年代中期西门子生产的变频器(7.5kVA)整流模块(椭圆形)击穿后,因无同类整流块配件,采用三垦生产的同容量整流块(矩形)替代后,已运行多年,目前仍然能正常使用。(2)充电电阻易损坏
导致变频器充电电阻损坏原因一般是:如主回路接触器吸合不好时,造成通流时 间过长而烧坏;或充电电流太大而烧坏电阻;或由于重载启动时,主回路通电和 RUN信号同时接通,使充电电阻既要通过充电电流,同时又要通过负载逆变电流,故易被烧坏。其损坏的特征,一般表现为烧毁、外壳变黑、炸裂等损坏痕迹。也 可根据万用表测量其电阻(不同容量的机器,其阻值不同,可参考同一种机型的 阻值大小确定)判断。(3)逆变器模块烧坏
中、小型变频器一般用三组IGTR(大功率晶体管模块);大容量的机种均采用多 组IGTR并联,故测量检查时应分别逐一进行检测。IGTR的损坏也可引起变频器OC(+pA或+pd或+pn)保护功能动作。逆变器模块的损坏原因很多:如输出负载发生 短路;负载过大,大电流持续运行;负载波动很大,导致浪涌电流过大;冷却风 扇效果差;致使模块温度过高,导致模块烧坏、性能变差、参数变化等问题,引 起逆变器输出异常。如一台FRN22G11S-4CX变频器,输出电压三相差为106V,解体 在线检查逆变模块(6MBP100RS-120)外观,没发现异常,测量6路驱动电路也没 发现故障,将逆变模块拆下测量发现有一组模块不能正常导通,该模块参数变化 很大(与其它两组比较),更换之后,通电运行正常。又如MF-30K-380变频器在 启动时出现直流回路过压跳闸故障。这台变频器并不是每次启动时,都会过压跳 闸。检查时发现变频器在通电(控制面板上无通电显示信号)后,测得直流回路电压达到500V以上,由于该型变频器直流回路的正极串接1只SK-25接触器。在有合闸信号时经过预充电过程后吸合,故怀疑预充电回路性能不良,断开预充电回 路,情况依旧。用电容表检查滤波电容发现已失效,更换电容后,变频器工作正常。3.1.2 辅助控制电路故障
变频器驱动电路、保护信号检测及处理电路、脉冲发生及信号处理电路等控制电 路称为辅助电路。辅助电路发生故障后,其故障原因较为复杂,除固化程序丢失 或集成块损坏(这类故障处理方法一般只能采用控制板整块更换或集成块更换)外,其他故障较易判断和处理。(1)驱动电路故障
驱动电路用于驱动逆变器IGTR,也易发生故障。一般有明显的损坏痕迹,诸如器 件(电容、电阻、三极管及印刷板等)爆裂、变色、断线等异常现象,但不会出 现驱动电路全部损坏情况。处理方法一般是按照原理图,每组驱动电路逐级逆向 检查、测量、替代、比较等方法;或与另一块正品(新的)驱动板对照检查、逐 级寻找故障点。处理故障步骤:首先对整块电路板清灰除污。如发现印刷电路断线,则补线处理;查出损坏器件即更换;根据笔者实践经验分析,对怀疑的元器 件,进行测量、对比、替代等方法判断,有的器件需要离线测定。驱动电路修复 后,还要应用示波器观察各组驱动电路信号的输出波形,如果三相脉冲大小、相 位不相等,则驱动电路仍然有异常处(更换的元器件参数不匹配,也会引起这类 现象),应重复检查、处理。大功率晶体管工作的驱动电路的损坏也是导致过流 保护功能动作的原因之一。驱动电路损坏表现出来最常见的现象是缺相,或三相 输出电压不相等,三相电流不平衡等特征。(2)开关电源损坏
开关电源损坏的一个比较明显的特征就是变频器通电后无显示。如:富士G5S变频 器采用了两级开关电源,其原理是主直流回路的直流电压由500V以上降为300V左 右,然后再经过一级开关降压,电源输出5V,24V等多路电源。开关电源的损坏常 见的有开关管击穿,脉冲变压器烧坏,以及次级输出整流二极管损坏,滤波电容 使用时间过长,导致电容特性变化(容量降低或漏电电流较大),稳压能力下降,也容易引起开关电源的损坏。富士G9S则使用了一片开关电源专用的波形发生芯 片,由于受到主回路高电压的窜入,经常会导致此芯片的损坏,由于此芯片市场 很少能买到,引起的损坏较难修复。另外,变频器通电后无显示,也是较常见的故障现象之一,引起这类故障原因,多数也是由于开关电源的损坏所致。如MF系列变频器的开关电源采用的是较常见 的反激式开关电源控制方式,开关电源的输出级电路发生短路也会引起开关电源 损坏,从而导致变频器无显示。(3)反馈、检测电路故障
在使用变频器过程中,经常会碰到变频器无输出现象。驱动电路损坏、逆变模块 损坏都有可能引起变频器无输出,此外输出反馈电路出现故障也能引起此类故障 现象。有时在实际中遇到变频器有输出频率,没有输出电压(实际输出电压非常 小,可认为无输出),这时则应考虑一下是否是反馈电路出现了故障所致。在反 馈电路中用于降压的反馈电阻是较容易出现故障的元件之一;检测电路的损坏也 是导致变频器显示OC(+pA或+pd或+pn)保护功能动作的原因,检测电流的霍尔传 感器由于受温度,湿度等环境因素的影响,工作点容易发生飘移,导致OC报警。总之,变频器常见故障有过流、过压、欠压以及过热保护,并有相应的故障代码,不同的机型有不同的代码,其代码含义可查阅随机使用说明书,参考处理措施 进行解决。过流经常是由于GTR(或IGBT)功率模块的损坏而导致的,在更换功率 模块的同时,应先检查驱动电路的工作状态,以免由于驱动电路的损坏,导致GTR(或IGBT)功率模块的重复损坏;欠压故障发生的主要原因是快速熔断器或整流 模块的损坏,以及电压检测电路的损坏,电压检测采样信号是从主直流回路直接 取样,经高阻值电阻降压,并通过光耦隔离后送到CPU处理,由高低电平判断是欠 压还是过压;过热停机,多数原因是由冷却风扇散热不足引起的。如我厂铝电解 车间环境恶劣,高粉尘、高温(夏季厂房上部气温高达56℃)、高氧化铝粉尘、氟化氢腐蚀气体使多功能天车上变频器内电路板易积尘、风扇粘死、电子器件老 化迅速、GTR(或IGBT模块过热烧坏,故经常出现过热保护,特别是在夏季,这种现象更加频繁,而且模块烧坏率很高,即使进口机型(如Siemens、senken、fuji 等)情况也是如此。为解决这个问题,我们通过加大天车上使用变频器容量,才 初步降低了变频器的故障率和报废率,但效果并不理想。4 降低变频器故障和延长使用寿命的措施
根据实验证明,变频器的使用环境温度每升高10℃,则其使用寿命减少一半。为此在日常使用中,应根据变频器的实际使用环境状况和负载特点,制定出合理的检修周期和制度,在每个使用周期后,将变频器整体解体、检查、测量等全面维护一次,使故障隐患在初期被发现和处理。4.1 作好检修工作
(1)定期(根据实际环境确定其周期间隔长短)对变频器进行全面检查维护,必要时可将整流模块、逆变模块和控制柜内的线路板进行解体、检查、测量、除尘和紧固。由于变频器下进风口、上出风口常会因积尘或因积尘过多而堵塞,其本身散热量高,要求通风量大,故运行一定时间后,其电路板上(因静电作用)有积尘,须清洁和检查。
(2)对线路板、母排等维修后,要进行必要的防腐处理,涂刷绝缘漆,对已出现局部放电、拉弧的母排须去除其毛刺,并进行绝缘处理。对已绝缘击穿的绝缘柱,须清除碳化或更换。
水泥联合粉磨系统故障分析处理 第6篇
一、辊压机系统常见故障及分析处理
辊压机系统是利用高压料层粉碎的机理,采用单颗粒粉碎群体化的方式进行连续工作。我公司常见故障具体如下:
(一)辊压机气动闸板阀刚开启时料柱对辊子冲力大,液压系统来不及纠偏造成辊缝过大跳停。
对此从两方面进行调整:一是在气动闸板阀气缸的排气孔处加装球型阀门,把球型阀门开口在1/4处。使气动闸板阀缓慢开启减小对辊子的冲击力;二是从PLC程序控制上将卸荷阀线路短接,使卸荷阀只在停机排料时工作,在辊压机运行情况下卸荷时只通过比例方向阀卸荷,保证系统压力缓慢下降,避免开阀时压力过大瞬时快速卸荷而造成辊压机跳停。
(二)稳流称重仓控制料位过低或过高,辊压机上方不能形成稳定的料柱,使称重仓失去靠物料重力强制喂料的功能,是造成辊缝偏差大引起跳停的主要原因。
根据经验,把称重仓料位控制在15~20t比较适宜。入辊压机物料粒径不均,内有较大的颗粒,在两辊挤压过程中较细的物料下卸过快,容易造成辊压机两端辊缝偏差大,所以要经常对沸石破碎机进行检查和处理,保证物料粒度在85mm以下。在辊压机上侧软连接处卡有异物时容易形成物料下偏而造成辊缝偏差大跳停,因而要定期检查软连接处保持其畅通。如进辊物料中混有较大铁块或有其它异物也会造成辊压机振动异常并引起辊缝偏差大跳停,所以要定期检查除铁器的工作情况。确保其磁性。
(三)各辊子轴承的冷却水管道有部分不畅通时常常造成辊轴温差大跳停,要对温度较高的辊轴冷却水管道进行检查清理,并根据现场生产需要将冷却水回水总管道管径由φ60扩大到φ120,以加大冷却力度。各测温热电阻连接线要牢固,避免松动时发出温度高的误信号而故障停机。
(四)干油润滑专为保证主轴承的长期、可靠运行,正常运行时其油泵工作方式为定时间歇式控制,现设定为工作7min间隔1h地周期性重复工作。油泵工作时,干油左右分配器频繁动作。如果有灰尘等原因造成分配器卡死不动作,PLC连续4个周期末收到信号时则会发出系统停机信号。为了避免该故障发生,要做好分配器的防护工作,在分配器上方做一个防护挡板。并定期对分配器进行清洗检查。
(五)分料挡板高度调整不当是造成动、定辊电流不稳、挤压效果差的主要原因。根据定辊电流情况,随开机时间要逐步提高分料挡板高度,使中间料和边料有效分离,既提高了挤压效果又能够使动辊电流始终稳定高于动辊电流5A左右,解决了上述问题。
配料中含有大量的细粉,熟料飞砂量较多,这是引起辊压机异常振动的主要原因,对此从两方面进行了调整:一是要求熟料帐篷库放料时至少两条皮带同时放料减少配料库中熟料的离析现象;二是当熟料中细粉较多时可增加沸石和石灰石的配比达到调整物料平均粒度的目的。
二、磨机常见故障和维护
磨机部分常见故障和问题有:滑履温度高跳停;磨头和磨尾吐料以及磨机产量偏低等。下面就是这些故障的产生原因及其处理措施。
(一)滑履温度高跳停。本磨机属于双滑履双仓管式磨,在运行初期经常出现滑履温度高于设计值70℃而跳停。
对此采取了以下措施:一是在熟料皮带上加喷水装置来降低熟料温度,同时对磨机筒体淋水来降低筒体温度从而减少筒体传给滑履的热量;二是滑履温度高于65℃时现场手动将高压泵开启(电气上将高压泵改为中控运行时可以手动开启),改善滑履的润滑状况降低滑履温度;三是加强对滑履和油冷却水的压力控制,并将冷却水回水道管径加大。
(二)磨头、磨尾吐料。本磨机是在负压状态下运行的,台时产量高时,磨头轻微吐料是正常现象,但是在台时产量不高时如果磨头出现严重吐料现象,则表明磨内物料流速较慢,可能是糊球或饱磨。这通常与原材料水分大有关,如入磨物料水分大,水分蒸发时容易使物料粘糊隔仓板、衬板、钢球、篦板,出现磨头负压低造成饱磨。我们通常通过调整配比和控制原材料进厂水分来控制,并定期清理隔仓板、篦板,定期翻球处理糊球。
(三)磨机产量偏低。影响磨机产量的因素很多,根据我公司的生产效果,除了受辊压机挤压效果、选粉机的选粉效果、入磨斗提的选型过小、出磨比面积控制指标的影响小外,入磨物料的易磨性差也是一个主要的原因。我们在组织生产时搞好各种物料的搭配,控制好各种物料的水分,检测各物料的易磨性等都有助于提高磨机的台时产量。
三、O-Sepa选粉机常见故障及维护
在操作过程中,常出现循环负荷高,出磨斗提电流增长快,主袋收尘器压差过大等现象,对此分析处理如下:
(一)、O-Sepa选粉机风量搭配上满足一次风占70%,二次风占20%,三次风10%,总风量接近15万m3/h。
(二)对磨机双层隔仓板中心通风筛进行补焊,减小通孔率,降低通风面积,控制物料流速。
(三)回粉中含有较多的细粉,筛网阻力大,问题关键还是选粉风量不够,换大筛网后,通风大大改善。
(四)对主袋收尘器进行全部换袋,减少了主排拉风阻力,减小其进出口压差,同时也改善了选粉效率。
(五)调整主袋收尘器清灰间隔周期,修改收尘器脉冲时间控制程序,改善了收尘效果。
经过一系列的整改,解决了系统风量不足的问题,提高了台时产量,增加了选粉机的循环效率,降低循环负荷,出磨斗提电流也稳定了,主袋收尘器压差从4000pa左右减小到2300pa左右,主排的风门在生产正常的情况下也从85%开度减小到65%左右,功率也减小了,降低了风量不必要的损失,同时也实现了节能降耗的目的。
四、应用效果
我公司通过对该系统的调试、改造应用,系统现已连续稳定生产,目前生产P.C32.5级水泥台时产量190t以上;生产P.O42.5水泥台时产量达175t以上,吨水泥电耗为28.84kwh.。同时,提高了混合材的掺加量,生产成本大大降低,取得了很好的社会经济效益。去年系统生产完成设计目标100万吨,真正发挥了联合粉磨系统的低耗高效、生产能力最大化的优势。
【参考文献】
[1]王澜等.水泥工程师手册.中国建材工业出版社.1998.1
[2]王仲春.水泥工业粉磨工艺技术.北京:中国建材工业出版社,1998:60-67
[3]陈思德.水泥预粉磨系统操作体会.中国水泥,2004,(12):10-13
[4]孙嘉如.现代粉磨技术在水泥工业中的应用.水泥工程,2004,(10):7-9
[5]刘建,于波,李鹏斌.辊压机水泥联合粉磨系统的设计与运行分析.新世纪水泥导报,2006,(4):5-10
[6]沈威.水泥工艺.武汉工业大学出版社.1991.7
[7]李海涛.新型干法水泥生产技术与设备.化学工业出版社2008.7
[8]张冬阳.硅酸盐工业环境保护.洛阳工业高等专科学校.2007.6
继电保护故障分析与处理 第7篇
继电保护作为电网结构中预防异常或事故发生的自动装置, 在一定程度上保护电力系统设备和线路的正常运行, 为电网的正常运行发挥着重要的作用。继电保护在电力系统的设备和线路有所异常或事故时会发生跳闸或报警, 保护电力设备免受损害, 因为设备一旦损害, 不仅使企业受到经济损失, 还会影响电网的正常运转, 如果更好的对继电器进行故障处理也是电力企业维修人员急切需要解决的问题, 为了保证继电保护的正常运行, 除了日常的维护保养和巡视外, 还需要现场工作人员对继电保护装置的结构及运行状态有详细的了解, 及时进行检测, 及时发现故障隐患, 及时进行修理, 以确保继电保护装置的正常运转。
1 继电保护故障分析
继电保护装置的故障对电力工作人员来讲是必须清楚了解的, 这样在出现故障时才能及时发现继而得到有效的处理, 使继电保护装置充分发挥自身的性能优势, 维护电力系统的正常运行。
1.1 电流互感饱和故障
随着人们用电量的增加, 电力系统的负荷在不断的加大, 电网的部分线路或设备上容易发生短路, 在短路时的电流会很大, 如果这时的短路电流在靠近终端的位置, 这时的电流就会是互感器一侧额定电流的几百倍, 这样就会引起互感器主比的误加大, 从而导致继电保护装置的灵敏度下降, 速断保护失效, 继电保护无法发挥正常的功能, 在线路短路的情况下, 由于电流互感器的电流发生了饱和现象, 电流互感器感应到的二次测的电流就会变的非常小或者接近于零, 就会导致定时限过流保护装置无法正常的发挥功效。如果是电力系统出口线出现故障, 就需要用母联断路器或者主变压器后备保护装置将短路电流切除, 这样就会延长故障时间, 而且故障的范围会不断的变大;如果靠电力系统出口线过流保护拒绝动作, 就会导致电力系统尽进口线保护动作, 造成整个电力系统出现断电的情况发生。
1.2 开关保护设备的选择不合理
开关保护设备的选择配合不合理会造成越级跳闸的现象发生。因此, 开关保护设备的选择对于保证继电保护装置的正常运行具有重要作用, 与此同时, 选择相互匹配的开关保护设备也是一项非常关键的环节。由于现在的电力企业广泛应用符合密集区建立开关站, 电力系统工作人员通过控制开关站向广大用户供电, 形成了变电所———开关站———配电变压器的供电模式。在未实现继电保护自动化的开关站内, 电力工作人员应该运用负荷开关作为开关保护设备, 也可以运用负荷开关和熔断器的组合器作为开关保护设备。通常情况下, 电力企业对于开关站的进口线柜路往往是运用负荷开关进行分合操作以及切断负荷电流, 对于带有变压器的出口线柜应用负荷开关和熔断器的组合器。但是, 由于电力工作人员将负荷开关和熔断器的组合器应用到带有配电变压器的出口线柜上, 很可能会造成电力系统的出口线出现故障, 造成开关站越级跳闸, 使电力系统大范围停电。
1.3 继电保护装置的隐形故障
继电保护装置还存在隐形故障。例如, 错误的整定引起的继电保护装置的隐形故障, 设备故障引起的隐形故障等。当电力工作人员在进行定值检测过程中, 由于出现整定和校准的错误就会引发隐形故障, 尤其是在继电保护装置经过系统的维修后, 电力工作人员没有及时的修改整定值, 继电保护装置很容易会出现隐形故障。然而设备故障引起的隐形故障一般是由元件失灵或者磨损造成的隐形故障。例如继电保护装置上的元件或者插件像接线片、连接器和各种继电器等元件出现损坏或者失灵的现象都会引起隐形故障。隐形故障的发生不能说明继电保护装置在设计上存在问题, 也不会直接影响到继电保护装置的正常运行。隐形故障和一般性故障主要区别于隐性故障的发生不会使继电保护装置立刻做出动作, 而是当继电保护装置的其他设备出现问题时才会发出警报。隐形故障最大的特点是它对继电保护装置的影响只有在电力系统处于压力状态下才会显现出来, 但是, 对继电保护装置造成的危害会更大。
2 继电保护故障的处理方法
通过对继电保护故障的分析, 可以帮助电力工作人员寻找出处理继电保护故障的有效方法。
2.1 替换法
替换法需要电力工作人员对继电保护装置的结构配件有非常详细的了解, 能准确的确认故障的部件, 从而用正常的元件或插件替换有故障的元件或插件的行为, 这是继电保护故障维修的最常用办法, 能在较少的时间内准确的判断出故障的所在, 但对于这种方法, 也有替换完故障依然存在的情况, 这时就应该对继电保护继续排查故障的所在。
2.2 参照法
对于继电保护装置中的接线故障可以利用参照法来进行排除, 也可在定植检验中进行测试来比较。参照法顾名思义就是故障设备的技术参数与正常设备的参数进行相比较, 从而发现设备的故障位置。
2.3 逐项拆除法
将并联在一起的二次回路顺序脱开, 然后再依次放回, 一旦故障出现, 就表明故障存在哪路。再在这一路内用同样方法查找更小的分支路, 直至找到故障点。此法主要用于查直流接地, 交流电源熔丝放不上等故障。如直流接地故障。先通过拉路法, 根据负荷的重要性, 分别短时拉开直流屏所供直流负荷各回路, 切断时间不得超过3秒, 当切除某一回路故障消失, 则说明故障就在该回路之内, 再进一步运用拉路法, 确定故障所在支路。再将接地支路的电源端端子分别拆开, 直至查到故障点。
3 结语
随着科技的进步, 电网结构也进行了很大程度的调整, 在各个方面实现了优化配置, 继电保护装置作为保证电网稳定运行的重要部件之一, 对电力系统的安全运行起到了重要的保障作用。目前随着电网资源的优化配置, 继电保护技术也得到了很大的提升, 开始向着信息化、智能化及一体化的方向发展。
参考文献
[1]罗钰玲.电力系统微机继电保护[M].北京:人民邮电出版社.[1]罗钰玲.电力系统微机继电保护[M].北京:人民邮电出版社.
中频炉故障分析与处理 第8篇
本装置的主电路的工作原理是将从电网输入的三相50HZ交流电经过三相全控整流桥整流成电压可调的脉动直流电, 通过电抗器Ld滤波成平滑的直流电, 送至单相逆变桥, 逆变桥的输出端接负载。其负载是由感应线圈 (包括加热元件) 及中频电热电容器组成的LC振荡电路。本装置的输出频率是决定于LC并联振荡器的谐振频率f, 由于逆变桥的触发脉冲信号取自负载回路, 所以当负载回路LC参数发生变化时, 逆变桥的输出频率也发生变化, 起到自动调频的作用。本装置的输出功率可以通过调节整流触发α来改变整流输出电压, 以达到调功率的目的。晶闸管中频电源容量大、频率高、使用条件较差, 且往往需要持续满功率运行, 因此需要加强清理尘埃、畅通水路等检查性保养工作。中频电源的控制形式较多, 在熟悉以上工作原理的基础上, 才能有效地分析、判断故障原因。中频炉发生故障后, 应首先对系统的绝缘进行检查, 用万用表1KΩ档检查对地电阻, 整流主回路应≧100KΩ, 逆变主回路应≧30KΩ, 换炉开关、感应圈、水冷电缆应≧10KΩ。
1 整流部分故障
(1) 输入的三相电流不平衡, 平波电抗器振动噪音大, 功率无法上升。这一故障现象的主要原因是快熔烧。发现快熔烧后, 应先检查损坏的快熔是否发热烫手, 排除快熔自身的原因后, 再检查整流晶闸管是否有击穿。 (2) 直流电压下降并不稳, 平波电抗器振动噪音大, 功率无法上升。这一故障现象的主要原因是整流晶闸管击穿。发现整流晶闸管击穿后, 应先检查快熔是否有问题, 再更换整流晶闸管。 (3) 平波电抗器冲击声大。这一故障现象的原因较复杂, 应先检查中频电压与直流电压比是否在1.3~1.5之间, 如果在正常比值范围内, 应检查整流晶闸管触发脉冲放大板指示灯是否正常, 平波电抗器自身绝缘是否正常;如果不在正常比值范围内, 应检查逆变侧。 (4) 整流直流电压偏低或电压跳动。这一故障有可能是触发脉冲宽度不够、或整流晶闸管性能不良、或整流触发板有虚焊、或调功率电位器接触不良。 (5) 三相断路器保护动作, 整流晶闸管击穿, 严重时损坏大部分整流电路元件。这一故障属于整流电路的恶性故障, 怀疑脉冲变压器原副边击穿短路, 先用万用表电阻档R1Ω档测三相全控式整流触发电路中的六支晶闸管, 电阻为0, 更换晶闸管后不急于送电, 检测脉冲变压器, 看其是否起到变压和隔离的作用, 更换。
2 逆变部分故障
2.1 无电压, 中频电流大
该故障为逆变直通, 先检查逆变晶闸管是否有击穿, 如异常更换逆变晶闸管;如正常, 通常为中频电容器击穿, 应逐个将电容器从电路脱离, 直到电源正常。
2.2 正常熔炼过程中逆变晶闸管频繁烧损, 且无规律, 其原因如下
(1) 晶闸管本身发热使关断时间增大而不能关断, 造成逆变颠覆, 导致发热的原因可能是冷却水不通畅。 (2) 检查外部负载是否有虚接点, 主要检查连接螺丝, (括电容组的连板螺丝) 并且还有电容电流的电流互感器二次侧联接处松动, 有似通非通的现象, 以上两种情况均出现过。 (3) 主回路连接处接触不良, 特别是负载回路及主接触器、低压配电柜的接触件接触不良, 造成大电流下突然断开回路。 (4) 水冷却电缆断裂, 靠近炉子端的电缆端头因倾炉频繁, 易引起部分断裂, 引起晶闸管损坏。
3 电容器的故障
(1) 电容内部打火, 机器运行时, 里边有响声, 是绝缘击穿, 更换新的。 (2) 电容外部打火, 机器运行时, 外部打火, 电容器壳对地绝缘不好。电容器绝缘电阻的测定通常只做两级及多级对外壳绝缘的电阻测定, 遥测前先放电, 以750V为例, 用1000V的兆欧表, 遥测时, 应先将摇表摇至规定转速, 待指针平稳后, 将摇表接至电容器两级, 继续摇表, 开始充电, 指针下降。后来慢慢升至稳定, 一般1000V不低于1兆欧。读完数后, 撤表, 将电容器放电, 以免触电。 (3) 冷却水不通导致发热绝缘损坏, 应及时处理。
中频电源的主电路采用晶闸管器件这类器件承受过电压, 过电流的能力很差, 中频电源运行情况也比较复杂, 负载变化强烈, 出现短路、开路、过电压、过电流的几率较高, 必须妥善采取保护措施, 以确保装置安全运行。可以在适当的地方安装保护器件如在工频电源进线侧安装RC吸收电路, 或在晶闸管上串接快速熔断器以保护电流, 此方法在实际中常用。
中频炉在使用过程中可能出现很多的故障和问题, 值得我们不断探索和学习, 我们要不断总结, 以提高检修速度和质量。
参考文献
[1]中国工程学会设备与维修工程分会.机械设备维修问答丛书编委会工业炉维修问答[M].北京:机械工业出版社, 2006.
[2]苏州工业园区振吴电炉有限公司.中频电源感应加热用晶闸管中频电源[N].电世界, 1999.
模拟信号故障分析与处理 第9篇
0 引言
在电力远动系统中, 通信通道是连接主站与RTU的一个非常重要的环节。RTU所采集的所有数据都要通过上行通道上传至主站, 供给主站分析和使用, 而主站对厂站设备的操作命令也是通过下行通道下达到RTU。所以说, 通道是连接主站与RTU的神经, 远动系统能否可靠稳定地运行, 在很大程度上取决于通道是否可以很好地工作, 如图1所示。
模拟远动信号分为上行和下行2种, 下行信号由主站端远动装置发出, 经过PCM的“四线收”端口, 由发端设备发出到光纤中传输;变电站由光端机接收, 经过PCM的“四线发”端口, 送到变电站远动装置RTU。上行信号由变电站远动装置RTU发出, 同样经过PCM的“四线收”端口, 由光端设备发送到光纤通道中传输;主站端由光端设备接收, 经过PCM的“四线发”端口, 送到主站端远动装置[1]。
1 模拟信号故障分析
在实际工作中, 常用的四线模拟通道判断方法有听筒法、万用表测试法和通道环回法。
1.1 听筒法
用听筒在远动输入端子和输出端子听, 一般上行信号是双音, 两个频率, 下行信号可以是单音, 也可以双音。听到这样的声音, 证明通道是通的。所以, 可以从声音的高低、清晰度能大概判断远动通道的通与断, 判断不通的原因在哪里, 但是这种方法不能判断通道质量的好坏。
1.2 万用表测试法
一般情况, 远动输入电平在775m V~7.75m V范围, 输出范围在775m V~77.5m V范围, 可用万用表的毫伏档测量, 通过电平的高低来判断通道的通断。但该方法只能用在初步判断通道的通与断[2]。
1.3 通道环回法
通道测试最快速有效的方法是环回法, 即通过通信设备的收发信进行环回, 利用误码测试仪来判断故障点的位置。环回法可分为软件环回和硬件环回, 软件环回是通过网管对相应通道进行环回的操作, 硬件环回是在数字配线或音频配线侧对配线端子进行通道环回的操作。因软件环回不能排除线缆故障, 通道测试时一般建议采用硬件环回[3]。远动不通或误码率高, 可用分段自环法来判断压缩产生故障的范围。方法是一端发出同步字、校时命令或报文, 在收端用观察数据, 收到的数据应与发出的一致, 如果收不到或误码, 则故障就在环路以内。
2 实例
故障现象:三明公司侧远动设备收不到竹洲电站侧的远动信号。
故障分析:
(1) 用听筒法测试, 收不到上行信号。采用通道环回法, 逐段测试缩小故障范围。
(2) 首先将传输设备输入线对输出线自环, 信号正常, 说明连接线没有问题;
(3) 其次在三明公司侧VDF架将上行信号口与下行信号口自环, 信号正常, 说明三明公司侧通道没有问题;
(4) 再次在竹洲电站侧自环, 信号正常, 通信通道无问题, 通知远动班检查远动设备。
(5) 最后怀疑是远动MODEM设备故障, 通知远动人员处理, 故障消除。
3 结语
为了保证电力系统的安全稳定运行, 在电力系统引入了越来越多的自动化控制技术, 而这都需要通信自动化通道的稳定运行作为先决条件。因此, 发生模拟信号故障时, 需准确判断故障出在通信线路, 还是远动设备上, 及时确定故障点位置, 进行故障排查处理, 减少故障时间。
摘要:针对电力系统中综合自动化越来越高, 经常发生远动通道中断或误码率高的问题, 本文详细介绍了模拟信号故障常见的处理方法, 结合一起实例, 分析和判断故障原因, 及时确定故障点位置, 减少故障时间。
关键词:远动通道,误码,故障处理
参考文献
[1]陈静, 《一起35k V变电站运动模拟通道信号出现误码的故障处理》电源技术应用[J], 2013 (12) :164
[2]王俊明, 刘军, 《综合自动化系统远动通道故障的分析与判断》, 青海电力[J], 2006 (25) :49-50
UPS故障分析及处理 第10篇
1 UPS故障的类型
随着国家相关领域对UPS故障问题研究的不断深入, 目前, 被应用于各个领域内的UPS系统已具备了故障自诊断能力, 这一功能有效提高了工作人员的工作效率, 同时也使其能够通过液晶显示屏, 更加直观地判断出故障类型, 从而更加方便其展开维修工作。对UPS故障类型的了解是有效解决故障的基础, 通过对大量实践经验的总结, UPS故障的类型主要包括以下几种。
1.1 告警类故障
告警类故障的出现说明了在UPS系统内部已经出现了异常状况, 但目前并不会影响到整个系统的正常运行, 其中, 输出在设定时间内过载便属于告警类故障中的一种。
1.2 可自动恢复故障
可自动恢复故障, 顾名思义, 即不需要工作人员对其故障进行人工维修, 系统便能够自行对故障进行处理, 从而使自身能够正常运行的一种故障。在可自动恢复故障出现时, UPS系统往往会对整流器进行关闭, 从而切断系统的运行过程, 直到故障被解决时, 才恢复正常, 其中, 变压器过温故障便属于可自动恢复故障中的一种。
1.3 可人为恢复故障
可人为恢复故障即在故障发生后, 能够通过工作人员的人工维修对其进行恢复的故障, 与可自动恢复故障相同, 在可人为恢复故障发生时, UPS系统也会自行关闭整流器, 以切断系统的运行, 不同的是, 在故障被解决后, 需要人为的对系统运行进行恢复, 其中输出过载超时便属于可人为恢复故障中的一种。
1.4 不可恢复故障
在不可恢复故障出现后, 系统将无法完成自动的故障恢复过程, 此时, 系统会呈现出锁闭状态, 直到控制系统复位后, UPS系统才能继续正常运行。
2 UPS故障诊断及处理步骤
在UPS故障出现时, 工作人员可以通过不同的LED指示灯对其故障信息进行判断, 通常情况下, LED指示灯主要包括BY灯、IN灯、OUT灯以及BATT灯四种, 每种灯所代表的故障信息有所不同, 需要相关人员对其进行熟悉与了解。总的来说, UPS故障诊断及处理步骤主要包括以下几点。
第一, 要做好状态记录工作。这里的状态记录主要指对液晶显示屏上信息状态的记录, 做好状态记录工作能够为接下来的故障诊断及维修工作提供基础, 除此之外, 还应对蜂鸣器鸣叫的声音进行记录, 继而才能对种种开关进行操作, 从而对故障进行判断与处理。
第二, 要做好对故障类型识别工作。在完成状态记录工作后, 工作人员需要对故障类型进行判断, 此时, 工作人员需要将所记录下来的信息与故障信息说明表进行对比, 从而找出其中不正常的指示灯, 并按照说明表中的描述对故障类型进行判断, 如无法判断应及时联系专业人员。
第三, 要做好故障记录工作。在确定故障类型后, 工作人员需要第一时间将其反应给技术支持工程师等相关人员, 以使其能够对UPS系统的故障得到最全面的了解, 这对于其对用户需求的了解及系统功能的改进具有十分重要的参考价值。
第四, 要对UPS历史记录进行下载。对UPS历史记录的下载工作需要利用特殊软件才能完成, 通常情况下, 行业内应用的都是UCOM这一软件。在打开这一软件后, 工作人员需要将数据线与电脑相连接, 继而点击Receiving—History from UPS这一命令, 完成对UPS历史记录的下载, 从而使系统故障能够被妥善诊断及处理, 同时, 对系统的故障类型及出现时间等的记录, 也能够为工作人员对故障类型的判断提供基础与经验。
3 结语
随着UPS不间断电源的广泛应用, 社会对其重视程度也在不断增加, 做好UPS故障的诊断分析与处理工作对其顺利运行具有非常重要的价值。总的来说, UPS故障类型主要包括告警类故障、可自动恢复故障、可人为恢复故障以及不可恢复故障四种, 每种故障类型的特点有所不同, 对系统的危害程度也有所不同。对UPS故障的判断及处理需要按照具体步骤进行, 要在对LED灯进行判断的基础上, 对液晶显示屏上的信息进行记录, 继而判断故障类型并将其反馈给有关人员, 最后在UCOM软件上完整的记录下整个故障过程, 这样才能保证故障处理过程能够更加顺利与完善。
参考文献
[1]李明星, 欧栋杰.UPS常见故障诊断与分析[J].科技传播, 2014 (4) .
[2]王光恒.某锅炉UPS故障分析与处理[J].中国科技信息, 2011 (12) .
数控机床故障的分析及处理 第11篇
[关键词]数控机床;故障;诊断方法
前 言
数控机床是机械、计算机、自动控制、测量等多种技术的综合体。数控机床设备与普通的机床设备相比,其操作系统更为复杂。数控机床复杂的系统导致数控机床在运行过程中不可避免会发生一些故障,一旦系统的某些部分出现故障,就势必使机床停机,影响了机床的有效利用。对于生产企业来说,当数控机床出现故障时,如何快速有效地处理好数控机床的故障,是企业生产中亟待解决的问题,因此,对于从事数控机床工作的相关从业者来说,首先要熟悉数控机床常见的故障,这样才能在故障发生时及时排除故障。
一、简述数控机床常见的故障
所谓数控机床故障,就是数控机床全部或者部分丧失了规定的功能,导致数控机床无法正常运行。下文主要介绍三种数控机床常见的故障,即数控机床的结构性故障、数控机床的动作性故障和数控机床的功能性故障。
1.数控机床的结构性故障。数控机床的结构性故障主要是指主轴电动机运行噪声大、发热量大、切削时产生振动、速度不稳定等,针对此类故障,应根据其与主轴的安装、档位、润滑、轴承和动平衡的关系,在找出具体故障点的同时做出相应的排除故障的处理。数控机床的结构性故障的表现是,其
主轴转动的速度随着一个加工中心的主轴启动而转动,当转动的速度达到指令速度时,停车也随之停下来。
2.数控机床的动作性故障。数控机床的动作性障碍是指机床的各执行部件出现的动作障碍,出现此类障碍时,常伴有报警提示,常见的数控机床动作性障碍有刀库或刀盘不能定位或者不能被松开,刀具松不开或夹不紧,旋转工作台不转等等,因此,在处理数控机床的动作性故障时,利用动作性故障发生时的报警提示,按照数控机床维修的一般规律对数控机床进行故障处理,是排除数控机床动作性故障的有效途径。
3.数控机床的功能性故障。数控机床的功能性故障主要表现为运动方向误差大、加工精度差、机床没有任何报警显示等,因此,面对数控机床的功能性故障,在处理数控机床功能性故障时,从运动误差的特点出发,结合运动误差产生大小的程度和不合格零件的特征,有针对性地进行检查,便于快速找出导致故障的原因,此类故障常见的现象是,在对某一工件进行检查时,发现轴方向的实际尺寸跟程序编辑的实际尺寸存在偏差。
二、分析数控机床故障的思路
在数控机床的使用过程中,分析与处理数控机床的故障是使用数控机床时必不可少的工作。当数控机床故障发生时,分析与排除的难度相对也大,因此,分析数控机床故障的思路可以有效地排除数控机床故障。
1.查找故障。查找数控机床发生故障的原因的主要途径是通过询问查找和现场查找。询问查找是指,在接到数控机床发生故障,要求采取措施排除数控机床故障时,应仔细询问故障指示情况,通过了解故障产生的背景,初步作出对故障产生原因的判断,同时应该注意,当故障发生时,不能破坏现场,根据保留下来的现场实际情况,有利于数控机床故障维修人员到达现场后,迅速准确地分析故障原因,综合多方面因素进行调查。
2.故障分析。对故障现象进行全面了解后,接下来就根据故障情况进行分析。由于大多数数控机床是有指示的,我们可以把数控机床的故障分为三类,一是有故障自诊断报警信号的故障;二是能正常运行,但加工出产品不合格的故障;三是无故障自诊断报警信号,机床无法工作的故障。因此,作为数控机床维修人员,根据已知的故障状况分析故障类型,在充分了解故障状况和故障类型的基础上,才能确定排除故障的方法。
3.确定原因。在故障诊断的过程中,首先应该坚持可直接检查或经过简单的拆卸即可进行检查的那些部位,然后检查需要进行大量的拆卸工作之后才能接近和检查的那些部位。通过由表及里地进行故障源查找,综合多种可能确定数控机床故障产生的原因,然后在多种原因中进行筛选和排除,最终确定本次故障的真正原因。对数控机床故障原因的判断,是对维修人员熟练掌握和运用数控机床实践能力的考验,在一定上体现了机床维修人员的专业技能。
4.排除故障。进行故障调查与分析的关键阶段是排除故障。在数控机床的故障中,应根据数控机床故障的难易程度,有针对性地采取不同的处理故障的方法排除故障,尤其是在处理较为复杂的数控机床故障时,数控机床维修人员可以同时采取几种方法,灵活运用,综合分析故障产生的原因,逐步缩小故障范围,进而排除数控机床的故障。
三、处理数控机床常见故障的方法
一般来说,随着故障类型的不同,采取的故障诊断方法也就不同。下文将结合实际工作经验,对数控机床常见的故障,提出具体的处理故障的方法。
1.结构性故障的处理方法。在处理数控机床结构性故障时,最主要的是处理好数控机床的传动部件关系。因此,在检查数控机床传动部件时,要调整数控机床传动部件的预紧参数。另外,数控机床的结构性障碍还表现为转动部件出现噪声,此类故障要求我们在维修机床故障时,从检查分油器和滚珠两个方面入手,具体检查分油器是否出现堵塞,滚珠是否破损。压紧轴承,保持通畅的油管和完整的滚珠,才能保障数控机床结构的安全
2.动作性故障的处理方法。在处理数控机床动作性故障时,首先,在进行维修时,由于刀具本身的重量超出了机床自身所设定的参数值,刀具将从机械手中脱落,因此,应保证刀具的重量不会超标,与此同时,还应将损坏的机械手卡紧销及时更换。其次,由于刀具松卡弹簧上的螺母出现了松动,不能加紧刀具,要求维修人员在维修时,需使螺母的最大压力值不超过额定参数值。
3.功能性故障的处理方法。在处理数控机床功能性故障时,对于出现的加工精度达不到要求的状况,平时就应当重视对主轴部分的保养维护,主要是由于主轴部件的原因。究其原因,可以归为两点,一是由于机床在运输以及安装的过程中受到了冲撞,导致了主轴部件的位置发生了移动;二是在安装的过程中由于精度不高,是的主轴部件松动。因此,在处理数控机床功能性故障時,应该按照数控机床出厂时的要求,对主轴部分进行调整和加固。
结语
综上所述,以上对数控机床的故障的概述,主要针对数控机床的故障,提出了一些处理数控机床故障时需要遵循的规律和方法,但是面对种类繁杂的数控机床故障,仍需要我们不断探索研讨故障发生的根源。在日常工作中,对数控故障的发生要防患于未然,做好日常的维护工作是关键。做好日常的维护工作在一定程度上也可以降低数控机床故障发生的概率,为企业生产的顺利进行提供了有效保障。
参考文献
[1]郝建军.浅谈数控机床故障的排除[J].科技创新导报.2011,(14).
[2]张欢.数控机床故障分析与排除[J].黑龙江科技信息.2008,.(05).
[3]龙超韩.数控机床故障诊断[J].化学工程与装备.2009,(02).
[4]徐云飞.数控机床故障检修过程探讨[J].金属加工.2011,(02).
1张世亮 1983.12- 男 甘肃省武威市 现初级职称(助讲) 学历:大学本科 研究方向:数控技术
电能计量装置故障分析与处理 第12篇
某供、用电双方对计量箱实际情况不认同, 该计量箱是否经过修理、试验等情况不易说清楚, 计量箱从外观看也没有明显的经过修理的痕迹, 因而再对计量箱进行试验, 以试验结论进行分析并不符合实际情况。鉴于上述原因, 在对该起计量纠纷进行调查时, 首先广泛地收集了各种有关资料。利用历次测试记录、电量抄表数据、用户负荷特性等进行分析, 情况如下:
1. 计量箱采用JLSJWH-10型电力计量箱。
2. 用户是加工企业, 生产过程采用三相异步电动机进行工作。
3. 该用户经过加装自动无功补偿装置 (电容器组) 。
4. 测试数据分析, 该用户三相负荷是基本平衡的。
5. 该用户的自动无功补偿装置一直是投入运行的。
6. 每年春节期间, 由于节假日影响, 电量大幅减少, 而每年2月份均属非正常用电月份。
二、电力计量箱组成及工作原理
JLSJWH-10型电力计量箱采用三相三线计量方式, 由两台单相电压互感器、两台单相电流互感器、一只三相三线有功电能表、一只三相三线内相角60°的无功电能表组成, 电压互感器采用V/V接线, 电流互感器采用不完全星形接线。正常工作时, 按图1接线。
三相三线的平均功率表达式为:
由三相三线电路电流、电压的相量关系, 上式可写为:
据以上分析可知, U、I、φ中任意一个量错误都将导致计量差错。只有正确地将电压、电流接入计量箱, 才能保证计量准确。
下面是JLSJWH-10型计量箱的功率表达式:
有功功率表达式:
无功功率表达式:
三、用户负荷情况分析
由于用户是加工企业, 生产过程是采用三相电动机。三相电动机在正常运行时三相负荷是平衡的, 若发生单相断相等故障, 虽然会导致三相不平衡, 但是由于电动机装设有断相保护回路, 因而不可能在此种故障下长时间运行。也就是说, 正常生产过程中, 用户负荷不会出现三相不平衡的情况。另外, 由于用户装设自动无功补偿装置 (电容器) 后, 电容器组根据功率因数、电压指标, 自动分组投、退, 功率因数能够始终保持在0.85以上。
四、抄见电量总体分析
根据实测数据分析, 7~9月抄见电量确实存在异常, 主要有下述三点:
1. 平均功率因数明显降低, 由原来的0.94左右, 降低到0.667。
2. 有功用电量大幅下降, 由原来的正常用电月份平均用电量6.
50万k Wh下降到2.68万k Wh, 下降幅度近60%。
3.7~9月无功用电量大幅攀升, 由原来的月平均无功电量2.32万kvarh上升到3.00 kvarh, 上升幅度近30%。
根据用户负荷情况的分析可知, 只要用户无功补偿装置投入运行, 即使在减少产量的情况下, 负荷功率因数也应该基本不变, 只会使有功电量、无功电量大致成比例下降, 而不会导致负荷功率因数大幅降低而消耗无功, 因而用户所说的由于减产导致用电量减少的说法不能完全解释上述异常情况。
五、故障分析
1. 计量箱C相电流互感器二次回路断线功率因数变化情况分析;
(1) 根据三相三线有功电能表功率表达式:
当C相电流断线, 即三相三线有功表C元件不计量, 有功功率表达式为:
当三相平衡, 且φ=19°时
式中:U为线电压;
I为线电流。
(2) 根据三相三线内相角60°无功电能表功率表达式:
当C相电流断线, 无功功率表达式为:
当三相平衡, 且φ=19°时
(3) 根据平均功率因数计算公式
将 (1) 、 (2) 式代入 (3) 式得:
(4) 根据理论计算:
当φ=19°时, 若发生C相电流互感器二次回路断线, 功率因数将由0.94变为0.656左右, 该结果与电量分析表统计的平均功率因数0.667非常吻合。因而, 从计量箱原理分析, 7~9月间计量箱发生C相电流互感器二次回路断线故障是存在的。
2. 计量箱C相电流互感器二次回路断线电量对比分析
(1) 若计量箱性能良好, 则有功功率、无功功率表达式分别为:
(2) C相电流互感器二次回路断线时, 有功功率、无功功率表达式分别为:
P=U Icos49°=0.656U I (同 (1) 式)
Q=U Isin (131°) =0.75U I (同 (2) 式)
(3) 假定7~9月计量箱C相二次回路断线属实, 则7~9月实际月平均用电量是多少?
其中:
Gp是有功电能量更正系数;
Gq是无功电能量更正系数。
根据 (6) 、 (7) 式, 可得实际月平均有功、无功用电量:
六、技术分析结论
故障件分析处理
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


