电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

等腰三角形的性质说课

来源:文库作者:开心麻花2025-10-101

等腰三角形的性质说课(精选8篇)

等腰三角形的性质说课 第1篇

《等腰三角形的性质》说课稿

一、教材分析

1、教学内容:

本节课是人教版八年级上册《等腰三角形》的第一课时的内容——等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质。

2、在教材中的地位与作用:

三角形是最简单、最基本的几何图形,它是研究其它图形的基础,作为特殊的三角形——等腰三角形,应用更为广泛,因此,探索和掌握它的基本性质对学生更好的认识现实世界、发展空间观念和推理能力都是很重要的。

本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

3、教学目标:

知识技能:

1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。数学思考:

1、观察等腰三角形的对称性,发展形象思维。

2、通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:

1、通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在 1 运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

4、教学重点与难点: 重点:等腰三角形的性质。

难点:等腰三角形的性质的探索和应用。

二、学情分析

学生在小学已经接触过等腰三角形,对等腰三角形并不陌生,在进入八年级后,学生观察、操作、猜想的能力较强,已经具备了独立思考的能力,但演绎推理、归纳、建立数学模式的意识等方面比较薄弱,自主探究、合作交流的能力也需要在课堂教学中进一步的加强和提高。三 教法学法分析

教法:结合学生实际情况及教材内容,遵照数学教学就是数学活动的教育原则,按照教学中发扬民主,教师成为学生数学活动的组织者、引导者、合作者的基本要求,主要采用以下教学方法:教师启发引导、学生动手操作、观察、分析、猜想、验证得出等腰三角形的概念,并讨论归纳出等腰三角形的性质。针对新知应用,主要采用问题探究式的教学方法。

学法:通过学生动手实践,培养学生的观察能力、分析能力 通过自主探索,调动学生思维的积极性,使学生自主地获取知识;

通过合作交流,学生分组讨论,使学生在沟通中创新,在交流中发展,在合作中获得新知。

四、教学过程设计

(一)创设情境,引入课题

1、课件出示生活中房子的图片,学生观察图片,教师提出问题:建筑工人在盖房子时,用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道为什么吗?(由日常生活中的情境引出问题,目的在于激发学生学习兴趣,并让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的情境环境,有利于帮助学生找准新旧知识的连接点,也为等腰三角形三线合一性质的学习埋下伏笔。)

(二)回顾定义,引出新知

提问小学所学过的等腰三角形的有关概念。学生思考回答后,教师讲授等腰三角形和相关的概念。教师再提问引入课题:等腰三角形还有其他的特殊性质吗?这节课我们就来的探究等腰三角形的性质。(以此引出课题。在回顾小学所过的等腰三角形的有关概念基础上,使学生学习有一种轻松的感觉。)

(三)动手实践,大胆猜想

1、动手做一做

教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)想一想:(1)、剪纸过程中得到的⊿ABC有什么特点?

学生思考并交流意见,教师归纳并板书:在⊿ABC中,AB=AC 思考:(1)剪出等腰三角形是轴对称图形吗?

(2)把剪出等腰三角形ABC沿折痕对折,找出其中重合的线段和角.(3)你能猜一猜等腰三角形除两腰相等还有什么性质吗?说说你的猜想。(学生思考、再次回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。学生讨论交流之后,学生能够说出一大部分的性质,但仍不全面,不具体。)

2、仔细观察,合作交流

(1)、通过多媒体动画演示,让学生形象直观观察折纸过程,(2)、提出问题:把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,并填在书上的表格中,你发现了什么现象?能猜一猜等腰三角形ABC有哪些性质吗?

①∠B=∠C →两个底角相等 ②BD=CD →AD为底边BC上的中线 ③∠BAD=∠CAD →AD为顶角∠BAC的平分线 ④∠ADB=∠ADC=90°→AD为底边BC上的高

教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2: 性质1 等腰三角形的两个底角相等(简写成“等边对等角”);

性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写 成“三线合一”)

(通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,提高推理能力,发展形象思维。)注:注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识和创新意识。

(四)证明猜想,形成定理(引导学生通过观察、尝试、估算、归纳、类比、画图等活动发现一些规律,猜测某些结论,发展合情推理能力;也要让学生逐步意识到,结论的正确性需要演绎推理的确认)

(五)运用性质,解决问题

1、课件出示:练习一

(为了使学生巩固基础知识,掌握基本技能,拓展思维能力,让每个学生都能尝到成功的喜悦。并让学生体验分类讨论的思想在解题当中的应用。)

2、课件出示:练习二

(这个例题是已知边相等,求角度数的问题,对学生而言,难度较大。因此我对它进行了改编,设置三个梯度问题降低难度,先让学生独立思考后在小组交流,寻求好的解题方法。此题充分利用了等边对等角的性质和三角形内角和定理。体现了数形结合的思想。)

3、课件出示:练习三

(完成课前提出的问题,使这节课前后呼应,成为一个整体。同时也是对性质2的灵活运用,发展学生的应用意识。教师引导学生从实际问题抽象出数学问题,建立数学模型)注:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,让学生在学习和练习中逐步感悟数学思想。

(六)归纳小结,提炼精华(教师与学生共同回顾学习内容,理顺知识点,归纳数学思想方法。学生讨论交流之后归纳,教师提炼,这个过程中特别关注了学生情感态度的发展)

(七)注重个性,布置作业

1、必做题:课本第51页第1、2题

2、选做题:课本第58页第12题

3、动手实践题:

(进一步巩固所学知识,及时反馈,查漏补缺,分层次布置作业,满足不同学生的发展需求,让不同层次的学生在数学上得到不同的发展。)

(通过学生动手实践,进一步增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

(六)几点说明

板书设计:在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

时间安排:

(七)说课综述

1、本节课在教学方法的设计上,以轴对称图形为切入点,把重点放在了逐步展示知识的形成过程上,先让学生通过剪纸来认识等腰三角形;再通过折纸猜测、验证等腰三角形的性质;然后运用全等三角形的知识加以论证。通过学生动手实践,观察分析,猜想证明,完成了从感性认识到理性认识的知识发生、发展的认知过程。使学生的思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,最后,学生动手运用所学知识解决问题,真正实现学生为主体的教学理念。

2、在教学过程中,采取分小组合作探究学习的方式,强调学生形成积极主动的学习态度,关注学生的学习兴趣和体验,充分体现“数学教学主要是数学活动的教学”这一教学思想。注意引导学生对解题思路和方法进行总结,切实提高学生分析问题,解决问题的能力。

等腰三角形的性质说课 第2篇

《数学课程标准》指出:“数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括,形成方法和理论,并进行广泛应用的过程”,“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式”。因此,在本节课的教学设计中,将始终体现以下教育教学理念:

1、突出体现数学课程的基础性、普及性和发展性,使数学教育面向全体学生。

2、学生是学习的“主人”,教学活动要遵循数学学习的心理规律,从已有的生活经验出发,让学生亲身经历将已有的实际问题抽象成数学模型,并解释和应用数学知识的过程。

3、教师是学习活动的组织者、引导者,教师应组织和引导学生在自主探索、合作交流的过程中理解和掌握数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

4、联系现实生活进行教学,让学生初步具有“数学知识来源于生活,应用于生活”的思想,增强数学知识的应用意识。

二、教材分析

1、教学内容:

本节课是义务教育课程标准实验教材数学八年级上册第十四章第三节《等腰三角形》的第一课时的内容等腰三角形的性质,等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质以外,还具有一些特殊的性质。它是轴对称图形,具有对称性,本节课就是要利用对称的知识来研究等腰三角形的有关性质,并利用全等三角形的知识证明这些性质。

2、在教材中的地位与作用:

本节课是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的,担负着进一步训练学生学会分析、学会证明的任务,在培养学生的思维能力和推理能力等方面有重要的作用;而“等边对等角”和“三线合一”的性质是今后论证两个角相等、两条线段相等、两条直线垂直的重要依据,本节课是第三课时研究等边三角形的基础,是全章的重点之一。

3、教学目标:

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:1、通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

2、通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

4、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形的性质的验证。

5、教学准备:CAI课件,长方形的纸片,剪刀,常用画图工具。

三、学情分析

八年级学生的抽象思维趋于成熟,形象直观思维能力较强,具有一定的独立思考、实践操作、合作交流、归纳概括等能力,能进行简单的推理论证,掌握了一般三角形和轴对称的知识。因此,在本节课的教学中,可让学生从已有的生活经验出发,参与知识的产生过程,在实践操作、自主探索、思考讨论、合作交流等数学活动中,理解和掌握数学知识和技能,形成数学思想和方法,让每个学生在数学上得到不同的发展,人人都获得必需的数学。

四、教法设想

让学生参与教学过程,注重培养学生的建构习惯,提高学生的数学素质。

《新课程标准》要求课堂教学要充分体现以学生发展为本的精神,因此,在本节课的教学设计中,我采用了“问题情境建立模型解释、应用与拓展”的教学模式,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识和基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心。

在教学中,遵循因材施教的原则,坚持以学生为主体,灵活运用教具直观教学、联想发现教学、设疑思考和逐步渗透等教学方法,充分发挥学生的主观能动性,注重学生探究能力的培养,让学生去亲身体验知识的产生过程,拓展学生的创造性思维,加强对学生的启发、引导和鼓励,培养学生大胆猜想、小心求证的科学研究思想,为学生创设情境,激发学生的求知欲和学习兴趣,促使他们不断克服学习中的被动心理,让学生在轻松愉快的学习中掌握知识、发展智力、受到教育。

采用多媒体辅助教学,呈现更直观的形象,激发学生的积极性、主动性,增大课堂容量,提高教学效率。

五、学法设计

《数学课程标准》指出:数学的抽象结论,应以观察、实验为前提,几何教学应该把实验方法与逻辑分析结合起来。教学中,让学生在教师的引导下,一边进行折叠重合的模型演示,一边进行阅读讨论,通过看、想、议、练等活动,自己“发现”等腰三角形的性质;从而避免了传统教学中的灌输式、注入式。这样做有利于活跃学生的思维,帮助他们探本求源,体现了“学习任何东西的最好途径是自己去发现”和“学问之道,问而得,不如求而得之深固也”的思想。把重点放在学生如何学这一方面,通过直观演示得到感性认识,在实践、观察、讨论、交流等活动中,让学生经历由验证归纳到推理论证的认知过程,掌握知识和技能,形成思想和方法,培养学生的造性思维。

六、教学过程设计

(一)回顾与思考(2′)

1、课件出示人字型屋顶的图象,提问:(1)、屋顶设计成了哪种几何图形?(2)、它有什么特征?它是轴对称图形吗?对称轴是哪一条?(由日常生活中的等腰三角形引出课题,目的在于让学生体会数学来源于生活,培养学生从实际问题中抽象出数学问题的能力,同时,为学习新知创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题(2),其实就是等腰三角形三线合一性质的伏笔。)

2、学生思考回答后,教师再提问引入课题:等腰三角形还有其他的特殊性质吗?这节课我们就来研究等腰三角形的性质。(现代教学论认为:在正式进行探索和发现前,要让学生对探索的目标、意义有十分明确的认识,做好探索前的物质准备和精神准备。)

(二)观察与表达(4′)

剪一剪:教师引导学生将课前准备的长方形纸片按教材要求对折后剪下,再把它展开,看得到了一个什么图形?(通过让学生动手剪纸,获得图形的直观感受,并为下面的折纸操作做好铺垫,为学生提供参与数学活动的时间和空间,调动学生的主观能动性,激发其好奇心和求知欲。)

想一想:1、剪纸过程中得到的⊿ABC有什么特点?

学生思考并交流意见,教师归纳并板书:在⊿ABC中,AB=AC,像这样有两边相等的三角形叫等腰三角形。

再让学生找一找生活中的等腰三角形。

2、除了剪纸的方法外,你还可以其他的方法作(画)出等腰三角形吗?

学生思考、讨论、交流,教师在学生充分发表自己想法的基础上给出等腰三角形的画法,并画出图形,然后结合前面剪、画的图形介绍“腰”、“底边”、“顶角”、“底角”等概念。(结合自已剪出的等腰三角形和画出的图形学习相关概念,加深印象。)

(三)了解与探究(14′)

1、提问:刚才剪出的等腰三角形ABC是轴对称图形吗?它的对称轴是什么?

学生思考、回顾剪纸过程,动手把等腰三角形ABC沿折痕对折,容易回答出⊿ABC是轴对称图形,折痕AD所在的直线是它的对称轴。(让学生认识到动手操作也是一种验证方式。)

2、把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,并填在书上的表格中,你发现了什么现象?能猜一猜等腰三角形ABC有哪些性质吗?

①∠B=∠C 两个底角相等

②BD=CD AD为底边BC上的中线

③∠BAD=∠CAD AD为顶角∠BAC的平分线

④∠ADB=∠ADC=90°AD为底边BC上的高

教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2:

性质1等腰三角形的两个底角相等(简写成“等边对等角”);

性质2等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简写成“三线合一”)

(通过教师的引导,学生利用等腰三角形的对称性,讨论、归纳出等腰三角形的两条性质,在这个过程中训练学生文字语言与符号语言的互换,培养学生自主探究的学习品质和观察分析、归纳概括的能力,发展形象思维。)

3、用全等三角形的知识验证等腰三角形的性质

(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?用数学符号如何表达条件和结论?如何证明?

教师引导学生根据猜想的结论画出相应的图形,写出已知和求证,师生共同分析证明思路,强调以下两点:

①利用三角形的全等来证明两角相等,为证∠B=∠C,需证明以∠B、∠C为元素的两个三角形全等,需要添加辅助线构造符合证明要求的两个三角形。

②添加辅助线的方法有很多种,常见的有作顶角∠BAC的平分线,或作底边BC上的中线,或作底边BC上的高等,让学生选择一种辅助线并完成证明过程。

(2)回顾性质1的证明方法,你能用这种方法证明性质2(等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合)吗?

让学生模仿证明性质2,并鼓励学生用多种方法证明。

(等腰三角形的性质的探索与验证是本节课的重点和难点,本环节中,充分调动学生的主观能动性,让学生大胆猜想、小心求证,经历性质证明的过程,增强理性认识,体验性质的正确性和辅助线在几何论证中的作用,在学生的自主探索中,完成了重点知识的教学,突破了教学难点,培养了学生的合情推理能力和演绎推理的能力。)

(四)应用与提高(10′)

1、课件出示:某房屋的顶角∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B、∠C、∠CAD的度数。

(本节课从居民建筑人字梁结构中抽象出几何问题,通过实践探究活动得出等腰三角形的性质这一结论,在此,再将得到的结论应用到实践中,解决人字梁结构中的实际问题,这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于增强学生的数学应用意识。)

⑴∵AB=AC,AD⊥BC

∴∠_=∠_,_=_;

⑵∵AB=AC,BD=DC

∴∠_=∠_,_⊥_;

⑶∵AB=AC,AD平分∠BAC

∴_⊥_,_=_

(让学生再次理解和运用等腰三角形的“三线合一”性质,以填空的形式及时巩固所学知识,了解学生的学习效果,增强学生应用知识的能力。)

3、课件出示:如图(二),在⊿ABC中,AB=AC,点D在AC上,

且BD=AD,

⑴图中共有几个等腰三角形?分别写出它们的顶角与底角;

⑵你能求出各角的度数吗?

师生共同分析:⑴已知中没有给出角度,需利用三角形内角和为180°的条件来求具体度数,但由于未知数过多,需根据已知各边的关系寻找到⊿ABC的各角关系,由图中的三个等腰三角形的底角及外角性质,可设∠A=X°,列方程解决。⑵强调此题图形特殊,只有顶角为36°的等腰三角形才能满足。

(改编课本例题,使问题更富层次性与探究性,使学生认识到从复杂图形中分解出等腰三角形是利用性质解决问题的关键,培养学生数形结合的能力和方程的思想。)

等腰三角形的性质的应用,是这节课的又一重点,本环节就是通过运用这一性质解决有关问题,让学生在解答活动中提高运用知识和技能的能力,在掌握重点知识的同时,获得成功的体验,建立学习的自信心。

(五)拓展与延伸(5′)

⑴等腰三角形底边中点到两腰的距离相等吗?

教师指导学生动手画图,折纸,思考,讨论得出结论,并用适当的方法验证这一结论。

⑵利用类似的方法,还可以得到等腰三角形中哪些线段相等?

教师引导学生寻找等腰三角形中其他相等的线段,如:两腰上的高,两腰上的中线,两底角的平分线等。

(通过学生动手实践,增强学生动手能力,引导学生合作探究,更深入地认识等腰三角形和性质,启迪学生的发散思维。)

(六)心得与体会(4′)

这节课我们主要研究了什么内容?你有哪些收获?

请用“通过今天这堂课的研究,我明白了,我的收获与感受有(),我还有疑惑之处是()”的模式来总结、评价这堂课的学习。

(让学生按上述的模式进行小结,通过对本节课的回顾,增强学生对等腰三角形的理解和对轴对称图形的理解,培养学生“学习、总结、学习、反思”的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。)

(七)练习与作业(1′)

1、略(详见课件);

2、教科书习题14.3第1、4、6题;

3、教科书第143页练习题1、2、3。

(让学生体会等腰三角形的性质在现实生活中的应用价值,学会用数学知识解决实际问题,进一步巩固所学知识,及时反馈,查漏补缺,分层次布置作业,满足不同学生的发展需求,体现层次性和开放性。)

设计思想:

浅析球面直角三角形的相关性质 第3篇

球面是空间中最完美对称的曲面.两个半径相等的球面可以用一个平移把它们叠合起来, 而两个半径不相等的球面可以用相似变换 (放大或缩小) 叠合, 由此可见本质性的球面几何可以归纳到单位球面上来研讨.本论文所讨论的球面三角形都是单位球面上的.球面直角三角形可以有一个、两个或三个直角.含有三个直角的球面三角形, 它的各边皆为undefined (如图1) , 含有两个直角的球面三角形, 其对直角的两边皆为undefined, 而第三边与第三角同度, 所以含有三个或两个直角的球面三角形, 其边角关系都是确定的.我们这里研究的对象为含有一个直角的球面三角形.记球面三角形的三角分别为A, B, C, 三边分别为a, b, c.

性质1 若在单位球面三角形ABC中, undefined, 则有:

undefined;

(2) cosc=cosacosb=cotAcotB;

undefined

证明 因为球面三角形ABC有如下边角关系:

(1) cosa=cosbcosc+sinbsinccosA;

(2) cosA=-cosBcosC+sinBsinCcosa;

undefined

因为undefined, 直接代入得到

undefined

从球面余弦定理cosa=cosbcosc+sinbsinccosA及cosc=cosacosb, 得undefined, 即证明 (1) 式中后一式.由undefined及类似公式undefined, 可得cosc=cotAcotB.

注1 性质1中cosc=cosacosb给出了球面直角三角形的三边关系, 因此我们称之为球面直角三角形的勾股定理.

由球面直角三角形的勾股定理可知, 若两直角边a, b同时大于undefined或者同时小于undefined, 则cosc均为正, 因此斜边c小于undefined;若直角边a, b有一个大于undefined, 另一个小于undefined, 则cosc均为负, 斜边c必大于undefined

注2 由性质1中cosc=cotAcotB可得, 若斜边的邻角A, B同时大于undefined或者同时小于undefined, 则斜边c小于undefined;若A, B中有一个大于undefined, 而另一个小于undefined, 则斜边c必大于undefined

性质2 设点A不是大圆的极点, 如果连接A与大圆上的点C的劣弧undefined垂直于大圆, 则点A到大圆的距离是undefined的长.

证明 因为连接球面上的两点的曲线以大圆最短, 设A是大圆Γ垂直的大圆的两交点中靠近A的是C.如图2, 设B是大圆Γ上的另一点, A, B, C构成一个球面直角三角形, 则undefined

公式sinb=sinBsinc, 0b.同时, 由此可知, 在球面直角三角形ABC中, 斜边undefined大于直角边undefined

性质3 设在单位球面三角形ABC中, undefined是△ABC的面积, 则undefined

证明 单位球面上△ABC的面积是undefined, 从性质1可以得到

undefined

球面直角三角形还有很多性质有待我们探究, 这里只列举并证明一部分重要的性质.对球面直角三角形的研究还有待进一步研究, 对球面几何的研究更需进一步拓展.

摘要:球面上至少有一个角是直角的三角形叫做球面直角三角形, 与平面上不同, 球面三角形可以有两个甚至三个直角.另一方面, 球面直角三角形的直角也不一定是最大角.本文主要研究讨论单位球面上的直角三角形的边角关系.

关键词:球面,三角形,直角

参考文献

[1]左铨如.球面几何导引与题解100道[M].南京:南京大学出版社, 2010.

[2]单墫.球面上的几何[M].南京:江苏教育出版社, 2006.

三角形的性质 第4篇

■ (2011江西)如图1,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=______.

■ 90°.

■ 本题主要考查三角形内角和定理和内心的基本性质. 因为三角形的内心是三角形的三条角平分线的交点,所以PA,PB,PC是△ABC的内角平分线,即∠PBC+∠PCA+∠PAB=■(∠ABC+∠ACB+∠BAC)=180°×■=90°.

■ (2011山东菏泽)将一副三角板按图2所示叠放,则角α等于( )

A. 30° B. 45° C. 60° D. 75°

■ D.

■ 本题主要考查三角形的外角性质以及三角板的特殊角. 根据三角板的特殊性容易求得∠1的度数为45°,再根据三角形的一个外角等于与它不相邻的两个内角的和可求得角α为75°.

■ (2011广东茂名)如图3,两条笔直的公路l1,l2相交于点O,村庄C的村民在公路的旁边建了三个加工厂A,B,D,已知AB=BC=CD=DA=5 km,村庄C到公路l1的距离为4 km,则村庄C到公路l2的距离是( )

A. 3 km B. 4 km

C. 5 km D. 6 km

■ B.

■ 本题主要考查角平分线的性质. 由已知能够注意到四边形ABCD是菱形,而菱形的对角线平分对角则成了解题的关键. 根据菱形的对角线平分对角,作出辅助线,即可证得CE=CF=4 km.

■ (2011广西河池)如图4,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论错误的是( )

A. BD平分∠ABC

B. △BCD的周长等于AB+BC

C. AD=BD=BC

D. 点D是线段AC的中点

■ D.

■ 在△ABC中,AB=AC,∠A=36°,根据等边对等角与三角形内角和定理,即可求得∠ABC与∠C的度数. 又由AB的垂直平分线是DE,根据线段垂直平分线的性质,即可求得AD=BD,继而可求得∠ABD的度数,于是可知BD平分∠ABC. 可得△BCD的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC. 可求得∠BDC的度数,进而求得AD=BD=BC.

■ (2011黑龙江)在△ABC中,BC ∶ AC ∶ AB=1 ∶ 1 ∶ ■ ,则△ABC是( )

A. 等腰三角形

B. 钝角三角形

C. 直角三角形

D. 等腰直角三角形

■ D.

等腰三角形的性质说课 第5篇

大家好,我说课的课题是八年级上册第13章第三节第1课时《等腰三角形的性质》。我主要从以下五个方面进行说课:

一说教材

《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。

二说教学目标

根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:

1掌握等腰三角形的性质

2知道等腰三角形的性质的推理过程

3会灵活运用等腰三角形的性质解决相关的数学问题

三 说教学重、难点

结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。

由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。

四 说教法和学法

本节课我采用的教法是启发式教学法、动手操作法。

学生的学法是:自主探究法、合作讨论法。

五说教学过程

本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。

1 复习导入

通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的`三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。

2探究新知

在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.

3理解与运用

为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。

4强化巩固

在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。

5小结

设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。

等腰三角形的性质说课 第6篇

一、教材分析

1、教材的地位与作用:

本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察———发现———猜想———论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。

2、教学目标:

知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。

过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。

解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。

情感态度:通过引导学生对图形的.观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。

(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)

3、教学重点与难点:

重点:等腰三角形的性质的探索和应用。

难点:等腰三角形性质的推理证明。

二、教法设计:

教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。

三、学法设计:

在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。

四、教学过程:

根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程

1、创设情景:

首先向同学们出示精美的建筑物图片,并提出问题串:

(1)什么是轴对称图形?这些图片中有轴对称图形吗?

(2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:

(3)a、等腰三角形是轴对称图形吗?b、等腰三角形具备哪些性质呢?引出本节课的课题—我们这节课来探究等腰三角形的性质。

①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)

③分组讨论。(看哪一组气氛最活跃,结论又对又多。)

然后小组代表发言,交流讨论结果。

④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?

(教师引导学生进行总结归纳得出性质1,2)

性质1:等腰三角形的两底角相等。(简写成“等边对等角”)

性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)

等腰三角形的性质 第7篇

知识结构

重点与难点分析:

本节内容的重点是等腰三角形的性质及其推论。等腰三角形两底角相等(等边对等角)是证明同一三角形中两角相等的重要依据;而在推论中提到的等腰三角形底边上的高、中线及顶角平分线三线合一这条重要性质也是证明两线段相等,两个角相等及两直线互相垂直的重要依据。等腰三角形的性质为证明线段相等,角相等或垂直平提供了方法,在选择时注意灵活运用。

本节内容的难点是文字题的证明。对文字题的证明,首先分析出命题的题设和结论,结合题意画出草图形,然后根据图形写出已知、求证,做到不重不漏,从而转化为一般证明题。这些环节是学生感到困难的。

教法建议:

数学教学的核心是学生的“再创造”.根据这一指导思想,本节课教学可通过精心设置的一个个问题链,激发学生的求知欲,最终在老师的指导下发现问题、解决问题.为了充分调动学生的积极性,使学生变被动学习为主动学习,本课教学拟用启发式问题教学法.具体说明如下:

(1)发现问题

本节课开始,先投影显示图形及问题,让学生观察并发现结论。提出问题让学生思考,创设问题情境,激发学生学习的欲望和要求.

(2)解决问题

对所得到的结论通过教师启发,让学生完成证明.指导学生归纳总结,从而顺其自然得到本节课的一个定理及其两个推论. 多让学生亲自实践,参与探索发现,领略知识形成过程,这是课堂教学的基本思想和教学理念.

(3)加深理解

学生学习的过程是对知识的消化和理解的过程,通过例题的解决,提高和完善对定理及其推论理解。这一过程采用讲练结合、适时点拨的教学方法,把学生的注意力紧紧吸引在解决问题身上,让学生的思维活动在老师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”、“练”有所“获”,使传授知识与培养能力融为一体。一.教学目标:

1.掌握等腰三角形的性质定理的证明及这个定理的两个推论;

2.会运用等腰三角形的性质证明线段相等;

3.使学生掌握一般文字题的证明;

4.通过文字题的证明,提高学生几何三种语言的互译能力;

5.逐步培养学生逻辑思维能力及分析实际问题解决问题的能力;

6.渗透对称的数学思想,培养学生数学应用的观点;

二.教学重点:等腰三角形的性质及其推论

三.教学难点:文字题的证明

四.教学用具:直尺,微机

五.教学方法:问题探究法

六.教学过程:

1、  性质定理的发现与证明

(1)投影显示:

一般学生都能发现等腰三角形的两个底角相等(若有其它发现也要给予肯定),

(2)提醒学生:凭观察作出的判断准确吗?怎样证明你的判断?

师生讨论后,确定用全等三角形证明,学生亲自动手作出证明.证明略.

教师指出:等腰三角形的性质定理提示了三角形边与角的转化关系,由两边相等转化为两角相等,这是今后证明两角相等常用的依据,其功效不亚于利用全等三角形证明两角相等.

2、推论1的发现与证明

投影显示:

由学生观察发现,等腰三角形顶角平分线平分底边并且垂直于底边.

启发学生自己归纳得出:顶角平分线、底边上的中线、底边上的高互相重合.

学生口述证明过程.

教师指出:等腰三角形的顶角的平分线,底边上的中线、底边上的高这“三线合一”的性质有多重功能,可以证明两线段相等,两个角相等以及两条直线的互相垂直,也可证线段成角的倍分问题。

3、推论2的发现与证明

投影显示:

一般学生都能发现等边三角形的`三个内角都为 .然后启发学生与等腰三角形的“三线合一”作类比,自己得出等边三角形的“三线合一”.

4、定理及其推论的应用

解:(1) (2)另外两内角分别为: (3)

小结:渗透分类思想,培养思维的严密性.

例2、已知:如图,点D、E在△ABC的边BC上,AB=AC,AD=AE

求证:BD=CE

证明:作AF⊥BC,,垂足为F,则AF⊥DE

∵AB=AC,AD=AE(已知)

AF⊥BC,AF⊥DE(辅助线作法)

∴BF=CF,DF=EF(等腰三角形底边上的高与底边上的中线互相重合)

∴BD=CE

强调说明:等腰三角形中的“三线合一”常常作为解决等腰三角形问题的辅助线,添加辅助线时,有时作顶角的平分线,有时作底边中线,有时作底边的高,有时作哪条线都可以,有时却不能,还要根据实际情况来定.

例3、已知:如图,D是等边△ABC内一点,DB=DA,BP=AB, DBP= DBC

求证: P=

证明:连结OC

在△BPD和△BCD中

在△ADC和△BCD中

因此, P=

例4 求证:等腰三角形两腰上中线的交点到底边两端点的距离相等

已知:如图,AB=AC,BD、CE分别为AC边、AB边的中线,它们相交于F点

求证:BF=CF

证明:∵BD、CE是△ABC的两条中线,AB=AC

∴AD=AE,BE=CD

在△ABD和△ACE中

∴△ABD≌△ACE

∴ 1= 2

在△BEF和△CED中

∴△BEF≌△CED

∴BF=FC

设想:例1到例4,由易到难地安排学生对新授内容的练习和巩固.在以上教学中,特别注意“一般解题方法”的运用.

在四个例题的教学中,充分发挥学生与学生之间的互补性,从而提高认识,完善认知结构,使课堂成为学生发挥想象力和创造性的“学堂”

5、反馈练习:

出示图形及题目:

将实际问题数学化,培养学生应用能力。

6、课堂小结:

教师引导学生小结

(1)、等腰三角形的性质

(2)、等边三角形的性质

(3)、文字证明题的书写步骤

7、布置作业:

a、  书面作业P96#1、2

b、  上交作业P96#4、7、8

c、  思考题:

已知:如图:在△ABC中,AB=AC,E在CA的延长线上,∠AEF=∠AFE.

求证:EF⊥BC

证明 : 作BC边上的高AM,M为垂足

∵AM⊥BC

∴∠BAM=∠CAM

又∵∠BAC为△AEF的外角

∴∠BAC =∠E+∠EFA

即∠BAM+∠CAM=∠E=∠EFA

∵∠AEF=∠AFE

∴∠CAM=∠E

∴EF∥AM

∵AM⊥BC

∴EF⊥BC

三角形内角和、外角性质的应用 第8篇

(一) 地位与作用

三角形内角和及外角性质看似简单, 运用却非常灵活。角的计算及其它们之间相互转换是平面几何入门教学的重点和难点, 贯穿于今后平面几何学习的整个过程, 本节内容的地位极为重要。

(二) 教学目标

1. 使学生能够比较熟练掌握与运用三角形内角和定理, 外角性质进行角的计算与转化。2.通过一题多解, 变式与拓展, 鼓励、引导学生从不同角度探索问题, 发展学生数学学习思维。根据几何题的特点 (条件、结论、图形) , 培养学生“顺逆推, 反复用”的良好的分析问题的习惯。3.在训练中, 体现数学的转化思想, 构造思想, 方程 (组) 思想, 代换思想。

(三) 重点:三角形内角和, 外角的性质

难点:1.多个三角形组合的情形以及分散的角转化为在某个三角形中的内角、外角之间的关系。2.转化过程中辅助线的做法。在学习训练中, 学生会出现很多不习惯和困难。

(四) 教法:“三步一法”

“三步:标示, 转化, 书写”。“一法:顺逆推, 反复用。”注重培养学生良好的平面几何入门学习习惯。

二、课堂程序

(一) 引导学生复习三角形内角和定理以及外角的性质

练习:1.填空题:三角形中 (1) 直角最多有_个。 (2) 钝角最多有_个。 (3) 锐角最多有_个, 最少有_个。

2. 计算题: (1) △ABC中, ∠A﹕∠B﹕∠C=2﹕3﹕4, 求∠A的度数。 (2) △ABC中, ∠A+∠B=2∠B, 求三角形三个内角的度数。 (3) , 求三角形三个内角的度数。

教师: (了解学生闪光点, 及时给予表扬与鼓励) “同学们还有什么问题?什么不同意见?什么体会?” (以下简称“三问”)

设计意图:突出三角形中角的隐含条件, 内角和为180°。结合代数消元思想, 利用解方程 (组) 求出未知数的值。

(二) 在多个三角形组合中计算角的度数

练习:3.计算题

(1) 如图1, ∠A=80°, ∠B=50°, ∠C=30°, 求∠D。

(2) 如图2, 已知, ∠B=∠C, 请问, ∠ADC与∠AEB相等吗?为什么?

(3) 如图3, 已知A, B, C三点共线, ∠A=∠DBE, ∠D=40°, 能否求出∠EBC的度数?若能, 试求之, 若不能, 请说明理由。

(4) 如图4, △ABC中, ∠B与∠C的内角平分线相交于点D, ∠A=100°, 求∠D的度数。

教师:引导学生养成良好的画图习惯。用铅笔画图 (错了擦掉再画, 思维不受阻) , 图形适当画大些、准些 (直观明了) 。训练“三步一法”, (1) 标示:将已知条件标注在相应的图形上。 (2) 转化:顺推、逆推反复进行, 找切入点的方法。 (3) 书写:书写顺序与分析推理的顺序往往不一致, 书写是分析推理的重新整理。提醒学生小组合作学习, 互相交流不同解题思路。教师“三问”。

变式练习: (重点在于如何分析与转化问题)

(5) 将第 (4) 题中 (见图4) 改为∠D=130°求∠A的度数, 其余条件不变。

(6) 将第 (4) 题中“内”改为“外”, 其余条件不变。 (见图5)

(7) 再将第 (4) 题改为:△ABC中, ∠A=70°, ∠B的内角平分线与∠C的外角平分线相交于点D, 求∠D的度数。 (见图6)

设计意图:分层次要求。 (1) (2) 题较简单, 基础较差的学生基本上能解答出来。 (3) (4) 较难一些, 特别是第 (3) 题, 要运用到∠DBC=∠A+∠D, 开始学生较不适应, 是一个难点。通过变式训练, 发展学生数学思维。第 (7) 题是针对学习有潜力的学生设置的, 一般学生不作硬性要求。教师要注意发现学生好的表现, 及时表扬鼓励。

(三) 运用三角形外角性质求若干个角的和

练习:4. (1) 如图7, ∠A+∠B+∠C+∠D+∠E+∠F=_度。 (2) 如图8, ∠A+∠B+∠C+∠D+∠E=_度。 (3) 如图9, ∠A=60°, ∠B=35°∠C=40°, ∠BDC=_度。

教师:到学生当中了解不同的解题思路和方法。三个小题中, 重点突出如何引导学生怎样转化、构造与已知条件相关的三角形。

对于图7, 可用“三角形内角和”或“三角形外角性质”。

对于图9, 重点在于转化, 构造三角形, 涉及作辅助线 (这是难点, 教师可以先给学生提示要作辅助线) , 三种不同思路: (1) 延长BD交AC于点E。 (2) 连结BC (“结”不能写成“接”) 。 (3) 连结AD并延长。

教师:提醒学生小组合作学习, 交流不同解题思路, 然后“三问”。鼓励学生大胆质疑。注重运用“三步一法”, 重视书写。

变式拓展:图9中, 若改为, 已知∠A=m°, ∠B=n°, ∠C=p°求∠BDC的度数。

教师提问:本题的“箭形图”, 四个角有何特殊关系和规律?

设计意图:图9有两个目的, 一是训练学生从不同的切入点分析问题, 二是开始出现辅助线, 培养学生学习平面几何的数学思维。拓展题的目的让学生体验由特殊到一般发现过程, 提高学生的学习兴趣。

(四) 借助辅助线求几个角的和

练习:5. (深入学生, 及时鼓励学生大胆探索, 质疑)

如图10, 已知AB∥CD, 求∠A+∠APC+∠C的度数。

设计意图:本题图形虽然简单, 然而有一定难度, 主要是切入点难下手, 还要作辅助线。通过已知条件进行“顺推”, 大部分学生可能会连结AC, 如果辅助线作出来, 问题就容易了。

要求学生先独立思考, 启发学生“顺推”“逆推”, 反复进行。已知条件中, 平行有何种性质 (特征) ?结论的三个角是否在某个三角形内或与三角形是内外角的关系?开始学生不适应, 指导学生试作辅助线, 鼓励学生进行小组交流讨论, 写出解题过程, 教师板书示范。 (教师“三问”, 获取学生学习信息, 及时表扬鼓励)

教师:与学生一起讨论不同的解题思路。方法 (1) :连结AC。方法 (2) :过点P (向右) 作AB的平行线PM (见图11) 。方法 (3) :过点P (向左) 作AB的平行线PN (见图12) 。方法 (4) :分别延长AP与DC相交于点E (见图13, 或延长CP与BA相交于点F) 。方法 (5) :过点A作射线AE交CD于点E (见图14, 或过点C作射线CF交AB于点F) 。方法 (6) :过点P作直线与BA、DC的延长线分别相交于点M、N (见图15) 。强化“三步一法”, 引导学生大胆质疑。

时间关系, 书写要求立足于图11, 图13, 图14即可。

(五) 课堂自测

1.△ABC中, (1) ∠B+∠C=5∠A, 则∠A=__度。

(2) ∠A+∠C=130°, ∠A=2∠B, 则∠C=__度。

2.如图16, ∠A+∠B+∠C+∠ADB+∠E=__度。

3.如图17, ∠A=95°, ∠ABE=45°, ∠BDC=90°, 求∠AFC的度数。

4. 如图18, 已知AD∥BC, ∠A=30°, ∠B=28°, 求∠AEB的度数。

注:第4题涉及为什么要作辅助线, 如何作辅助线问题。鼓励学生使用多种解法。 (至少有三种思路: (1) 连结AB; (2) 过点E作AD的平行线; (3) 延长AE、BC相交于点F。) 分析思路与练习5相近, 适合学生初学平面几何的实际。

5.课堂小结:师生共同完成 (教师点拨, 学生总结) 。本节课的重点基本上都是难点: (1) 关于几何画图的要求; (2) 什么是“三步一法”; (3) 如何将几个分散的角转化为某个三角形的内角、外角的关系; (4) 何时要作辅助线; (5) 怎样书写;

同学们还有什么体会和问题? (让学生交流和讨论)

6. 布置作业与预习。

三、课后反思

等腰三角形的性质说课

等腰三角形的性质说课(精选8篇)等腰三角形的性质说课 第1篇《等腰三角形的性质》说课稿一、教材分析1、教学内容:本节课是人教版八年级...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部