电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

不等式的基本性质 (说课稿)

来源:盘古文库作者:莲生三十二2025-09-151

不等式的基本性质 (说课稿)(精选16篇)

不等式的基本性质 (说课稿) 第1篇

§9.1.2 不等式的基本性质(说课稿)

收成中学 严文选

我今天说课的题目是《不等式的性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流程。

一、教材分析: 1.教材的地位和作用

本节课的内容是选自人教版义务教育课程标准实验教科书七年级下册第九章第一节第二课时《不等式的性质》,这是继方程后的又一种代数形式,继承了方程的有关思想,并实现了数形结合的思想。是初中数学教学的重点和难点,对进一步学习一次函数的性质及应用有着及其重大的作用。

2.教学目标的确定

教学目标分为三个层次的目标:

⑴知识目标:主要是理解并掌握不等式的三个基本性质。

⑵能力目标:培养学生利用类比的思想来探索新知的能力,会利用不等式的性质进行化简。

⑶情感目标:让学生感受到数学学习的猜想与归纳的思维方式,培养学生的数感,渗透数形结合的思想,体会类比思想和获得成功的喜悦。

3.教学重点和难点

不等式的三个基本性质是本节课的中心,是学生必须掌握的内容,所以我确定本节的教学重点是不等式三个基本性质的学习。性质3是学生比较难理解的知识,所以确定为本节课的教学难点。

二、教学方法、教学手段的选择:

本节课在性质讲解中我采取探索、类比、归纳的学习方法,通过观察探索归纳得出不等式的性质。使学生主动参与提出问题和探索问题的过程,从而激发学生的学习兴趣,活跃学生的思维。为了突破学生对不等式性质3,理解的困难,采取了类比操作化抽象为具体的方法来设置教学。整节课采用多媒体进行教学,精讲多练、讲练结合来落实各教学知识点。

三、学法指导:

鉴于初一的学生理解能力和逻辑推理能力还比较薄弱,应以激励的原则进行有效的教学。鼓励学生一题多解,并及时引导学生用小结方法,克服思维定势。

例题讲解采取数形结合的方法,使学生树立“转化”的数学思想。充分复习旧知识,使获取新知识的过程成为水到渠成,增强学生学习的成就感及自信心,从而培养浓厚的学习兴趣。

四、(主要环节)教学流程:

1、课题引入 复习提问

首先回顾等式的性质,教师提问:等式有哪些性质?解一元一次方程的基本步骤是什么?

通过回顾等式的性质,为本节课类比等式的性质,探索不等式的性质做好铺垫,并且从学生已有的数学经验出发,有助于学生建立新旧知识之间的联系,培养学生梳理知识体系的习惯。

2、师生互动 探索新知

本次活动我精心设计了6组填空题让学生观察探究,并猜想归纳出不等式的性质.学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。

此次活动是本节课的核心活动,对于学生有一定难度,有些学生可能会直接把等式的性质加以修改推广到不等式,而忽略了不等式的两边乘以同一个正数或同一个负数的不同结论,此时教师应引导学生先计算、再比较,然后认真观察,有必要的话可以继续举几个例子让学生观察,体会不等式性质与等式性质的异同。教师深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。为了加深学生对性质的理解,教师可利用天平的示意图对性质进行直观刻画。

观察思考后,两个(或几个)学生回答问题,由其他学生判断正误.然后师生共同叙述不等式的性质,同时教师出示板书.

不等式性质1 不等式两边都加(或减)同一个数(或式子),不等号的方向不变.

不等式性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变.

不等式性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变.

强调:要特别注意不等式性质3 我通过填空练习来强化认识不等式的性质

这几道题都是是不等式的性质的简单应用,通过由浅入深的练习,进一步帮助学生理解不等式的性质,为下面利用不等式性质解不等式作准备。

3、例题讲解

在解决问题之前,教师应首先组织学生回顾不等式的解集用式子如何表示,引导学生认识到解不等式就是通过将不等式逐步变形,化为x﹥a或x﹤a的形式。然后,组织学生先独立思考,再分组讨论,并由小组代表发言在全班交流,最后由教师规范统一规范写法。在初学用不等式性质解不等式时,要让学生每一步都考虑“我这一步的依据是什么”,这样可以尽快熟练掌握不等式的性质,养成严谨的思维习惯。

在用数轴表示不等式解集时,要引导学生注意规律:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈。通过用数轴表示不等式解集一方面可以加深对不等式解集以及解不等式的理解,另一方面也为学习不等式组时用数轴确定不等式组的解集做准备。

4、各显身手 巩固提高

通过练习,使学生能更加熟练的掌握和应用不等式的三个性质解不等式,体会学习的乐趣。

(四)课堂总结

通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了学习数学的思想方法。

最后是作业布置:

作业有利于学生养成主动复习的学习习惯,分层作业为不同认知水平的学生提供了不同的发展空间。

以上是我对《不等式的性质》第一课时的认识,一定还有不足之处,请在座的专家、老师们多多批评、指正,谢谢!

不等式的基本性质 (说课稿) 第2篇

说课人:石含权

各位老师:

大家好!我今天说课的内容是人教版五年级上册第五单元第64-65页“简易方程”的《等式的性质》。我将从教材分析、学情分析、教学方法、教具准备、教学过程、板书设计几个方面来进行说课。

一、教材分析:

在新课程改革中,教材是重要的教育教学因素。等式的基本性质是学生解方程的依据,它是系统学习方程的开始。这节课的内容在简易方程中就起到了承上启下的作用。原来的教材中对于等式的基本性质只是初步的认识,并没有总结成概念性的东西,但学生实际运用时却需要概念来作支撑,所以在教材中作了调整,让学生通过观察天平演示实验,由具体实物之间的平衡关系抽象概括出等式的两个基本性质就成了本节课的教学重点。

本课“等式的基本性质”是在上一节刚刚认识了等式和方程的基础上进行教学的。其核心思想是构建等量关系的数学模型。课程标准要求学生能“理解等式的性质,会利用等式的性质解简单的方程”。根据新课程标准的要求和教材的地位以及学生的实际情况,我把本课目标定为:

知识与技能:通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。

过程与方法:利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。

情感、态度与价值观:培养学生观察与概括、比较与分析的能力。教学重点:掌握等式的基本性质。

教学难点:理解并掌握等式的性质,能根据具体情境列出相应的方程。教学方法:启发式教学;自主探索、观察、归纳、合作学习新知。教学准备:天平、砝码、多媒体课件。

二、学情分析

新课标强调学生是数学学习的主人。而简易方程是新课标“数与代数”中一个重要部分。学生已经了解了方程的意义并且初步学会了列简单方程,而且小学五年级的学生,已具备一定的独立思考能力,乐于动手操作、合作探究。因此教学中我引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,让孩子们在探索交流中,感受、理解和概括出等式的基本性质。

三、教学方法

《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法我采用了观察法、讨论法、探究法和问答法,让学生通过实验观察和分组讨论探究学习。并且通过大量的练习问答来巩固知识点的掌握运用。

四、教学过程

我把教学过程分为以下四个环节:情景引入,激发兴趣—引导探究、合作交流—巩固练习、运用新知—课堂小结

(一)情景引入,激发兴趣

以观察天平图激发学生学习兴趣,引入天平并通过天平中的平衡引入课题。

(二)引导探究、合作交流 1.具体情境,感受天平平衡

通过课件展示情境图引导学生小结出等式并用字母表示。2.猜想假设、小结规律

先让学生猜想然后再通过课件在天平上演示过程。验证学生的猜想,用字母表示。引导学生小结出:等式两边同时加上同一个数,左右两边仍然相等。

3.观察思考、总结发现

通过课件对教材第64页图2的演示过程让学生独立思考,再通过小组合作讨论总结出发现的规律。等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。

4.假设数据、验证规律得到结论后通过假设物体的具体的数据验证学生自己总结出的规律。

5.口算练习、应用规律

通过一些简单的等式问答应用等式两边同加或同减相同的数以加强规律的应用。

(三)巩固练习、运用新知

通过填空练习巩固由浅入深的运用等式的性质解决实际问题。

(四)课堂总结

在课结束前让学生分别谈谈自己的收获以强化巩固所学知识。并且布置作业。

五、板书设计

在板书的设计上以简单明了为主。通过字母等式的同加、减,同乘、除表现出等式的两个基本性质

《单质碳的化学性质》说课稿 第3篇

一、教材分析

(一) 教材的地位和作用

这节课的内容中, 碳的可燃性在《氧气》一节已学习过, 本节是在此基础上的扩展和完善;碳的还原性是本节课的新知识, 这两部分内容对后来学习一氧化碳的化学性质做了很好的铺垫, 因此本节内容在教材中起着承上启下的作用。

(二) 教学目标

依据新课标中“课堂以学生为主体”的理念, 我们确立了如下教学目标:

1.知识与技能

知道单质碳的化学性质, 了解单质碳的用途和还原反应。培养学生的自主学习能力。

2.过程与方法

通过自主学习、讨论交流、动手实验、总结归纳等方式, 使学生知道单质碳的化学性质。

3.情感态度与价值观

让学生体会到化学与生活的紧密关系, 树立物质的性质决定用途的观点, 培养学生的团结协作精神。

(三) 教学重难点

通过对教材情况的分析, 我们确立了本节课的重点、难点。

1.教学重点:单质碳的化学性质

重点解析:学好碳的三点化学性质, 可以有效地解释一些生活现象, 增长生活经验, 还可以为接下来即将学习的一氧化碳化学性质做好铺垫。

2.教学难点:碳与某些氧化物的反应

难点解析:碳与某些氧化物的反应, 生活中主要应用于冶金工业, 体现碳的还原性, 这部分内容学生甚少接触到, 故理解上比较困难。我们将通过分组实验以及学生讨论交流来攻克这个难点。

二、学情分析

化学是九年级刚开设不久的一门学科, 学生的逻辑思维能力有限, 并且“90后”的孩子生活常识都很匮乏, 团结协作精神也很欠缺, 但是他们思维活跃, 善于表现自己, 因此教学中应更多地将时间留给学生交流表达, 激发他们学习的主动性。

三、教法分析

教学方法:学案导学法、实验教学法、多媒体辅助教学法。

确定依据:依据新课标中以学生为主体, 教师为主导的原则, 本节课我们主要借助导学案, 引导学生自主进行学习、交流;利用实验教学, 突破难点;通过多媒体展示相关图片和视频, 丰富学生的生活经验, 顺势而导, 巧妙点拨, 提高教与学双方的实效性。

四、学法指导

学习方法:自主学习、实验操作、合作交流。

确定依据:学生通过上述学习方式自主得出结论, 教师鼓励学生主动与他人交流和讨论, 提出质疑, 互助解答, 交流心得, 使学生逐步养成良好的学习习惯和学习方法。

五、教学过程

本节课我们设计了四个教学环节。

环节一:导入新课

教师播放有关“钻石”的视频, 并提问钻石的成分是什么?它为什么会“恒久远、永流传”?

设计意图:这样引入激发学生的好奇心, 并能让学生感受到生活处处有化学。

环节二:探求新知

怀着期待的心情, 学生开始了本节课的学习。

1.单质碳的稳定性与可燃性

学生阅读教材第110页, 并自主完成学案“自主学习”板块内容;随后与小组同学合作交流, 解决心中疑惑, 最后教师给出答案并做适当点评。

设计意图:学生经过“独学”与“群学”, 已经基本掌握前两个基础知识点, 再加上教师的及时点评使学生达到灵活运用的效果, 同时培养了学生的自学能力, 达成了部分知识目标与情感目标。

2.碳与某些氧化物的反应

教师组织学生操作改进后的碳还原氧化铜实验。在等待试管冷却的同时, 学生阅读教材第111页的内容, 并完成导学案“自主学习三”板块内容, 试管冷却后, 观察实验现象, 随后由学生分析碳还原氧化铜化学方程式, 进而加深对还原反应的理解同时得出单质碳具有还原性。

设计意图:分组实验的设计可以调动学生的积极性, 让学生真切感受还原反应“夺氧”的过程, 从而突破难点。同时锻炼了学生动手操作能力, 增进了学生团结协作的意识, 让学生体会到从实践中探求真理的乐趣, 情感目标得到升华。

环节三:巩固提升

“挑战自我”环节仿造“砸金蛋”, 幻灯片中展示八枚“金蛋”, 每一个“金蛋”都链接一道习题, 答对便给予适当奖励。教师借此机会鼓励学生, 要勇于挑战自我。

设计意图:巩固新知, 颇有创意的反馈模式, 更能调动学生的参与热情。

环节四:盘点收获

由学生谈本节课的体会和收获, 教师做适当点评。

设计意图:培养学生自我总结的能力, 更加凸显出学生在课堂上的主体地位。

六、板书设计

碳的化学性质

设计意图:本节课板书设计打破传统模式, 简单明了, 美观大方, 重点突出, 强烈的视觉冲击使学生记忆深刻。

点击不等式的基本性质 第4篇

等式的基本性质说课稿 第5篇

大家好!

很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。

一、教材分析

1. 教材的地位和作用

不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。

2.教学重难点

重点:不等式的概念和不等式的基本性质1。

难点:利用不等式的基本性质1进行简单的变形。

二、教学目标

知识目标:

在了解不等式的意义基础上,掌握不等式的基本性质1。

能力目标:

①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。

情感目标:

①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

三、教学方法

1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。

四、教学流程

我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。

(一)创设情境,激发兴趣:

师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。

设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

学习目标:

1、理解不等式的基本性质1。

2、会解简单的不等式。

此时我出示本节课的学习目标和归纳出不等式的概念:

归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

(二)探究新知、总结规律

在这个环节,我主要设计了以下二个活动来完成教学任务:

活动1:1、你能用“﹤”或“﹥”填空吗?

(1)5﹥3 (2)6﹥4

5+2﹥3+2 6+a﹥4+a

5-2﹥3-2 6-a﹥4-a

2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?

(2)小组合作讨论交流,大胆说出自己的“发现”。

本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。

活动2:你能用自己的语言概括不等式的性质吗?

本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:

不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。

当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:

性质中的“不等号方向不变”的含义是什么?

使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。

在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。

通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。

(三)针对练习、学习例题

1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。

如果x-5>4,那么两边都 ,可得到x>9

2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。

例1.用“>”或“<”填空

(1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。

解:

【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。

例2.把下列不等式化为x>a或x

(1)x+6>5 (2)3x>2x+2

解:

【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。

(四)巩固提高、拓展延伸

在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。

1、课本P133练习第1、2题;

2、判断是非:

①若a>b,则a-3>b-3 ( )

②若m

③若a-8

④若x>7,则x-4<3 ( )

(五)畅谈收获、分层作业

回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。

1.不等式的概念和基本性质1.

2.简单不等式的变形.

通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。

最后是作业设计:

1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记);

2、习题5.1A组第1题(1)(2),第3题(1)(2);

3、选作:习题5.1B组第1题。

五、教学评价

本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。

六、教学反思

1.本节课通过学生自主探讨、小组合作得出不等式的概念和性质1.

2.本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。

《等式的基本性质》优质说课稿 第6篇

一 说教材

(一)、教材分析:

等式性质是学生了解了一元一次方程概念后的一章重点内容,是解方程必备知识,对解一元一次方程中的移项、合并同类项起着至关重要的作用。学生对等式的性质进行探索与研究过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。

(二)、教学目标:

a、知识目标:

通过网络教学让学生探索等式具有的性质并予以归纳达到解方程的目的

b、能力目标:

通过网上观察图片、实验和游戏,培养学生探索能力、观察能力、归纳能力和应用知识的能力以及动手操作能力

C,情感目标:

通过网络模拟实验和网络互评,增强合作交流意识、团队意识和创作精神。

(三)、教学重点:

新课标强调获得知识的过程远比知识本身更有价值,因而要注重发展学生应用的能力所以把本课重点确定为:等式基本性质的归纳。

(四)、教学难点:

根据7年级学生的年龄特征和认知特点,从特殊到一般,从具体到抽象,适合7年级学生思维能力,而本课难点决定利用等式基本性质解一元一次方程,为恰恰是这一特征的体现。

二、说教法

㈠教学方法:

如何突出重点,突破难点,从而实现教学目标。我在教学过程中拟计划进行如下操作:1,网络模拟实验操作法2,“看——议——讲”结合法3,归纳法4,讨论法5,网络游戏结合法6,成果展示法

㈡教学方法的理论依据:

(1)以学生为主体 学生参于数学活动为主线,培养学生创新能力和实践能力为主旋。

(2)由内向外原则 启发学生从书本知识回到社会实践,学以致用,落实教学目标。

(3)创感思维培养原则 新的世纪是一个创感的时代,不断培养学生的创感精神是新世纪给予数学教学新的要求,利用网络游戏、flash动画等不但提高学生兴趣,更培养学生的创作精神。

三:说学法

教学的宗旨是让学生学会学习,教师要为学生构建一个学习的平台,学生是独立行走的人

本课主要引导学生利用网络采取观察、模拟实验,猜想、探究、合作、互评、网络游戏、欣赏、创作等学习方法。

这些符合方法本阶段学生特点:1 、学生逻辑思维从经验型逐步向理论型发展。观察能力、记忆能力和想象能力也随着迅速发展。2,好动、好奇、好表现,是本阶段学生的特点 3,学生的创感思维在初一已处在一定阶段,对事物的`认识已有一个层次,通过网络教育,加深学生对创感思维的培养.

四:说程序

本课课程设计如下:导入探索、新授知识,知识应用,归纳小结,布置作业

(一), 导入探索:

1:学生登入本局域网观看教师制作的网络课件图片

想一想,和尚将扁担放中间,那么两桶水有什么要求?

设计意图:通过形象导入能激起学生学习的欲望和探索的渴求,从中引出等式的概念。

(二),模拟试验

提问:你发现了什么,将天平与等式联系起来,你又有什么收获

设计意图:使学生对等式的性质有形象的认识,形成一个感性的阶段,更培养了学生操作能力,打开学习的思维空间,激发学习兴趣.

(三),归纳性质

(1)学生利用局域网观看教师课件,且自己总结出等式的性质。

设计意图:通过多媒体课件,引导学生有意识地去发现规律,掌握规律。培养学生动手操作的能力、实验观察能力和抽象概括的能力。提高学生的学习兴趣。

(2)知识应用:利用局域网,登入教师网络课件,完成如下题目,要求:在电脑上完成且将答案利用网络传给其它同学进行互改互评。

设计意图:让学生体会根据等式的基本性质从已知等式出发可以变形得到新的等式。为即将用等式解方程打下基础。网络互评,不但培养学生纠正错误能力和实际操作能力,更培养了团队精神.

(四)、讲解例题。

设计意图:题目的安排低起点,小台阶,循序渐进,符合学生接受知识的特点,培养学生的灵活性,多角度思考数学问题的方法。

(五)、课堂练习

学生以小组形式上网搜索用等式性质解方程的题目,并且解出.若遇问题可以用网络手段(QQ,在线解答、发帖子等)寻求帮助,然后小组汇报你的收获与解题亮点.。

设计意图:充分利用网络资源为教学服务,提升学生的探究意识,培养学生寻找问题解决问题的能力,增强学生的团队精神. 学生是参于学习活动主体,体现活动民主,自由的课堂理念。

(六)、归纳总结

1,对自己说,你有什么收获?对老师说,你还有什么困惑?

2,观看网络资源《等式性质》开发的游戏和flash动画

设计意图:共同回顾学习内容,有助于学生将知识和方法系统化,条理化,同时兼顾以人为本的思想,关注学生的学习体会和感受。 利用等式性质开发的网络资源更是开拓了学生的视野,将知识运用于实践,培养学生的创作灵感

(七),布置作业

1, 作业根据难度分成ABCD四种模型中,选择你最喜欢的一种做。

2,利用等式性质设计你喜欢的物品、图片或者游戏等,并将你的成果放在你的QQ空间、个人主页或者老师的博客上。

设计意图:作业设计具有梯度性,设计ABCD四个梯度作业,真正做到因材施教。第二题,将知识不限于书本,从书本走上社会实践,将知识结构灵活运用,既是新课标的要求,又提升学生创感思维。

五、说应用

1,利用网络中的图片资源和flash资源《和尚挑水》导入,动静结合,引起学生的学习兴趣,调动学生的学习积极性.使学生对于等式的概念有直观、形象的认识。

2,学生上网操作网上模拟天平训练,不但让学生更直观更贴切地巩固等式的性质,帮助学生解决本课重点即对等式性质归纳,更培养了学生的创感精神。

3,学生自己从网上搜索相关题目且采用网络互评,不但培养学生纠正错误能力和实际操作能力,更培养学生团队精神。帮助学生突破利用等式解一元一次方程这一教学难点。

不等式的基本性质 (说课稿) 第7篇

教法与学法:

1. 教学理念: “ 人人学有用的数学”

2. 教学方法:观察法、引导发现法、讨论法.

3. 教学手段:多媒体应用教学

4. 学法指导:尝试,猜想,归纳,总结

根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。

下面我将具体的教学过程阐述一下:

一、创设情境,导入新课

上课伊始,我将用一个公园买门票如何才划算的例子导入课题。

世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?

(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)

紧接着进一步提问:若人数是x时,又当如何买票划算?

二、探求新知,讲授新课

引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。

接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。

(1)a是负数;

(2)a是非负数;

(3) a与b的和小于5;

(4) x与2的差大于-1;

(5) x的4倍不大于7;

(6) 的一半不小于3

关键词:非负数,非正数,不大于,不小于,不超过,至少

回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植

难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。

反馈练习:用一个小练习巩固三条性质。

如果a>b,那么

(1) a-3 b-3 (2) 2a 2b (3) -3a -3b

提出疑问,我们讨论性质2,3是好象遗忘了一个数0。

引出让学生归纳,等式与不等式的区别与联系

三、拓展训练

根据不等式基本性质,将下列不等式化为“<”或“>”的形式

(1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x=“”>3

再次回到开头的门票问题,让学生解出相应的x的取值范围

四、小结

1.新知识

一个数学概念;两种数学思想;三条基本性质

2.与旧知识的联系

等式性质与不等式性质的异同

五、作业的布置

以上是我对这节课的教学的看法,希望各位专家指正。谢谢!

不等式性质的应用初探 第8篇

一、直接考查不等式的性质

例1 (2006年湖北) 若则下列不等式中, 正确的不等式有 () .

A.1个B.2个C.3个D.4个

分析方法一:由可得b

方法二:由题意, 可取a=-1, b=-2, 代入 (1) (4) 成立, 故选B.

例2 (2005年全国) 对于实数a, b, c有下列命题 (1) 若a>b, 则ac>bc, (2) 若a>b, 则ac2>bc2, (3) 若aab>b2, (4) 若a

A.1个B.2个C.3个D.4个

分析当c≤0时, (1) 不成立;当c=0时, (2) 不成立;aab, 又由ab2, 故a2>ab>b2, 故 (3) 成立;对于 (4) 显然成立;对于 (5) 可取a=-3, b=-2, 代入验证可知其不成立.故选B.

二、利用不等式性质比较两代数式的大小

例3 (2004年北京春) 已知三个不等式: (其中a, b, c, d均为实数) , 用其中两个不等式作为条件, 余下的一个不等式作为结论, 组成一个命题, 可组成的正确命题的个数为 () .

A.0 B.1 C.2 D.3

分析易知:

例4设a>0, b>0, 且a≠b, 试比较aabb与abba的大小.

∴aabb>abba.

综上可知, 当a>0, b>0, 且a≠b时, 都有aabb>abba.

三、利用不等式性质求范围

例5 (2000年上海) 若已知二次函数y=f (x) 的图像过原点, 且1≤f (-1) ≤2, 3≤f (1) ≤4, 求f (-2) 的范围.

解方法一:设f (x) =ax2+bx.则

又∵f (-2) =4a-2b=3f (-1) +f (1) ,

∵1≤f (-2) ≤2, 3≤f (1) ≤4,

∴6≤f (-2) ≤10.

方法二: (待定系数法)

设f (-2) =4a-2b=m (a+b) +n (a-b) .

∴f (-2) = (a+b) +3 (a-b) =f (1) +3f (-1) .

又∵1≤f (-2) ≤2, 3≤f (1) ≤4, ∴6≤f (-2) ≤10.

四、利用不等式的性质证明不等式

例6 (2006年陕西) 设a>b>c, 求证

证明∵a>b>c, ∴-c>-b.∴a-c>a-b>0.

五、函数与不等式的综合

例7 (2006年成都二诊) 已知奇函数f (x) 在区间 (-∞, +∞) 上是单调减函数, α, β, γ∈R, 且α+β>0, β+γ>0, γ+α>0.试判断f (α) +f (β) +f (γ) 与0的关系, 并证明.

解f (α) +f (β) +f (γ) <0.证明如下:由α+β>0, 得α>-β.

又∵f (x) 在R上是单调减函数, ∴f (α)

又∵f (x) 为奇函数,

∴f (α) <-f (β) , f (α) +f (β) <0.

同理可证:f (β) +f (γ) <0, f (α) +f (γ) <0.

不等式基本性质的应用 第9篇

1. 不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变;

2. 不等式的两边都乘以(或除以)同一个正数,不等号方向不变;

3. 不等式的两边都乘以(或除以)同一个负数,不等号方向改变.

这三条基本性质是进行不等式变形的主要依据,现列举几例分析如下,供同学们复习时参考.

例1判断正误:

(1)若a>b,则ac>bc;

(2)若a>b,则ac2>bc2;

(3)若ac>bc,则a>b;

(4)若ac2>bc2,则a>b.

[分析:](1)中是在a>b两边同乘以c,而c是什么数并不确定,若c>0,由不等式的基本性质2知,ac>bc;若c<0,由不等式的基本性质3知,ac

(2)中,当c=0时,ac2=bc2.故(2)是错误的.

对于(3),在不等式两边同除以c,因为不知道c是正数、负数或0,与(1)类似,可推出结论是错误的.

(4)中是在ac2>bc2两边同除以c2,而c2>0(为什么c≠0 ?) ,故(4)是正确的.

解: (1)错误;(2)错误;(3)错误;(4)正确.

[点评:]解这类题的关键是对照不等式的三条基本性质,分析从条件到结论到底应该运用哪一条性质,运用不等式性质的条件是否具备.

例2有理数a、b、c在数轴上对应点的位置如图1所示,下列式子中正确的是().

A. b+c>0B. a+b

C. ac>bc D. ab>ac

[分析:]由数轴上点的位置可以确定a、b、c之间的大小关系及它们各自的正负性,再根据不等式的基本性质对选项逐一分析,即可得出答案.

解: 对于A,由图知c<0c,两边同加上a后,根据不等式的基本性质1,有a+b>a+c,故B不正确;对于C,由图知a>b>0,c<0,根据不等式的基本性质3,有acc,a>0,根据不等式的基本性质2,有ab>ac,故应选D.

[点评:]解答此题的关键是既要能从数轴上看出a、b、c的大小关系及它们各自的正负性,还要考虑运用不等式的三条基本性质.

例3已知a<0,-1

[分析:]由a<0,b<0,可得ab>0,ab2<0.由-1a.

解: 因为a<0,-10.

又-1a.

所以a

[点评:]灵活运用不等式的基本性质是解决这类题的关键.要特别注意,运用基本性质3时,不等号的方向要改变!

不等式的性质说课稿 第10篇

在这一环节中,教师应关注:

①学生能否理解不等式的性质,动手操作答案是否准确

②学生能否独立探究、参与、合作、交流

设计意图:复习提问,利用教具、学具让学生动手,提高学生学习兴趣,调动学生思考和积极性,提高学生合作交流的能力和质量,教师有的放矢,让学生掌握重点,培养学生自主探究的学习习惯和能力。及时练习巩固,体现学以致用的观念,消除学生学无所用的思想顾虑。

3、大胆猜想, ⑴学生分组讨论:学生用语言表述推理过程,教师深入学生中并点拨将未知的转化为已知,并规范推理过程。和学生一起归纳不等式的性质。

(2)学生独立完成练习。

本环节教师关注:

①学生能否主动参与数学活动,敢于发表个人观点。

②小组团结协作程度,创新意识。

③表扬优秀小组

设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的`学生,体现因材施教的原则。

总结新知,布置作业

五、教学设计

不等式的性质说课稿 第11篇

因此,f(x1)+f(x2)+f(x3)<0.

3已知a>b>0,ceb-d.

活动:教师引导学生观察结论,由于e<0,因此即证1a-c<1b-d,引导学生作差,利用本节所学的不等式基本性质。

证明:c-d>0a>b>0? a-c>b-d>0 ?1a-c<1b-de<0 ea-c>eb-d.

点评:本例是灵活运用不等式的性质。证明时一定要推理有据,思路条理清晰。

变式训练

若1a<1b<0,则下列不等式:①a+b|b|;③a

A.0个 B.1个 C.2个 D.3个

答案:B

解析:由1a<1b<0得b0,则①正确,②错误,③错误。

知能训练

1.若a、b、c∈R,a>b,则下列不等式成立的是( )

A.1a<1b B.a2>b2[来源:学+科+网]

C.ac2+1>bc2+1 D.a|c|>b|c|

2.若a>b>0,则下列不等式中总成立的是( )

A.ba>b+1a+1 B.a+1a>b+1b

C.a+1b>b+1a D.2a+ba+2b>ab

3.有以下四个条件:

①b>0>a;②0>a>b;③a>0>b;④a>b>0.

其中能使1a<1b成立的有__________个条件。

答案:

1.C 解法一:∵a>b,c2+1>0,∴ac2+1>bc2+1.

解法二:令a=1,b=-2,c=0,代入A、B、C、D中,可知A、B、D均错。

2.C 解法一:由a>b>0 0<1a<1b a+1b>b+1a.

解法二:令a=2,b=1,排除A、D,再令a=12,b=13,排除B.

3.3 解析:①∵b>0,∴1b>0.∵a<0,∴1a<0.∴1a<1b.

②∵b1a.

③∵a>0>b,∴1a>0,1b<0.∴1a>1b.

④∵a>b>0,∴1a<1b.

课堂小结

1.教师与学生共同完成本节的小结。从实数的基本性质与三条基本性质的回顾,到所有性质的推得,推论的证明,以及例题的探究、变式训练等。真正温故知新,将本节课所学内容纳入已有的知识体系。

2.教师进一步强调代数逻辑推理的方法要领,指出利用不等式的性质时容易忽略的地方,以及证明不等式时需要注意的问题。

作业

习题3―1A组4、5;习题3―1B组4.

设计感想

1.本节设计更加关注学生的发展。通 过具体问题的解决,让学生去感受、体验,并从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,培养学生严谨的数学学习习惯和良好的思维习惯。

2.本节设计注重学生的探究活动。学生在学习过程中,通过对问题的探究思考、体验认识、广泛参与,培养学生严谨的思维习惯和积极主动的学习品质,从而提高学习质量。

3.本节设计注重了学生个性品质的发展。通过对富有挑战性问题的解决,激发学生顽强的探索精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美、数学推理的严谨美,从而激发学生强烈的探究兴趣。

备课资料

备用习题

1.如果a、b、c、d是任意实数,则( )

A.a>b,c=d ac>bd B.ac>bc a>b

C.a3>b3,ab>0 1a<1b D.a2>b2,ab>0 1a<1b

2.已知a+b>0,b<0,那么a,b,-a,-b的大小关系是( )

A.a>b>-b>-a B.a>-b>-a>b

C.a>-b>b>-a D.a>b>-a>-b

3.已知-1< a

A.1a<1bC.1b<1a

4.设a、b∈R,若a-|b|>0,则下列不等式中正确的是( )

A.b-a>0 B.a3+b3<0

C.a2-b2<0 D.b+a>0

5.若α、β满足-π2<α<β<π2, 则α-β的取值范围是( )

A.-π<α-β<π B.-π<α-β<0

C.-π2<α-β<π2 D.-π2<α-β<0

6.已知60

7.已知ad,求证:c-a>d-b.

8.已知x>y>z>0,求证:yx-y>zx-z.

参考答案:

1.C A项中,当c、d为负数时,acb3,得出a>b,又由ab>0可得1a<1b,C项正确;D项中,若a、b均为负数时,由a2>b2得出a0得出1a>1b,D错。

2.C 由a+b>0,b<0可知a>0,b<0,故a,-b为正,-a,b为负,又由a+b>0知a>-b,b>-a,所以a>-b>b>-a.

3.D 由-10,所以1b<1a<0,a2>b2>0,故1b<1a4.D 利用赋值法:不妨令a=1,b=0,则排除A,B,C.

5.B 由α<β知α-β<0,又由α>-π2,β<π2,故α-β>(-π2)-π2=-π,

即-π<α-β<0.

6.(27,56) (,3) ∵28

又60

∴xy∈(6033,8428),

即2011

7.证明:∵a-b.

又∵c>d,∴c+(-a)>d+(-b),即c-a>d-b.

8.证明:∵x>y,∴x-y>0.∴1x-y>0.

又y>z>0,∴yx-y>zx-y.①

∵y>z,∴-y<-z.∴x-y

∴01x-z.

又z>0,∴zx-y>zx-z.②

不等式的性质说课稿 第12篇

因此,f(x1)+f(x2)+f(x3)<0.

3已知a>b>0,ceb-d.

活动:教师引导学生观察结论,由于e<0,因此即证1a-c<1b-d,引导学生作差,利用本节所学的不等式基本性质。

证明:c-d>0a>b>0? a-c>b-d>0  ?1a-c<1b-de<0  ea-c>eb-d.

点评:本例是灵活运用不等式的性质。证明时一定要推理有据,思路条理清晰。

变式训练

若1a<1b<0,则下列不等式:①a+b|b|;③a

A.0个 B.1个 C.2个 D.3个

答案:B

解析:由1a<1b<0得b0,则①正确,②错误,③错误。

知能训练

1.若a、b、c∈R,a>b,则下列不等式成立的是( )

A.1a<1b                    B.a2>b2[来源:学+科+网]

C.ac2+1>bc2+1              D.a|c|>b|c|

2.若a>b>0,则下列不等式中总成立的是( )

A.ba>b+1a+1                   B.a+1a>b+1b

C.a+1b>b+1a             D.2a+ba+2b>ab

3.有以下四个条件:

①b>0>a;②0>a>b;③a>0>b;④a>b>0.

其中能使1a<1b成立的有__________个条件。

答案:

1.C 解法一:∵a>b,c2+1>0,∴ac2+1>bc2+1.

解法二:令a=1,b=-2,c=0,代入A、B、C、D中,可知A、B、D均错。

2.C 解法一:由a>b>0  0<1a<1b  a+1b>b+1a.

解法二:令a=2,b=1,排除A、D,再令a=12,b=13,排除B.

3.3 解析:①∵b>0,∴1b>0.∵a<0,∴1a<0.∴1a<1b.

②∵b1a.

③∵a>0>b,∴1a>0,1b<0.∴1a>1b.

④∵a>b>0,∴1a<1b.

课堂小结

1.教师与学生共同完成本节的小结。从实数的基本性质与三条基本性质的回顾,到所有性质的推得,推论的证明,以及例题的探究、变式训练等。真正温故知新,将本节课所学内容纳入已有的知识体系。

2.教师进一步强调代数逻辑推理的方法要领,指出利用不等式的性质时容易忽略的地方,以及证明不等式时需要注意的问题。

作业

习题3―1A组4、5;习题3―1B组4.

设计感想

1.本节设计更加关注学生的发展。通 过具体问题的解决,让学生去感受、体验,并从理性的角度去思考,鼓励学生用数学观点进行类比、归纳、抽象,培养学生严谨的数学学习习惯和良好的思维习惯。

2.本节设计注重学生的探究活动。学生在学习过程中,通过对问题的探究思考、体验认识、广泛参与,培养学生严谨的思维习惯和积极主动的学习品质,从而提高学习质量。

3.本节设计注重了学生个性品质的发展。通过对富有挑战性问题的解决,激发学生顽强的探索精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美、数学推理的严谨美,从而激发学生强烈的探究兴趣。

备课资料

备用习题

1.如果a、b、c、d是任意实数,则( )

A.a>b,c=d  ac>bd            B.ac>bc  a>b

C.a3>b3,ab>0  1a<1b             D.a2>b2,ab>0  1a<1b

2.已知a+b>0,b<0,那么a,b,-a,-b的大小关系是( )

A.a>b>-b>-a             B.a>-b>-a>b

C.a>-b>b>-a             D.a>b>-a>-b

3.已知-1< a

A.1a<1bC.1b<1a

4.设a、b∈R,若a-|b|>0,则下列不等式中正确的是( )

A.b-a>0              B.a3+b3<0

C.a2-b2<0              D.b+a>0

5.若α、β满足-π2<α<β<π2, 则α-β的取值范围是( )

A.-π<α-β<π             B.-π<α-β<0

C.-π2<α-β<π2             D.-π2<α-β<0

6.已知60

7.已知ad,求证:c-a>d-b.

8.已知x>y>z>0,求证:yx-y>zx-z.

参考答案:

1.C A项中,当c、d为负数时,acb3,得出a>b,又由ab>0可得1a<1b,C项正确;D项中,若a、b均为负数时,由a2>b2得出a0得出1a>1b,D错。

2.C 由a+b>0,b<0可知a>0,b<0,故a,-b为正,-a,b为负,又由a+b>0知a>-b,b>-a,所以a>-b>b>-a.

3.D 由-10,所以1b<1a<0,a2>b2>0,故1b<1a4.D 利用赋值法:不妨令a=1,b=0,则排除A,B,C.

5.B 由α<β知α-β<0,又由α>-π2,β<π2,故α-β>(-π2)-π2=-π,

即-π<α-β<0.

6.(27,56) (,3) ∵28

又60

∴xy∈(6033,8428),

即2011

7.证明:∵a-b.

又∵c>d,∴c+(-a)>d+(-b),即c-a>d-b.

8.证明:∵x>y,∴x-y>0.∴1x-y>0.

又y>z>0,∴yx-y>zx-y.①

∵y>z,∴-y<-z.∴x-y

∴01x-z.

又z>0,∴zx-y>zx-z.②

中职数学不等式性质的教学策略 第13篇

一将不等式性质的名称用更具特征化的方式表达

该种教学策略主要是依据不等式性质独有的特点而对这一性质进行命名。利用各种不等式的特征, 从而选择出能准确表达出其独有性质的名称, 该种教学方式最明显的优势就是可以大大提升学生对于不等式的注意力, 从而引导学生有意识地对其进行记忆。该种方式提高的将不仅仅是学生的记忆能力, 更能有效增加学生学习的目的性, 从而为提高学习效率做出积极的尝试。举例说明, 不等式的性质有一个明显的特征就是可加性, 学生对这一叙述方式有些陌生, 教师在教学过程中, 可使用:a大于b, 那么即可推出a加c大于b加c的方式进行表达。

二利用更加生动的形式进行课堂导入

该种教学方法指的是使用具体形象的方式对不等关系进行表达, 从而达到让性质内容可以从具体的物质关系中展现给学生。有效的导入对于逻辑思维能力相对较差的学生来讲有着极大帮助作用。

三尽量使用生活化的语言表达方式

不等式性质教学在进行知识传递的过程中, 往往会涉及许多的专业学术名词, 这对于学生正常进行知识学习客观上造成了一定的障碍, 为了尽可能地将不良影响降到最低, 教师应当尽可能使使用生活化的语言对不等式性质进行阐述。这就要求教师在呈现数学知识的同时运用学生易于理解的语言、图像, 尤其是对于那些有一定理解难度的符号语言, 教师更应通过生活化的表达, 提升学生学习知识的热情。

四在难度更低的理解方式下, 引导学生感知问题

该种教学策略注重的是通过使用学生既有的生活体验, 用生活中的事例让学生更加准确地掌握不等式性质。数学尽管属于一门相对较为抽象的学科, 然而从其产生根源上讲, 数学依然与我们的生活实际息息相关。学生之所以觉得数学枯燥无味, 并不是因为数学知识枯燥无味, 而是因为数学学习过程中, 那些晦涩难懂的数学符号以及表达方式让他们觉得十分没有意思。针对这一问题, 教师在进行授课过程中应当通过积极的理解方式创新, 在尽可能真实地使用现实案例基础上, 提高每一节数学课对于抽象、数学化了的知识进行还原, 从而提升学生的理解能力, 进而让他们真正掌握数学知识的内涵, 这对于他们理解数学知识、增加数学学习兴趣以及学会在实际生活中运用数学知识, 并培养数学思维是十分有效的。如在实际教学过程中, 笔者用以下方式进行教学:首先, 将课堂知识中的a, b, c用生活化的方式进行表达, 其次, 进行不等式性质阐释, 笔者在教学过程中会说, 我们都知道一大块石头的重量要远远超过一包方便面的重量, 一包方便面的重量要远远大于一块橡皮的重量, 那么我们就可以得出一块大石头的重量绝对会大于一块橡皮重量等, 该种类比方法对降低教学难度有着十分重要的意义。

五运用数学化方式进行问题解决

不等式性质学习的最终目标就是引导学生通过这方面知识的学习, 可以通过使用不等式的性质开展相关的不等式进行变形活动, 从而有效提升学生的推理水平, 为以后学习过程中证明不等式成立以及解决不等式学习问题奠定坚实的基础。因此在进行前面几方面的引导后, 教师必须将重点放置在教会学生用数学化方式进行问题解决上。如对于b0, 又∵a+c-b-c>0, 因此可以推导出b+c

六结束语

不等式性质客观地讲, 究其难度而言并不是中职数学教学的难点, 然而由于其表达过程中涉及许多学生头疼的符号以及语言, 学生往往不乐于学习这方面的知识。为了及时改变这种状况, 广大教学者必须通过适当的知识导入, 在运用形象、自然的理解之后, 为提升学生的学习质量, 采用正确的数学化教学方式, 使其进行相关知识学习。

参考文献

[1]郑毓信.关于课程改革的若干深层次思考——从我国新一轮数学课改说开去[J].开放教育研究, 2006 (4)

不等式的基本性质 (说课稿) 第14篇

1. 下列x的取值中,使不等式x-1>3成立的是()

A. x=8B. x=-8C. x=10D. x=-10

2. 对于任意实数a,下列不等式中总成立的是()

A. -2a<2aB. -2a<2(-a)C. -2+a<2+aD. -a<a

3. 若x为实数,则|x|+x的值()

A. 一定大于0B. 不可能小于0C. 可能小于0 D. 可能是全体实数

4. 若a>b>0,则不列不等式中不正确的是()

A. a-b>b-aB. >>0C. -a<-bD. >

5. 若x<y,则下列不等式中,一定成立的个数是()

①x+m<y+m;②x-m<y-m;③xm<ym;④<;⑤xm2<ym2;⑥x2<y2.

A. 1B. 2C. 3D. 4

6. 如果a<0,则()

A. 2007a<2008aB. -a<-aC. πa>3.141592aD. -a<-a

7. 若a<-1,则a、a2、三者的大小满足()

A. a2>a>B. >a>a2 C. a>a2> D. a2>>a

8. 已知实数a、b、c在数轴上对应的点如下图所示,则下列式子正确的是()

A. cb>abB. ac>abC. cb<abD. c+b>a+b

二、填空题(每题5分,共30分)

9. 用不等号连接:

(1)3×(-9)-4×(-9). (2)当-1<b<0时,b;bb2.

10. 小明的语文、英语两科的平均成绩为m分.若使语文、英语、数学三科的平均成绩超过n分,则数学成绩a(分)满足.

11. 若-3x+4<-2x-5,则x9.

12. 若ax>b,ac2<0,则x.

13. 用不等式表示:

(1)x的3倍与 y的的差是正数:.

(2)m的5倍比n的立方小:.

14. 若a>b,则ab<b2成立的条件是.

三、比较大小(每题5分,共15分)

15. x2-2x+3与-2x+3.

16. (x+3)(x-5)与(x+2)(x-4).

17. x2-4x+3与x2-6x+9.

四、计算题(18~19题每题9分,20题13分,共31分)

18. 某厂原计划在5月份生产汽车a辆.现需增产10%,而本年5月份又有7天假期,要想完成任务,请你写出每天汽车产量y(辆)应满足的关系式.

19. 若2≤a≤8, ≤b≤4a,c=a+b,请你确定c的范围.

20. 比较下列算式结果的大小(在横线上填“<”“>”或“=”):

42+322×4×3, (-2)2+12 2×(-2)×1,

()2+

2 2××, 22+22 2×2×2.

观察、归纳,写出能反映这种规律的一般结论,并说明其中的道理.

等式的性质说课稿 第15篇

尊敬的各位评委老师好

今天我说课的题目是《等式的性质》,下面我将从教材,教法,学法,教学过程,板书设计这五个方面来说明。

首先,教材分析

《等式的性质》是人教版小学数学五年级上册第五单元的内容,是在学生已经学习了用字母表示数及方程的意义等知识基础上,进一步探究等式的性质,为后面学习解方程与列方程解决实际问题打下基础。

基于以上的教材分析,结合学生的认知特点,我制定了如下目标:

知识目标:通过天平演示保持平衡的几种变化情况,初步感知等式的性质

能力目标:经历天平秤物的观察和抽象过程,体验观察、比较、分析的学习方法

情感目标:激发学生的学习兴趣,体会数学与生活的密切联系

我将本节课的教学重点定为:理解和掌握等式的性质

教学难点:等式性质的归纳

在教学过程中,我主要采用直观演示法、观察分析法为主,多媒体课件演示为辅的教学方法。

学法指导上,强调自主探索、合作交流的学习方法,让学生动眼观察,动手操作,动脑思考,动口表达,培养学生观察分析能力

下面我将重点介绍教学过程

为了突出重点,突破难点,达到已定的教学目标,我设置了以下几个环节

一、复习旧知,导入新课

通过两组俩习题,让学生找方程,列方程,复习方程的意义,揭示课题:今天我们用天平来研究等式的性质

设计意图:通过复习旧知,既激发了学生的学习兴趣,也为新课的开展做好铺垫

二、合作交流,探索新知

这是本节课的重点环节,为了帮学生突破难点,我通过几个活动来实现: 活动一:探索等式的基本性质1

第一步,出示情境图1,让学生观察并说说发现,交流后得出结论:天平平衡,一个茶壶和两个茶杯重量相等,引导学生用等式表示出来 a=2b

第二步:提问:如果天平两边同时各放上1个同样的茶杯,天平会发生什么变化?让学生思考,讨论,大胆提出猜想:天平仍然是平衡的

第三步:我首先进行试验操作,再借助课件演示,验证学生的猜想,明确:两边同时加上一样的重量,天平仍然平衡,引导学生列式表示,a+b=2b+b

第四步:引导学生双向观察,按照教材插图箭头所示,观察图一,让学生先从左往右观察,得出天平两边同时加上相同的重量,天平平衡,接着,引导学生从右看到左,天平两边同时减少同样的物品,天平也是平衡的。

为了进一步验证学生的猜想,课件演示情境图二:明确天平两边同时减少相同的物体,天平平衡的

提出问题,通过这几个试验,你发现了什么?能用一句话来表示你的发现吗?组织学生进行小组讨论,汇报小组合作成果,引导学生归纳等式性质1:等式两边加上或减去同一个数,左右两边仍然相等

这一环节,循序渐进的引导学生,经历观察-猜想-验证-归纳的过程,充分发挥了学生的主体性作用,培养学生的观察,分析,比较概括能力

活动2:探索等式的基本性质2

考虑到天平两边扩大,缩小的操作没有添上,去掉那么方便,为了帮助学生理解,出示一组练习题做铺垫

因为40+20=(),所以(40+20)×()=60×2(40+20)÷5=60÷()

有了等式性质1的基础,等式性质2我让学生自己总结,以小组为单位,进行合作,引导学生通过观察-猜想-操作验证的顺序来总结性质2,教师进行巡视指导,通过提问提示学生考虑除数不为0的情况,指名小组成员上台展示汇报小组合作成果,集体交流归纳得出等式基本性质2:等式两边同时乘同一个数,或除以同一个不为0的数,左右两边仍然相等

这一环节,以等式性质1为基础,让学生自主探索,合作交流,动手操作,自己归纳出等式性质2,培养学生独立获取知识的能力

三、层次练习,巩固提高

课件出示练习题 利用等式的性质填空

1.如果2x-5=9,那么2x =9+()

2.如果5=10+x ,那么5x-()=10 3.如果3x =7,那么6x =()

4.如果5x =15,那么x =()

让学生在解决问题的过程中,深化学生对等式基本性质的理解

四、小结作业

首先让学生自己谈谈本节课的收获,回顾和总结本节课的知识,培养学生的归纳概括能力和语言表达能力

然后,布置一道开放性的作业,在我们身边,还有许多的实际情况可以通过等式的基本性质来解决,你能找出来并解决它吗?回归生活,让学生进一步体会数学与生活的密切联系

等式的性质说课稿 第16篇

《等式的性质》是人教版五年级上册第五单元第二小节中的内容。本节“等式的性质”是在上一节刚刚认识了等式和方程的基础上进行教学的,其核心思想是构建等量关系的数学模型。它是系统学习方程的开始,这节课的内容在简易方程中就起到了承上启下的作用。通过这部分内容的学习,学生进一步能“理解等式的性质,为以后利用等式的性质解简单的方程”打好基础。

根据对教材地位与作用的分析,考虑到学生已有的认知结构心里特征,我将本课教学三维目标定为:

第一,知识与技能目标:理解并能用语言表述等式的基本性质,能利用等式的基本性质解决简单的问题。

第二、过程与方法目标:在观察实验操作、讨论、归纳等活动中,经历探索等式基本性质的过程。

第三、情感态度与价值观目标:积极参与数学活动,体验探索等式基本性质过程的挑战性和数学结论的确定性。

为了使学生能够比较顺利地达到教学目标,因此,我确定了本节课的教学重、难点:根据等式的性质在教材中的作用,我把抽象归纳出等式的基本性质作为本节课的重点,同时也是难点。

二、说学情

新课标强调学生是数学学习的主人。而简易方程是新课标“数与代数”中一个重要部分。学生已经了解了方程的意义并且初步学会了列简单方程,对于小学五年级的学生,求知欲和好奇心都很强,已具备一定的独立思考能力,乐于动手操作、合作探索。因此教学中我会紧扣学生已有的知识经验,创设有助于学生自主学习、合作交流的学习情境,引导学生认真观察—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律,为学生创设一个和谐的学习环境,帮助学生在探索交流中,感受、理解和概括出等式的性质。

三、说教学学法

《数学新课程标准》指出:数学教学必须注意从学生的生活情境以及学生感兴趣的事物出发,为他们提供参与的机会,使他们体会到数学就在身边,对数学产生亲切感。因此,在这节课中,教法我采用了情境教学法,观察法、讨论法、探究法和问答法,来组织学生开展探索性的学习活动,让他们在自主探索中学习新知,亲历探索,获取新知。

同时,我还会指导学生采用实验观察、自主探究和分组讨论等等,以学生为主体,引导学生进行探究学习,同时通过大量的练习问答来巩固知识点的掌握运用。鼓励学生之间进行合作交流,激发学生的学习热情,更好地理解知识。

作为教师要做的是帮助学生架设生活与教材的桥梁,激发学生的情感体验,推动学生深入地感受、领会学习,因此我设计如下教学程序:

四、说教学过程

(一)创设情境,探究新知

探寻等式的性质1

首先,我会出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡,提问学生“这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示a=2b,(板书)

第二步,提问学生:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往天平两边各放一个茶杯,天平会发生什么变化?我会进行演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡,这个过程可以表示为a+b=2b+b(板书)

第三步,提问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,我再一一演示验证。

第四步,想一想,怎样变换能使天平保持平衡,天平两边增加同样的物品,天平保持平衡,如果天平两边减少同样的物品,天平会保持平衡吗?

第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a(板书),因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡,得到等式的性质1.

(二)、探寻发现等式的性质2

第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒中d克,则可以用一个等式来表示:即c=2d(板书)

第二步,提问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定。同时引导,天平左边的质量在原来的基础上发生了什么变化?扩大了两倍,右边呢,也是扩大了两倍,因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡,用式子表示就是c×2d=2d×2(板书)

第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2(板书)。因此,天平除了在两边同时增加或减少会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡,等式的性质2。

第四步,进一步验证,大屏幕出示课本中的实例,提问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。

学习完新知之后为了帮助学生将所学知识拓展变化来解决生活中的问题,发散学生的思维。我设置了巩固练习,拓展提升环节,通过填空、判断等一系列的练习巩固由浅入深的运用等式的性质解决实际问题。随后进入最后一个环节,总结反思,深化重点,只有自己领悟的知识,才是真正自己的知识,因此我会向学生提问,通过刚才的实验,我们发现了什么,谁来总结一下?学生讨论交流后汇报:

1)天平两边同时增加或减少同样的物品,天平保持平衡;

2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。

从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?学生讨论交流,汇报:

1)等式两边都加上或减去相同的数,等式保持不变;

2)等式两边都乘或初一相同的数(0除外),等式不变。

根据学生对本节课知识的掌握情况及学生的个人发展特点,我会设置开放性作业加强学生对本节课知识的掌握。

五、板书设计

根据本节课的内容,我主要采用如下板书设计:

等式的性质

等式性质1等式性质2

a=2bc=2d

a+b=2b+bc×2d=2d×2

不等式的基本性质 (说课稿)

不等式的基本性质 (说课稿)(精选16篇)不等式的基本性质 (说课稿) 第1篇§9.1.2 不等式的基本性质(说课稿)收成中学 严文选我今天说...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部