电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

能量参数变化范文

来源:漫步者作者:开心麻花2025-09-191

能量参数变化范文(精选4篇)

能量参数变化 第1篇

机械结合面在各类机械结构中无处不有。找到一种比较理想的结合面动态参数识别方法,是在设计阶段进一步提高整机性能预测水平的先决条件。国内学者在机械结合面阻尼参数识别方面做过许多努力,但仍然存在两个问题: 一是许多方法仍然要涉及机械结构质量矩阵[1]; 二是完全依赖于传递函数矩阵的一类方法,必须在机械结构装配前对各有关部件进行传递函数测试[2],这在实际中往往是不可能的。由于结合面阻尼的重要特征之一是会使输入的载荷产生部分能量损失,因此研究载荷与能量损失的关系成为识别结合面参数的又一条思路。国外一些学者通过建立新的连接参数分布模型[3],推进了这一问题的研究。本文以各类机械结构中最为常见的螺栓连接为例,在之前的研究基础上修正了能量损失与载荷幅值间的数学关系,并通过仿真对比实验数据对其正确性进行验证。

1 建立模型

本文以两平板工件的螺栓连接为研究对象(图1)。在承受切向周期载荷时,连接的结合面部位存在微观滑移和宏观滑移两种形式的运动。在合理的载荷范围内宏观滑移很少发生,

但是微观滑移却是时刻存在的[4]。

试验表明,对材料反复加载和卸载,其应力-应变曲线会成为一个滞后回线(图2),此回线所围的面积表示一个循环中单位体积的材料以热能形式耗散掉的能量,这种阻尼又称为滞后阻尼[5]。因此可通过研究载荷与能量损失的关系来识别结合面参数。

在以往的计算或仿真过程中,常将螺栓连接部位作简化处理,认为结合面间压力分布均匀,振动以及能量损失均遵循黏性阻尼规律。但是这样的模型不能很好反映连接的实际情况,所以需要引入一种能够更加真实反映结合面连接特性的分布参数模型,以对其各项动力学参数达到准确识别的目的。由于螺栓连接结构是对称的,故可以只考虑整个连接的右半部分。上下两板的几何参数和结构完全相同,因此两板间同一位置处的轴向相互作用力应相等。结合面间的压力随着与螺栓距离的增大而减小,其最大值出现在靠近螺栓的部位。

假设螺栓的预紧力在几何面处产生的压力分布函数F(x)在x∈[0,L]是一个单调非增函数,同时认为上下两板之间的应力均匀分布,并且连接的上下两部分不承受弯矩,则可建立如图3所示的参数分布模型。其中,L为上下两板相接触部分长度,F0为周期载荷力幅值,黏滞区域的范围从x=0扩展至某点x=ln,x>ln的范围即属于滑移区,su(x)和sd(x)分别为上下表面在位置x处的位移。在滑移区内运动遵循库仑摩擦法则。

将上述量均进行量纲一处理,令lnx1。μ为库仑摩擦因数,由连接材料、结合面表面参数、润滑情况等因素共同决定。在黏滞区域因为没有滑移发生,所以应有su(x)=sd(x)。在滑移区域内,从上下两板的受力分析图,我们可以知道存在下述关系:

F0=2∫ln1μ F(x)dx (1)

在幅值为F0的周期载荷力的作用下,考虑压力分布函数F(x)为一空间曲面,则修正后的每个周期,螺栓连接结合面产生的能量损失为

W=4DμF(x,y)(su(x)-sd(x))dydx(2)

F(x)=cfxα,α<0时,ln可通过式(1)解得:ln=[1-F0(1+α)/(2μ cf)]1/(1+α),其中,cf为刚度系数。

根据模型的平衡方程和边界条件,则

W=-16πμ2cf2(1+α)(2+α)(3+2α)[(3+2α)ln1+α-(3+2α)ln2+α+ln3+2α-1](3)

对于F0比较小的情况,即F0μcf1,可将ln代入式(3),并将其整理成为F0的幂函数形式,阶数最高取到4阶:

W=πμ2cf2[13(F0μcf)3+α12(F0μcf)4+o(F05)](4)

这时可以看出,周期载荷下螺栓连接部位的能量损失与载荷幅值之间存在近似幂函数关系:WγF0n,其中,γn均为常数。我们发现n的值近似等于3,但是略微偏大。如果α=0,即压力均匀分布在结合面上时,则能量损失与载荷幅值成立方函数比例关系:WF03/(3μ cf)。若考虑量纲则表达式为:WF03/(3EA μ cf),其中,E为材料的弹性模量;A为结合面的接触面积。这与我们原来认为的材料阻力在一个周期内消耗的能量与载荷振幅的平方成正比的结论有所不同。

2 仿真实验及结果讨论

实验中测量能量损失可采用以下几种方法:①通过测量结合面在周期载荷作用下应力-应变曲线形成的封闭滞后回线的面积得到周期能量损失;②通过比较基体与被连接部件的加速度波形的差异测得周期能量损失;③通过测量基体与被连接部件的加速度振幅比Q得到周期能量损失[6]。

在由美国桑迪亚实验室所进行的螺栓连接结合面参数研究中,应用这三种方法均取得了相同或接近的结果[7]。但是,实验获得的数据反映的是一个综合的能量损失,因为在实际螺栓连接中螺母与垫片、垫片与连接部件、被连接部件与基体之间都存在相互接触相互作用的结合面,通过实验手段我们难以准确识别特定结合面对能量损失的影响,因此通过建立连接部件的有限元模型,对实验过程进行仿真可以帮助我们更加准确地认识这些问题。

本文采用有限元分析软件ABAQUS进行分析,分别建立螺栓连接三维、二维有限元模型,如图4、图5所示[8]。通过三维模型可以观察到整个连接各部分应力应变情况,截面二维模型则可以让我们更加准确地捕捉结合面微观滑移区的运动特性。在分析过程中,将螺栓连接简化为沿螺栓轴向的集中载荷,以便更好地研究基体与被连接件结合面对能量损耗的影响[9]。

根据实验中各部件的几何参数、材料参数、受载情况等,在ABAQUS中建立作业,进行分析后可得到此螺栓连接在不同幅值的周期载荷作用下能量损失的仿真结果与理论计算值的对比图形(图6)。此结果与文献中实验数据基本相符,略微偏小。原因在于实验中除连接部分结合面外,其他零件相接触部分在受载时同样存在能量损失,并且实际运动中各个结合面的摩擦因数并不恒定。综合考虑以上因素,此仿真分析结果是可靠的。

将仿真实验值与模型预测值相比较(表1)可以发现,原有模型与仿真数据的偏差最大达到15%,而修正后模型与仿真数据的偏差范围在5%以内。原因在于原有模型对能量损失积分的问题处理过于简化,修正的模型通过考虑到压力分布函数为一曲面积分,使其更加符合连接的实际情况。

3 实例计算

将刚度系数为k的弹簧和临界滑移力为fi的摩擦阻尼器串联组成一个单元,再将这些单元并联排列用来代替螺栓连接的结合面(图7),这种模型称为伊万模型[10]。我们假设弹簧-阻尼单元的个数N趋于无穷多,并且将fi作为分布函数φ(t)的自变量。

那么初始载荷即为

F=∫0ks(f)df+ks∫∞ksφ(f)df

变形后得到

φ(ks)=-EA(∂2F/∂s2)/k2

根据上一节描述的参数分布模型,我们知道s=su(1)≡sL,k=EA,所以φ(EAsL)=-(∂2F/∂s2L)/EA

当应力分布为幂函数形式,即F(x)=cfxα时,可从式(1)得

F=2μcf(1-ln1+α)(1+α)

根据边界条件也可得

sLsu(1)=μcf(1+α)(2+α)[3+α-2(2+α)ln1+α+(1+α)ln2+α]

所以

φ(EAsL)=2EAμcflnα(2-ln)3

这表明我们可以利用第一节所建立的参数分布模型,对简化为伊万模型的螺栓连接进行摩擦阻尼器参数识别。

E=200GPa,A=4.010-4m2,L=810-2m,μ=0.14,cf=1104N/m,当α分别取-0.2、-0.1时,可得阻尼器极限滑动力分布函数(图8),较好地体现了螺栓连接的受力特点。

参考文献

[1]张学良.机械结合面阻尼参数识别的一种方法[J].西安理工大学学报,1999,15(1):98-100.

[2]王世军.机床导轨结合部的有限元模型[J].中国机械工程,2004,15(18):1634-1636.

[3]Song Yaxin.Modeling,Identification and Simulation of Dynamics of Structures with Jointsand Interfaces[D].Urbana:Univ.of Illinois,2004.

[4]Hartwigsen C J,Song Y,Mcfarland D M.Experi-mental Study of Non-linear Effects in a Typical Shear Lap Joint Configuration[J].Sound and Vibra-tion,2004,277(1/2):327-251.

[5]师汉民.机械振动系统[M].2版.武汉:华中科技大学出版社,2004.

[6]Thomson W T.Vibration Theory and Applications[M].N J:Prentice-Hall,Englewood Cliffs,1965.

[7]Smallwood D O,Gregory D L,Coleman R G.Damp-ing Investigations of a Simplified Frictional Shear Joint[C]//Proceedings of71st Shock and Vibra-tion Symposium.Washington D C,2000:SAND2000-1929C.

[8]刘展.ABAQUS6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008.

[9]Lobitz D W,Gregory D L,Smallwood D O.Compar-ison of Finite Element Predictions to Measurements from the Sandia Microslip Experiment[C]//Pro-ceedings of International Modal Analysis Confer-ence.Orlando,FL,2001:1388-1394.

化学变化与能量 第2篇

1.知道物质发生化学变化时伴随着能量的变化,了解放热反应和吸热反应的概念。

2.认识通过化学反应获得能量的重要性。

3.了解人们如何应用化学变化实现能量的转化。

4.能举例并学会归纳物质在化学变化过程中发生的各种能量相互转化形式。

5.学会通过实验探究化学反应伴随有能量的变化。

【教学重点】

1.物质发生化学变化时伴随着能量变化。

2.放热反应和吸热反应的概念。

3.物质在化学变化过程中发生的各种能量相互转化形式。

【教学难点】

应用化学变化实现能量的转化并通过实验探究化学反应伴随有能量的变化。

【教学手段】实验、讨论、多媒体

【教学课时】1课时

【教学用具】试管、烧杯、玻璃棒、镁条、碳酸氢铵、醋酸、碳棒等

【教学流程】

创设情境探究实验自学课本学生讨论得出结论教师讲解联系实际尝试练习拓宽视野

A、B达成教学目标1、5,C达成教学目标2,D达成教学目标3和4

教学过程

教学流程教师活动学生活动设计意图

A.创设情境探究实验讨论、观察、记录[引入]化学变化过程中存在着吸热和放热现象。请大家举出几个例子?

是不是只有通过燃料燃烧才能得到热量呢?

巡回指导思考、举例

学生做实验、观察现象

[现象]实验1,试管中有大量气泡冒出,试管壁发热;实验2,由于结冰,玻璃片与小烧杯粘在一起。

知道化学反应有吸热和放热之分,存在能量的变化。

通过亲身探究实验来观察、思考得出结论。

教学过程

教学流程教师活动学生活动设计意图

B.教师提示自学课本学生讨论教师讲解[设问]这两个实验说明了什么问题呢?

[评价]回答得很准确。

大家阅读教材找出放热反应、吸热反应的概念,以及它们伴随着怎样的能量变化?

[讲解]化学反应在生成新物质的同时,伴有能量的变化,而能量的变化通常表现为热量的变化。类似于可燃物燃烧,镁和盐酸这样的反应,我们称之为放热反应。像碳与二氧化碳、碳酸氢铵晶体和醋酸的反应,称之为吸热反应。

化学变化中的能量变化(节选) 第3篇

本课是高一化学(上册)中的教学内容,在本课教学中,我以探究式学习为主,首先从一个实验入手(KClO3的受热分解),启发学生理解物质发生化学反应的同时还伴随着能量的变化,而这些能量变化通常又表现为热能变化。接着,我引导学生进入实验探究教学,引发“为什么有的化学反应吸热,而有的化学反应放热”的问题,然后提出人类如何利用化学反应产生的热量问题,再进一步引导学生思考有关能源展望和人类进步的话题。

教学过程(此处限于篇幅,仅节选其中2个教学片段):

片段1:引入新课

[演示实验]KClO3受热分解实验。

提问:实验观察到的现象说明什么问题?(2KClO3+3C3CO2↑+2KCl)KClO3受热先熔化,此时并没有氧气放出;将带火星的木条与熔融的KClO3接触以后立即放出氧气,木条在熔融的KClO3中剧烈燃烧起来,由燃烧放出的热维持KClO3放出氧气,直到反应完成。

教师:化学变化的特征就是化学变化中除有新物质生成外,常伴随着放热、发光、放出气体,有时还会有变色、生成沉淀等现象发生,有时还有电流,本课我们一起来学习。

[板书]

4.2化学反应中的能量变化(变化中热效应是一种主要的形式)

化学反应中的热效应

片段2:化学反应中能量是怎样变化的

[演示实验]在一个小烧杯里,加入约10g NH4Cl晶体,加少量水,将小烧杯放在事先已滴有3~4滴水的木片上,然后再加入约20 g已研磨成粉末的氢氧化钡晶体[Ba(OH)28H2O],并立即用玻璃棒迅速搅拌,使两者充分反应,成糊状即可。混合搅拌后,木片和小烧杯粘在一起,说明该反应吸收了大量的热,使水温降低结成冰。

化学反应方程式:Ba(OH)28H2O+2NH4ClBaCl2+2NH3↑+10H2O

提问:由实验推知,Ba(OH)28H2O固体和NH4Cl固体的总能量BaCl2溶液、氨气和H2O的总能量。(吸热)

[学生分组实验]在一个含2厘米的镁带的试管中,加入2毫升的6mol/L的盐酸,观察实验现象。

请学生注意:①操作方法;②仔细观察实验现象;③总结实验结论;④写出化学方程式。

反应产生大量热,同时试管温度升高(发烫),说明反应过程中有热量放出。化学反应方程式:Mg+2HClMgCl2+H2↑。

提问:由实验推知,Mg和盐酸溶液的总能量______MgCl2和氢气的总能量。(放热)

通过以上几个实验,我们是否已经明白了化学反应中能量是怎样变化的?

教师:1.化学反应的特点是有新物质生成,也就是物质中旧化学键的断裂和新化学键的形成过程;2.新物质和反应物的能量必存在差异,而化学反应中能量是守恒的;3.反应物和生成物的能量差若以热能形式表现即为放热和吸热,若两者能量较为接近,则放热和吸热不明显。

化学反应的过程可看做是能量的“释放”与“贮存”过程。

[板书]

化学反应中的能量变化主要表现为吸热或放热。

放热反应:化学上把有热量放出的化学反应叫做放热反应。

吸热反应:化学上把吸收热量的化学反应叫做吸热反应。

化学反应中的物质变化和能量变化 第4篇

二、1.

(1)

CuSO4是氧化剂, KI是还原剂,CuI是还原产物,I2是氧化产物

(2)

NO2氧化剂,NO2是还原剂,NO是还原产物, HNO3是氧化产物

2.HBr   0.5

3.(1)①,④

(2)Cr(OH)3

(3)

4.(1)碳(或C)

(2)

(3)35.5

5.(1)2MnSO4+5K2S2O8+8H2O 2KMnO4+4K2SO4+8H2SO4

(2)MnSO4   KMnO4

(3)2Mn2++5S2O82-+8H2O 2MnO4-+10SO42-+16H+

能量参数变化范文

能量参数变化范文(精选4篇)能量参数变化 第1篇 机械结合面在各类机械结构中无处不有。找到一种比较理想的结合面动态参数识别方法,是在...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部