五上数学因数和倍数单元教学反思
五上数学因数和倍数单元教学反思(精选18篇)
五上数学因数和倍数单元教学反思 第1篇
五年级下册数学第二单元因数与倍数的教学反思
本单元注意以下七个方面的教学,可以促进学生巩固基础知识,促进学生发展基本思维能力。
1.加强概念间相互关系的梳理
(1)注意因数与倍数的相互依存的关系
(2)质数、合数与因数的关系
(3)2的倍数与偶数、奇数的关系
(4)与大数的读写相关联
如:一个七位数,最高位是最小的奇数,万位是最小的质数,千位是最小的合数,
最低位是最大的一位合数,其余各位都是最小的偶数。
这个数作( ),读作( )。
(5)2、3、5的倍数与乘法口诀紧密联系。
2.要用“活”教材
(1)教学中要用好教材,用活教材,教学实践证明,从单数与双数入手探究奇数与偶数;从乘法口诀入手,探究2的倍数,探究5的倍数,探究3的倍数,比教材安排的教学内容进行教学,学生更容易掌握知识。
(2)注意培养学生的抽象思维能力(本单元知识特点的抽象性)
要用归纳推理:就是从个别性知识推出一般性结论
(1)偶数、奇数
(2)5的倍数:5、10、15、20、25、30——个位是0或5的数是5的倍数
2的倍数:2、4、6、8、10、12、14、16、18、20……
3的倍数:
(3)质数、合数:写出1——20各数的因数进行归纳推理
3.教给学生学习的方法
列举法:
如:18因数6的倍数:
又如:P16一个数既是42的因数,又是7的倍数,这个数可能是( )
4.教给学生养成“有序学习”的良好学习习惯
5.注意知识的联系,与用字母表示数的`结合。如:
数A最小的因数是,最大的因数是()
数B最小的倍数是(),()最大的倍数
6.注意概念的判断
(1)所有自然数.不是奇数,就是偶数()
(2)所有自然数不是质数,就是合数()
(3)所有奇数都是质数()
(4)所有偶数都是合数()
7.注意发散思维的培养
31□是5的倍数,这个数可能是( )
75□0是3的倍数,这个有( )种情况,它们是( )
2□6□是25的倍数,也有因数3,这个有( )种情况,它们是( )
8.在学习方法上尽可能让学生利用“学案”进行课前探究,课中探究,从探究中学习和掌握知识。如质数与合数
五上数学因数和倍数单元教学反思 第2篇
这节课带给我的感想是颇多的,但综观整堂课,我觉得要改进的地方还有很多,我只有不断地进行反思,才能不断地完善思路,最终才能有所悟,有所长。下面就说说我对本课在教学设计上的反思和一些初浅的想法。
本单元内容在编排上与老教材有较大的差异,比如在认识“因数、倍数”时,不再运用整除的概念为基础,引出因数和倍数,而是直接从乘法算式引出因数和倍数的概念,目的是减去“整除”的数学化定义,降低学生的认知难度,虽然课本没出现“整除”一词,但本质上仍是以整除为基础。本课的教学重点是求一个数的因数,在学生已掌握了因数、倍数的概念及两者之间的关系的基础上,对学生而言,怎样求一个数的因数,难度并不算大,因此教学例题“找出18的因数”时,我先放手让学生自己找,学生在独立思考的过程中,自然而然的会结合自己对因数概念的理解,找到解决问题的方法(培养学生对已有知识的运用意识),然后在交流中不难发现可用乘法或除法来求一个数的因数(列出积是18的乘法算式或列出被除数是18的除法算式)。在这个学习活动环节中,我留给了学生较充分的思维活动的空间,有了自由活动的空间,才会有思维创造的火花,才能体现教育活动的终极目标。特别是用除法找因数的学生,正是因为他们意识到了因数与倍数之间的整除关系的本质,才会想到用除法来解决问题,我也不由得佩服这些孩子对知识的迁移能力。在这个环节的处理上,教材的本意是先由教师提出“想一想,几和几相乘得18?”引导学生从因数的概念,用乘法来找因数,而我考虑到本班孩子的学情(绝大多数学生能够运用所学知识,找到求因数的方法),如教师一开始就引导学生:想几和几相乘,势必会造成先入为主,妨碍学生创造性的思维活动?用已有的经验自主建构新知是提高学生学习能力的有效途径,让学生独立思考、自主探索、促思(促进学生思维发展)、提能(提高学习能力)是我的教学策略主要内容。至于这两种方法孰重孰轻,的确难以定论。实际上,对于数字较小的数(口诀表内的),用乘法来求因数还是比较容易,但是超出口诀表范围的数用除法则更能显示出它的优势,如求54的因数有哪些?学生要直接找出2和几相乘得54,3和几相乘得54,4和几相乘得54,显然加大了思维难度,如用除法不是更简单直接一些吗?学生的学习潜力是巨大的,教师是学生学习的引领者,因此教师的观念和行为决定了学生的学习方式和结果,所以我认为教师要专研教材,充分利用教材,根据学生的实际情况,创造性地使用教材,为学生能力的发展提供素材和创造条件,真正实现学生学习的主体地位。
学生在找一个数的因数时最常犯的错误就是漏找,即找不全。学生怎样按一定顺序找全因数这也正是本课教学的难点。所以在学生交流汇报时,我结合学生所叙思维过程,相机引导并形成有条理的板书,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。这样的板书帮助学生有序的思考,形成明晰的解题思路的作用是毋庸质疑的。教师能像教材中那样一头一尾地成对板书因数,这样既不容易写漏,而且学生么随着流程的进行,势必会感受到越往下找,区间越小,需要考虑的数也就越少。当找到两个相邻的自然数时,他们自然就不会再找下去了。书写格式这一细节的教学,既避免了教师罗嗦的讲解,又有效突破了教学难点,我相信像这样润物无声的细节,无论于学生、于课堂都是有利无弊的。
五上数学因数和倍数单元教学反思 第3篇
导入新课
1.回忆学过哪些数?(自然数,分数,小数)
2.哪种类型的数学起来最容易?(大部分学生肯定会说自然数学起来最容易)
其实,在数学中,真正有分量的题目,难倒一代又一代数学家的题目都在自然数领域,以至于有位数学家发出这样的感慨:“自然数,可真不自然呀!”今天,我们将重新感受自然数,看看里面蕴藏着哪些奇妙的内容,我们又将会有哪些有趣的发现。
反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易,这是一种比较普遍的观点。而这时教师话锋陡转,适时抛出一个与之相反的观点,并有相应的论据作为支撑,这足以搅动学生的思维,激发探究的欲望。更重要的是,教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感,与此同时,又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话,因数和倍数就是海面上众多的帆船之一,它只有置身于大海的怀抱才能扬帆远航。
探索找一个非零自然数的所有因数的方法。
找30的因数
学生作品展示:
a.正确但不全面的作品
b.既正确又全面的作品
讨论:他们的最大区别是什么?
小结:按一定的顺序,思考,才能带来结论的准确、全面。
继续深入:
为什么找到5就不找了呢?(讨论)小结:避免重复
手势演示:
一对一对地找,成对的两个因数越来越靠近。
反思:找一个数的因数是本节课的难点,考虑到学生在认知背景、思维品质及思维方式上的差异,学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序,或者无序;或者肤浅、或者深刻。此时,教师应该引导学生将自己的数学思考展示出来,在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中,彼此取长补短,相互吸纳,使得片面的思维趋于全面,无序的思维走向有序,肤浅的认识归于深刻。思维品质在沟通中获得提升,思维方式在比照中得以修正,思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴,诱发学生的深层思考,这就是一种本质的数学文化,也是数学的魅力所在。
拓展延伸
1.在50、60、70、80、100中谁的因数个数最多?
当学生发现60的因数个数最多后,教师揭示60进制中的奥秘:原来天文学规定,1小时=60分,1分=60秒,与60的因数的个数有关。与24差不多大的数中,24的因数最多,1天=24小时;与12差不多大的数中,12的因数最多,1年=12个月。
反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘,使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时,科学的种子已悄悄地在某些学生的心田里生根,假以时日,这粒种子定会破土而出,在阳光雨露的滋养下,发芽,开花,最终结出累累硕果。
2.一个更有趣的规律完美数。
(1)拿出2号作业纸,找出6的所有因数,把其中最大的因数划掉,再把剩下的因数加起来,发现这些因数的和恰好也是6。
小结:这种现象很罕见。数学家把像6这样的,去掉它的最大因数后,剩下的因数相加的和是它本身的数叫“全数”,也叫“完美数”。
(2)这样的数会有第2个吗?寻找第2个完美数。
学生独立完成(师提示:比20大,比30小的偶数)
板书:28;1、2、14、4、7
师:找到了第1、2个完美数,数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。
屏幕显示:6、28、498、8128、33550336、858986059)
想想看,你们刚才找28都花了将近2分钟,那数学家要从浩如烟海的自然数中找出这些完美数,该付出怎样的艰辛呀!几年,几十年,甚至一辈子。完美数对生产生活并没有什么直接的用处,是什么力量吸引数学家付了毕生的心血去寻找呢?
小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后,而专门研究自然数性质的数学分支数论’,则是数学皇后头顶上的皇冠。”今天,时间有限,我们只是看到了皇冠上一粒小小的珠子,但只要你沿着这条路走下去,在数学看似抽象的百花园里,你一定会收获很多东西。
反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”,感受完美数的美妙结构,领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”,使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展,具有重要意义和积极影响。
关于《因数和倍数》的教学反思 第4篇
关键词:因数;倍数;小学
导入新课
1.回忆学过哪些数?(自然数,分数,小数……)
2.哪种类型的数学起来最容易?(大部分学生肯定会说自然数学起来最容易)
其实,在数学中,真正有分量的题目,难倒一代又一代数学家的题目都在自然数领域,以至于有位數学家发出这样的感慨:“自然数,可真不自然呀!”今天,我们将重新感受自然数,看看里面蕴藏着哪些奇妙的内容,我们又将会有哪些有趣的发现。
反思:苏格拉底的“产婆术”教育法就是通过巧妙设问在谈话中让对方彻悟的。学生根据以往的学习经验自然而然会认为自然数学起来最容易,这是一种比较普遍的观点。而这时教师话锋陡转,适时抛出一个与之相反的观点,并有相应的论据作为支撑,这足以搅动学生的思维,激发探究的欲望。更重要的是,教师对自然数的阐述把学生带入了数学史。让学生产生一种历史的纵深感,与此同时,又不露痕迹地将本课的知识点“因数和倍数”归置到了自然数这个知识体系当中。如果把自然数比作大海的话,因数和倍数就是海面上众多的帆船之一,它只有置身于大海的怀抱才能扬帆远航。
探索找一个非零自然数的所有因数的方法
找30的因数
反思:找一个数的因数是本节课的难点,考虑到学生在认知背景、思维品质及思维方式上的差异,学生中势必会出现不一样的思考过程和结果:或者全面、或者片面;或者有序、或者无序;或者肤浅、或者深刻。此时,教师应该引导学生将自己的数学思考展示出来,在师生之间、生生之间多维的对话、思辨、质疑、争论的过程中,彼此取长补短,相互吸纳,使得片面的思维趋于全面,无序的思维走向有序,肤浅的认识归于深刻。思维品质在沟通中获得提升,思维方式在比照中得以修正,思维能力在对话中得到发展。而“怎么找到5就不找了呢?”这个问题又一次引发学生的思维风暴,诱发学生的深层思考,这就是一种本质的数学文化,也是数学的魅力所在。
拓展延伸
1.在50、60、70、80、100中谁的因数个数最多?
当学生发现60的因数个数最多后,教师揭示60进制中的奥秘:原来天文学规定,1小时=60分,1分=60秒,与60的因数的个数有关。与24差不多大的数中,24的因数最多,1天=24小时;与12差不多大的数中,12的因数最多,1年=12个月。
反思:引领学生揭开1小时=60分、1分=60秒、1天=24时、1年=12个月等约定俗成的规则中所蕴含的奥秘,使学生领略到数学与天文学的完美结合给我们的社会生活带来的便捷。也许此时,科学的种子已悄悄地在某些学生的心田里生根,假以时日,这粒种子定会破土而出,在阳光雨露的滋养下,发芽,开花,最终结出累累硕果。
2.一个更有趣的规律——完美数。
(1)拿出2号作业纸,找出6的所有因数,把其中最大的因数划掉,再把剩下的因数加起来,发现这些因数的和恰好也是6。
小结:这种现象很罕见。数学家把像6这样的,去掉它的最大因数后,剩下的因数相加的和是它本身的数叫“全数”,也叫“完美数”。
(2)这样的数会有第2个吗?寻找第2个完美数。
学生独立完成(师提示:比20大,比30小的偶数)
板书:28:1、2、14、4、7
师:找到了第1、2个完美数,数学家会停止寻找的脚步吗?第3、4、5个完美数会是多少呢?一定超出你们的想象。屏幕显示:6、28、498、8128、33550336、858986059……)
想想看,你们刚才找28都花了将近2分钟,那数学家要从浩如烟海的自然数中找出这些完美数,该付出怎样的艰辛呀!几年,几十年,甚至一辈子。完美数对生产生活并没有什么直接的用处,是什么力量吸引数学家付了毕生的心血去寻找呢?
小结:伟大的数学家高斯说过:“人们通常把数学誉为科学的皇后,而专门研究自然数性质的数学分支——‘数论’,则是数学皇后头顶上的皇冠。”今天,时间有限,我们只是看到了皇冠上一粒小小的珠子,但只要你沿着这条路走下去,在数学看似抽象的百花园里,你一定会收获很多东西。
反思:引着学生走进和因数有着密切关系的特殊的数学现象“完美数”,感受完美数的美妙结构,领略了凝聚在数学之中的美妙绝伦的思维方法、探索不止的数学精神、臻善达美的数学品格。最后从“数论”的角度重新考察“因数和倍数”,使新的知识在深度和高度上获得提升。这对于一个人全面和谐的发展,具有重要意义和积极影响。
五上数学因数和倍数单元教学反思 第5篇
教学《倍数与因数》,这是一个非常枯燥的课题,但我巧妙地运用课文中的情景图与学生的生活实际联系,通过水果店各种水果的单价所显示的数进行分类,得出自然数、整数、小数、分数和负数,使学生体会生活中各种不同的数。为了让学生理解倍数与因数的含意,教学过程中,我立足体现一个“实”字,让学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。
在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都很感兴趣,说得很努力。原来,数学也很有趣
五上数学因数和倍数单元教学反思 第6篇
1、以往认识因数和倍数是借助于整除现象,“X能被X整除,或X能整除X”,所以X是X的因数,X是X的倍数。现在的教材完全不同了,2X3=6,所以2和3是6的因数,6是2和3的倍数,借助整除的模式na=b直接引出因数和倍数的概念。
2、以往数学教材中,概念教学的量很大。数的整除,因数(老教材称为约数),倍数,2、5、3的倍数的特征(老教材称为能被2、5、3整除的数的特征),质数,倒数,分解质因数,最大公因数(以往的教材中称为最大公约数),最小公倍数等内容共同编排在后面,合为一个单元。而现在新教材本单元只安排了因数和倍数,2、5、3的倍数的特征,质数合数。其它内容安排在了第四单元《分数的意义和性质》,借助约分引出公约数、公倍数的学习,改变了概念多而集中,抽象程度过高的现象。
3、以往求最大公约数,最小公倍数时,采用的方法是唯一的、固定的,也就是有短除法分解质因数,而新教材中鼓励方法多样化,不把它作为正式的内容教学,而是出现在教材的你知道吗中?不那么呆板了,尊重学生的思维差异。
五上数学因数和倍数单元教学反思 第7篇
《公倍数和公因数》的教学已接近尾声,但练习反馈,部分学生求两个数的最大公因数和最小公倍数错误百出,细细思量,用课本上列举的方法,真的很难一下子准确找到最大公因数或最小公倍数。如:8和10的最小公倍数,有学生写80,25和50的`最大公因数有学生写5。而且去问问学生找两个数公倍数和最小公倍数,或者两个数的公因数和最大公因数的感受,他们都说“烦”,“很烦”,“太麻烦了”。
在了解了学生的感受以后,我又重新通过练习概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
另外,我又结合教材后面的“你知道吗?”,指导了一下用短除法求两个数的最小公倍数和最大公因数的方法。在完成练习时,让学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢。
五上数学因数和倍数单元教学反思 第8篇
【片段一】把数学活动经验提升为数学思想
师:如果不给乘法算式, 而是给出3、12、36, 请围绕因数和倍数说几句话。
生:3是36的因数, 12是36的因数;36是3的倍数, 36也是12的倍数。
师:其实在说之前, 他想了什么算式?
生:12×3=36, 36÷3=12, 36÷12=3。
师:还可以说哪些话?
生:12是3的倍数。
师:对啊, 12是3的倍数, 36也是3的倍数。那么, 3的倍数还有哪些?
生:3。
师:怎么想出的?
生1:3×1=3, 所以3是3的倍数。
生2:6是3的倍数, 因为3×2=6。
师:接着写哪个数?写得完吗?
生:9、12、15……写不完。
师:那么你们是怎样一个个找到的?
生:用3乘一个个自然数得到的。
师:真好, 这就是一种有序的思考方法。 (板书:有序)
【赏析】上述教学片段中, 教师引导学生说出“3的倍数还有哪些”, 让学生经历自主发现的过程, 然后引导学生反思和回顾探索的过程和方法, 并加以提炼, 把活动经验提升为“有序思考”这种基本的数学思想。小学生数学活动经验的获得与积累, 需要与观察、操作、猜想、验证等具体数学活动联系在一起, 并产生于这些活动过程之中。由于数学活动经验具有实践性、个体性特征, 所以教师应设法为学生设计好数学活动, 并引导学生经历学习过程, 让学生在活动中操作观察、体验交流、感悟提升, 逐步积累并提升属于自己的数学活动经验。
【片段二】把数学活动经验提升为学习方法
师:试着找找2、5的倍数, 写出5个后写上省略号就行。
学生汇报。组织观察:一个数的倍数有什么特征?
生:最小的是这个数本身。
师:那么最大的呢?
生:是不存在的, 因为一个数的倍数有无数个。
师:请大家回顾一下, 刚才是怎样来观察一个数的倍数的特点的?
生1:刚才我们找出了倍数中最小、最大的数。
生2:我们还从倍数的个数上来说了一个数的倍数的特点。
师:对, 从这三个方面我们能找出一个数的倍数的共同特点。 (教师相机板书)
【赏析】数学活动经验具有内隐性, 教师要注意引导学生反思与评价, 提炼并外显所获得的数学活动经验, 把数学活动经验提升为数学学习方法。上述教学片段中, 教师首先让学生进行具体的写倍数活动, 再组织观察, 讨论一个数的倍数具有什么特点。在学生交流汇报的基础上, 引导学生回顾“探索和发现”的过程, 获取数学活动经验, 并帮助学生把这种探索发现的经验总结提炼为数学学习方法。我们知道, 仅停留在感性层面的经验是粗浅的, 不易被学生主动把握, 需要通过一定的教学手段予以提炼和外显。因此, 课堂中教师的评价、强化, 以及归纳小结时要引导学生对数学活动经验进行提炼、总结、提升, 使之条理化和经验化。
【片段三】迁移运用数学活动经验
在教学找一个数的倍数方法之后, 教师要求学生找出36的所有因数。学生小组合作尝试找, 然后组织展示。
生 1:36、18、12、9、6。
生 2:1、36 2、18 3、12 4、9 6、6。
师:第二位同学找全了吗?猜猜他是怎么找的?
生:他是从1开始, 一对一对找的。想几乘几等于36, 这两个数都是36的因数。
师:嗯, 他有序地想乘法算式来找一个数的因数, 这样不会遗漏。 (板书:不遗漏)
生:他多写了一个6, 因为已经重复了。
师:对, 照这样找下去, 到重复出现前面的因数时, 就可以停止了。有序的思考还能做到不重复。 (板书:不重复)
……
师:一个数的因数有什么特征?
生:最大的一个因数总是这个数本身, 最小的都是1。
师:根据刚才发现一个数的倍数特点的经验, 还要看看因数的个数有什么特点?
生:一个数的因数的个数是有限的。
师:是啊, 找因数时要一对一对地找, 从最小的开始, 想到1就想到本身, 然后一个个往中间找, 因此一个数的因数的个数是有限的。
【赏析】数学活动经验具有发展性, 教师除了要帮助学生积累、获得经验之外, 还要创设机会让学生加强应用, 巩固数学活动经验。上述教学片段中, 教师让学生们猜猜生2是怎样找全36的所有因数的, 这其实是在帮助学生回顾整理活动过程, 提炼活动经验。而之前在找一个数的倍数时所获得的有序思考的活动经验, 则在探索新知时得到了有效的迁移。同样, 在发现一个数的因数的特点时, 教师又注意帮助学生迁移先前观察一个数倍数特点的经验。学生数学活动经验的积累, 是一个循序渐进的过程, 加强迁移应用, 可以促进学生的数学活动经验上升到更高的水平, 实现经验的改造或重组。
【片段四】反思学习过程积累经验
师:学到这儿, 让我们回过头来想一想, 这一节课我们学习了什么, 又是怎样学的?
课件出示: (1) 我们是根据怎样的算式找到倍数和因数关系的? (2) 怎样找出一个数的倍数和因数的? (3) 一个数的倍数和因数有什么特点?
学生小组为单位讨论, 然后交流……
【赏析】
因数和倍数教学片段 第9篇
师:他说一个倍数可能有很多个?
生:因数。
师:同学们,经过你们交流之后,谁是谁的因数,谁是谁的倍数?
生:在24÷4=6这个式子中,24的因数就是4,4的倍数就是24。
师:有没有其他的说法?刚才说得不是特别规范。
生:24是4的倍数,4是24的因数。(板书:24是4的倍数,4是24的因数。)
师:这样吗?
生:是。
师:这个?(师指24÷6=4这个算式。)
生:24是6的倍数,6是24的因数。
师:那我们回到刚才的问题,刚才我们说24是4的倍数,小怿说24是?
生:6的倍数。
师:那你现在能理解刚才小成所说的吗?你能完整地说一说吗?
生:24是4和6的倍数,4和6是24的因数。
师:老师还想考考你们,这个式子是我准备的。(板书:4×6=24。)
师:怎么都是除法,乘法你们会不会说?有的同学面露难色,很困难吗?
生:24是4和6的倍数,4和6是24的因数。
师:我们可以把它当成什么去看?(师指乘法算式。)
生:除法。(师画箭头从乘法算式指向除法。)
师:这么指你们明白吗?
生:明白。
师:考考你们,(板书:1.2÷0.2=6。)再说说谁是谁的倍数,谁是谁的因数?(学生稍显困惑。)是不是很简单,是不是一样的呀?(师指板书上的两组除法算式。)
生:1.2是0.2和6的倍数,6和0.2是1.2的因数。
师:我觉得说得挺好。
生:这个算式是没有因数和倍数的。
师:谁说的?为什么没有?
生:因为算式1.2÷0.2=6,1.2和0.2不是整数。
师:谁告诉你一定要是整数的?
生:书上,在整数除法中,商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
师:同学们,别忘了书中给定我们的一个前提条件。(课件出示。)
生:整数除法中。
师:而它们呢?(师指1.2÷0.2=6。)
师:这也不是整数除法呀。然后才是我们分出来的第一类,如果——
生:商是整数而没有余数。
师:我们就说——
生:被除数是除数的倍数,除数是被除数的因数。
师:同学们,看了这个概念之后,你们要注意什么呢?(板书概念。)
生:整数除法。(板书:整数除法。)
(作者单位:哈尔滨市花园小学)
五上数学因数和倍数单元教学反思 第10篇
一、理解因数和倍数的意义,掌握找一个数的因数和倍数的方法。
1.在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。如:在算式c÷a=b(a、b、c均是非0自然数)中,a和b是c的因数,c是a和b的倍数。一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
2.找一个数的因数的方法:(1)列乘法算式找,根据因数的意义,有序地写出两个整数相乘得此数的所有乘法算式,算式中的每个乘数都是该数的因数。(2)列除法算式找,用此数除以大于等于1而小于它本身的整数,所得的商是整数而无余数,这些除数和商都是该数的因数。以找24的因数为例:
(1)列乘法算式:(2)列除法算式:
24=1×24
24÷1=24
=2×12
24÷2=12
=3×8
24÷3=8
=4×6
24÷4=6
24的因数有1,2,3,4,6,8,12,24。
3.找一个数的倍数的方法:(1)列乘法算式找,用这个数依次与非0自然数相乘,所乘之积就是这个数的倍数。(2)列除法算式找,看哪些数除以这个数,商是整数而无余数,这些数就是这个数的倍数。以找9的倍数为例:
(1)列乘法算式:(2)列除法算式:
9×1=9
9÷9=1
9×2=18
18÷9=2
9×3=27
27÷9=3
9×4=36
36÷9=4
9×5=45
45÷9=5
……
……
9的倍数有9,18,27,36,45……
4.表示一个数的因数和倍数的方法:(1)列举法;(2)集合表示法。
以表示42的因数为例:
(1)列举法表示:
42的因数有1,2,3,6,7,14,21,42。
(2)集合表示法:
5.因数与倍数是相互依存的。
二、掌握2、3、5倍数的特征,认识奇数、偶数。
1.自然数中个位上是0,2,4,6,8的数都是2的倍数。整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
2.个位上是0或5的数都是5的倍数。
3.一个数各个数位上的数字之和是3的倍数,这个数就是3的倍数。
三、理解质数和合数的意义,能正确判断一个数是质数还是合数,能找出100以内的质数,并熟记20以内的质数。
1.一个数,如果只有1和它本身两个因数,那么这样的数叫做质数(或素数)。
一个数,如果除了1和它本身还有别的因数,那么这样的数叫做合数。
3.1既不是质数,也不是合数。
4.20以内的质数有2,3,5,7,11,13,17,19。
四、和与积的奇偶性。
奇数+奇数=偶数 奇数+偶数=奇数 偶数+偶数=偶数
奇数×奇数=奇数 奇数×偶数=偶数 偶数×偶数=偶数
温馨提示:
为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。
易错点:1.2=0.3×4,我们可以说1.2是0.3的4倍,却不能说1.2是0.3的倍数。倍数是相对于因数而言的,只适用于非0整数。
温馨提示:
因数和倍数是两个不同的概念,但又是一对相互依存的概念,不能单独存在,不能说谁是因数,也不能说谁是倍数,应该说谁是谁的因数或谁是谁的倍数。
易错点:在24÷3=8中,我们不能说24是倍数,3是因数,而要说24是3的倍数,3是24的因数。
温馨提示:
1是任何数的因数,一个非0自然数既是它本身的因数,也是它本身的倍数。一个数的倍数的个数是无限的,在写一个数的倍数时,要在写出的倍数的后面加省略号。
温馨提示:
同时是2和3的倍数的特征:个位上是0,2,4,6,8,且各个数位上的数字之和是3的倍数;
同时是3和5的倍数的特征:个位上是0或5的数,各个数位上的数字之和是3的倍数;
同时是2和5的倍数的特征:个位上是0的数;
同时是2、3、5的倍数的特征:个位上是0,且各个数位上的数字之和是3的倍数。
《因数和倍数》教学反思 第11篇
今年教学《公倍数和公因数》这一单元时,我在去年教学《公倍数和公因数》的基础上作了一些改进:
一、仍然是将预习前置。
二、动手操作,想象延伸。
让学生动手操作,提高感知效果,帮助学生形成丰富的表象,是促进形象思维发展的有利途径。例题教学中让学生动手铺,铺后想,想后算,算后思。
用长3厘米、宽2厘米的长方形纸片分别铺边长6厘米、8厘米的正方形,能铺满哪个正方形?拿出手中的图形,动手拼一拼。
学生分组操作,用除法算式把不同的摆法写出来。
提问:通过刚才的活动,你们发现了什么?
以直观的操作活动,在具体的问题情境中体会公倍数和公因数与生活的联系,让学生经历公倍数和公因数概念的形成过程,加深对抽象概念的理解。
思考:根据刚才铺正方形的过程,在头脑里想一想,用3厘米、宽2厘米的长方形纸片正好铺满边长多少厘米的正方形?在小组里交流。
三、在教学中严格要求学生先用“列举法”教学“求两数公倍数与公因数”;在学生相对较熟练的时候尝试让学生直接说出公倍数与公因数;在此基础上适当介绍后面的阅读知识,但不要求学生使用。
四、在教学了用“列举法”“求两数公倍数与公因数”的知识之后,适当提高训练难度,将求“最小公倍数”与“最大公因数”合并训练。通过联系“最大公因数”、“最小公倍数”的知识,引导学生发现求两个数的最小公倍数和最大公因数的扩倍法等其它的方法。要求学生根据情况,用自己喜欢的方法来求两个数的最小公倍数和最大公因数。这样,给学生结合题目中两个数的特点,自主选择方法的空间,学生比较喜欢,掌握较好。通过练习引导学生感悟、概括出了一些特殊情况:(1)两个数是倍数关系的,这两个数的最小公倍数是其中较大的一个数,最大公因数是其中较小的一个数;(2)三种最大公因数是1,最小公倍数是两数乘积的情况(“互质数”这个概念学生没有学到):①两个不同的素数;②两个连续的自然数;③1和任何自然数。
课后反思:
一、预习后的课堂教学,还要教,直接放手要出问题。
二、介绍一下短除法是有必要的。但不能直接按传统的教学思路以短除法求最大公因数和最小公倍数简单代替列举法。
因数和倍数教学反思 第12篇
【教后反思】
在设计和执教这节复习课的过程中,我不止一次的体会到上好一节复习课真的很难,既要全面、详细的了解学生的认知现状,又要科学、合理的安排复习程序;既要切实培养学生建构知识网络的能力,又要努力提高学生灵活运用知识,解决实际问题的能力。短短40分钟,给我们教师提出了更高的挑战。现将我在泰安执教这节课之后的一点体会和反思整理如下:
1.三点满意
(1)充分关注了学生的知识基础。
培养学生整理知识、构建网络这一目标是勿容质疑的。教学中,我有意识的关注了学生的现有整理水平,并在此基础上设计自己的教学思路。学生处于他们的最近发展区,当然会热情而积极的去探索和交流。比如课前组织学生自主整理,一方面可以确保学生对将要复习的知识进行充分的回忆,另一方面通过检查学生作业,可以真实的了解到学生对知识整理的现有水平,从而找准学习的起点,为课上理顺知识点之间的联系奠定了坚实的基础。
(2)充分尊重了学生的认知规律。
能把所学的知识有条理的整理成知识网络图,对学生来说是重要而必备的技能。当然这个技能并不是一节课就可以培养出来的。如何在确保学习兴趣的前提下,有效培养学生构建知识网络的意识和能力呢? “因数与倍数”这部分的学习内容杂,概念多,我和学生一起将本单元知识构建成知识网络。让他们一起经历知识网络的构建,一起感受和体会构建知识网络的方法和意义,并最终形成一种技能。
(3)充分调动了学生的参与热情。
整节课中,因为有了巧妙的设计、有了激励的语言,有了学生感兴趣的学具,学生的学习热情始终很高。特别是破译QQ号密码之后,学生甚至不理会已经下课了,还是兴致很高,这说明学生喜欢这节课,而学生喜欢的课堂才是我们教师最应该去追求的课堂。
2几点不足
(1)因为这节课既要带领学生建构知识网络,又要做一些相对应的练习,时间不太宽余,再加上练习题设计的较多,多少有些紧张,所以原本就快的语速更快了,整节课听起来太满,有点抢时间的感觉。
(2)练习题设计的题题型不够多样化,覆盖不够全面。
(3)对学困生照顾的不够,有点左右为难,既怕耽误时间,又怕影响学困生的学习。(4)提问的面还不够宽 3.一点感受
五上数学因数和倍数单元教学反思 第13篇
1.使学生进一步理解、掌握倍数和因数的有关概念, 沟通知识之间的联系, 构建相关的知识链和知识系统。
2.在开放的情境中让学生亲身经历知识的梳理过程, 培养学生辨析、比较、归纳及解决实际问题的能力, 提高学生的探究意识, 获得积极的情感体验, 发展学生的个性。
3.使学生初步学会用数学的眼光去看待生活问题, 感受数学学习的意义与乐趣。
【教学重难点】
沟通知识之间的联系, 构建相关的知识链和知识系统。
【教学方法】
发现法、讨论法、归纳法
【教学用具及媒体设计】
学生的座号卡及多媒体课件
【内容和过程】
一、创境激趣, 引出课题
1. 出示童谣, 师生共吟
在我们学校举行的新童谣征集活动中, 老师写了一首数学童谣, 请看:
数学是个大王国, 整数是其一家庭。有一成员自然数, 乘除引出倍因数。2的倍数叫偶数, 除此之外是奇数。因数只俩是素数, 还有第三是合数。自然数1最特别, 非素数来非合数。大王国里奥秘多, 欢迎你来多探索, 多探索!
让我们在掌声的伴奏下读一读。
2. 师生谈话, 揭示课题
数学王国中确实有很多奥秘等着我们去探索, 今天
授课/袁仕理1点评/叶青2
我们就以这首数学童谣为出发点一起复习“倍数和因数”的有关知识。
[点评]以学生喜闻乐见的童谣引入课题, 让学生在欢快的气氛中感受学习数学的乐趣, 激起探索数学奥秘的热情。
二、问题引领, 梳理辨析
1. 结合童谣, 引出问题
从这首童谣中, 你发现了哪些数学知识?
让学生自由说说所发现的知识, 可以说概念的含义, 也可以举例说明。如:
43=12, 12是4的倍数, 12也是3的倍数, 4和3都是12的因数。
是2的倍数的数叫偶数, 不是2的倍数的数叫奇数。
一个数, 如果只有1和本身两个因数, 这样的数就是素数 (或质数) 。如果除了1和本身还有别的因数, 就是合数。 (让学生举例)
适时让学生写出18的因数, 8的倍数, 并说说怎样做到速度快又不遗漏。
2. 梳理问题, 再现知识
依据学生的回答, 形成系统化的板书:
3. 变形练习, 辨析概念
A.座号游戏:看谁反应快。
(1) 请座号是奇数的同学站起来。
(2) 请座号是偶数的同学站起来。
(3) 请座号是素数的同学坐下。
(4) 请座号是合数的同学坐下。
(5) 谁能说一句话让1号同学坐下?
(6) 座号是3的倍数的同学站起来。3的倍数有什么共同特征?
(7) 请座号在20以内既是2的倍数, 又是3的倍数的同学坐下。
(8) 请座号既是3的倍数, 又是5的倍数的同学坐下。
(9) 谁能说一句话让剩下的同学坐下?
B.男女生对抗赛:选择两个或两个以上概念, 说一句话。
因数、倍数、偶数、奇数、素数、合数
C.找出与众不同的数, 并说说自己的理由。
(1) 1、13、15、29
(2) 你能写出一组数, 让同桌找出最特别的数吗?
[点评]教师结合学生的回答有重点地让学生通过讲述、举例等方式, 放手让学生自主梳理概念、构建知识系统, 使学生的主体意识得到充分张扬。再利用学生座号开展游戏, 让学生在既紧张又愉快的复习过程中, 对似是而非、混淆不清的知识加深理解。同时, 在这些开放的情境中, 不同层次的学生有自由选择的余地, 学生的思维可以自由驰骋, 个性得到充分张扬, 体现“不同的学生学习不同的数学”和“人人都能成功”的教学理念。
三、实践运用, 拓展问题
1. 强化练习, 提高运用能力
(1) 这里有0、3、5、6四张数字卡片, 请按要求写数。
选择两张数字卡片, 组成一个素数:___________;选择两张数字卡片, 组成一个既是偶数, 又是3的倍数的数:___________;选择三张数字卡片, 组成一个尽可能大的既是奇数, 又是5的倍数的数:_______________。
(2) 播放录音:北京奥运会是第29届奥运会, 于2008年8月8日开幕, 24日结束, 历时16天。本届奥运会共有31个比赛场馆, 其中有6座位于其他的协办城市, 包括香港、青岛、天津、沈阳、上海和秦皇岛。
在以上资料出现的数字中,
偶数有:______________奇数有:______________
素数有:_______________合数有:__________________
既是奇数又是素数的有:__________________既是偶数又是合数的有:_____________________________是_______________________________________的倍数, __________是_____________________的因数。
2. 深化练习, 发展综合能力
破译电话号码:ABCBDEF
A是小于10的最大偶数;
B是奇数中最小的素数;
C与B是连续的奇数, C>B;
D的最大因数是6, 最小倍数也是6;
E是小于10的最大合数;
F是所有自然数的因数。
[点评]让学生从综合练习中发现不论是写数还是破译电话号码, 都要根据概念的特点进行判断。通过学生自主练习、汇报交流, 学生的思维得到发展, 综合运用知识的能力得以提高, 个性得到张扬, 真正体现“不同的人学习不同的数学”。
四、课堂总结, 延伸问题
今天我们从一首童谣中复习整理了倍数和因数的有关知识, 数学王国中还有很多很多的奥秘期待着大家去研究, 比如, 为自己的座号、门牌号、电话号码等设置密码, 让其他同学破译。希望同学们今后努力学习, 继续探索!
“倍数和因数”教学设计及评析 第14篇
1.想象操作。
师:用12个同样大的正方形拼成一个长方形。每排摆几个?可以摆几排?能不能用一道乘法算式把你的摆法表示出来?
2.展示交流。
电脑随机出示图形和算式:
(1)3×4=12(2)2×6=12(3)1×12=12
3.其他摆法。
师:有没有其他的摆法?如果每排摆5个。可以摆几排?结果会怎样?(电脑出示每排摆5个,摆两排还剩余2个的图形。)
4.引入新课。
师:像这样,正好拼成一个长方形没有剩余的。我们可以用“1×12=12,2×6=12,3×4=12”这样的乘法算式来表示。仔细观察这三道算式你有何发现?
学生:交流发现这些乘法算式中存在某种关系。
根据学生的交流顺势引入新课。
[评析]教者较准确地把握并贴近四年级学生年龄特点和认知水平。让学生进行想象性的摆图活动。通过想象摆图后再用乘法算式表示出来,不仅提高课堂的实效性,而且增强学生的想象力和空间观念。呈现有剩余的摆法,试图通过直观的比较使学生感悟到整除与非整除的区别,从而明确是在整除范围内研究学习的。
二、自主探究,建构新知
(一)认识倍数和因数
1.建立概念。
师:根据4×3=12。它们之间的关系在数学上我们还可以说:12是4的倍数,4是12的因数:12是3的倍数,3是12的因数。
2.经验迁移。
师:根据1×12=12,2×6=12这两道乘法算式,说一说谁是谁的倍数,谁是谁的因数?
3.辨析比较。
(1)师:12是倍数,对吗?
小结:12既是4的倍数,又是3的倍数,还是1、12、2、6的倍数,所以我们一定要说清楚谁是谁的倍数,谁是谁的因数。
(2)师:12是5的倍数吗?为什么?
小结:像这样,用12个小正方形拼长方形,每排摆5个有剩余的,12和5之间就不存在倍数和因数关系。
4.加深理解。
下列各式中,谁是谁的倍数,谁是谁的因数?
8×9=724×10=4036÷9=4
小结:根据除法算式也可以找到两个数的倍数与因数关系。
5.揭示课题:这就是我们今天学习的“倍数和因数”。我们所研究的范围是除零以外的自然数。
[评析]建构主义学习观认为,“每个学习者都不应等待知识的传递,而应基于自己与世界相互作用的独特经验去建构自己的知识并赋予经验以意义”。故而。执教者采取“有意义建构”的方法,让学生初步感知倍数和因数的关系,再类推到其他乘法或除法算式放手让学生利用“经验迁移”来说一说,加深理解倍数和因数的关系。为了防止学生说的过程是依葫芦画瓢,安排了辨析比较的小环节,使学生体会倍数与因数的相互依存关系。
(二)探究一个数的倍数的方法及特征
1.探究方法。
(1)学生自主找3的倍数。
师:刚才我们根据4×3=12,知道了12是3的倍数。你还能找出哪些数是3的倍数?
(2)汇报交流。
从学生作业中随机抽取几本,共同组织交流。
①呈现无序的写法。
师:我们一起来看一看,这些数是3的倍数吗?你是怎么想的?
②呈现有序的写法。
师:这些数是3的倍数吗?你是怎么想的?
小结:刚才同学们都是借助3乘几的乘法算式来找3的倍数。
(3)优化方法。
师:两种方法相比较(有序和无序),你认为哪一种写法比较好?好在哪里?
小结:按一定的顺序写,就可以保证既不重复又不遗漏。
师示范写3的倍数,3、6、9、12、15、18……指出一般写五到六个即可。
2.巩固应用。
(1)自己确定一个数,再写出这个数的倍数。
(2)交流反馈,说出找倍数的方法。
3.总结规律。
如果给你任意一个数,你怎么找这个数的倍数?
小结:找一个数的倍数。我们可以按照一定的顺序,用这个数分别乘1、2、3……
4.发现特征。
师:请同学们仔细观察,你发现一个数的倍数有什么共同特征?
讨论交流后师生共同小结:一个数的倍数是无限的,最小是它本身,没有最大的倍数。
(三)探究一个数的因数的方法及特征
1.探究方法。
(1)学生自主找36的因数。
(2)汇报交流。
从学生作业中随机抽取几本,共同组织交流。
①呈现无序的写法。
师:说一说,你是用什么方法找36的因数的?
②呈现有序的写法。
师:这些数是36的因数吗?你是怎么想的?
小结:我们可以借助几乘几等于36,或36除以几等于几的算式来找36的因数。
③呈现成对找的方法。
师:说一说你是怎么想的? 小结:根据一道算式,我们可以找到36的两个因数,这种方法叫成对找。
(3)优化方法。
师:这几种写法。你更欣赏哪一种?为什么?
小结并示范板书:我们可以将有序和成对找这两种方法结合起来,从1开始,由1找到36,再想2,由2找到18……
2.巩固应用。
写出15、16的因数。
反馈交流。
3.发现特征。
师:请同学们观察36、15、16的因数,你发现一个数的因数有什么特点?
讨论交流后师生共同小结:一个数的因数是有限的,最小是1,最大是它本身。
[评析]找一个数的倍数和因数的教学,都凸显了学生是学习的主动建构者。教师开放教学过程,放手让学生独立探究。教师呈现学生的不同写法,引领学生在自己的思维层面上对他人的思考“品头论足”。在众多信息的相互碰撞交流中,无痕地生成找一个数的倍数和因数的方法。
三、巩固延伸,发展提高
1.明辨是非:下面的说法对吗?
(1)在13÷4=3……1中,13是4的倍数。
(2)因为3×7=21,所以21是倍数,3和7是因数。
(3)一个数的因数最大是20,这个数就是20。
(4)15的最大因数和最小倍数都是它本身。
2.选选说说:从各数中,选择两个数说一说谁是谁的倍数或谁是谁的因数。
410824
学生回答后。提问:你发现哪个数比较特殊?特殊在哪儿?
小结:
(1)1是任意一个除0以外自然数的因数,任意一个除0以外的自然数都是1的倍数。
(2)我们研究倍数和因数时,一般指不是0的自然数。
3.游戏:每人记住自己的学号,老师出一个数字,学号与这个数有倍数或因数关系的起立。师生互动游戏后,教师质疑:如果要想让全班的同学都起立,可以出哪个数?
4.你知道吗?介绍6的因数是1、2、3、6,并且1+2+3=6,具有这样特点的数叫完美数。1~400中只有两个数完美数,一个数是6,另一个就是我们当中的一个学号,这个问题留给同学们课后去研究。
[评析:练习部分的设计,通过判断、找倍数和因数、游戏等活动,不仅加深了学生对倍数和因数的认识,还作了适度的拓展和延伸。使学生体会到l是任意一个非零自然数的因数,非零自然数都是1的倍数,强调了倍数和因数都是非零自然数范围内研究的。游戏活动激发了学生的学习热情,培养了学生应用数学意识。]
四、回顾反思,全课总结(略)
[总评]
1.教师的“有为而教”。在学生对倍数和因数的意义建构的过程中,教者彰显“有为”的引领作用,合理选择教学方法,促进学生的知识建构。体现在:(1)教者能把握学生的学习起点,采取“有意义建构”的方法,帮助学生建立倍数和因数概念。(2)在倍数、因数概念的建立和找一个数倍数、因数的方法过程中,教者巧妙运用辨析,如“12是倍数,这样说行吗?”、“12是5的倍数吗?”、“你觉得哪种方法比较好?好在哪里?”等等,在比较和辨析中强化对知识的理解,将学生的思维不断引向深入,从而实现了学生真正意义上的自主建构。
因数和倍数教学反思 第15篇
因数和倍数是一堂概念课。老教材是先建立整除的概念,在整除的基础上教学因数与倍数的,而新教材没有提到整除。教学前,我是先让学生进行了预习,开课伊始,就揭示课题,让学生谈自己对因数与倍数的理解。学生结合一个乘法算“34= 12”入手,介绍因数与倍数概念,这样有助于更好理解,也能节约很多时间。学生的学习兴趣被激发了、思维被调动起来了,主动参与到了知识的学习中去了。
能不重复、不遗漏找出一个数的因数是本课的难点,绝大部分学生都能仿照找12的因数去找,孩子都能一对一对的找,可遗漏的多,在这里我强调按顺序找,也就是从“1”开始,依次找,这样效果很好。
为了得出因数的特点,我出了“24的因数,36的因数,18的因数”,并认真观察这些因数看有什么发现,由于时间不够,我只要求孩子从因数的个数,最小,最大的因数考虑,没有对质数,合数,公因数进行渗透。找一个数的倍数因为方法比较易于掌握,没有过多的练习,二是激发他们想象一个数的倍数有什么特点。
针对这节课,课后老师们就这堂课认真评析,真诚的说出自己的观点,特别就知识的生长点、教学的重难点展开了讨论,特别是找一个数的因数,应注重方法的指导。由此,我们数学课堂教学应注意一下几点:知识的渗透点、练习发展点、层次切入点、设计巧妙点、教法多样点、语言动听点、管理到位点、应变灵活点。
《倍数和因数》教学反思 第16篇
《因数和倍数》这一教学内容是一节概念课。教材在引入因数和倍数的概念时是通过除法算式来引出整除的概念,每个除法算式对应着一对有整除关系的数,如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。数学中的“起始概念”一般比较难教,我创设有效的数学学习情境,数形结合,变抽象为直观。利用一个简单的实物图(2行飞机,每行6架)引出一个乘法算式26=12,通过这个乘法算式直接给出因数和倍数的概念。这样,直观感知,使概念的揭示突破了从抽象到抽象,从数学到数学,让学生自主体验数与形的结合,进而形成因数与倍数的意义。使学生初步建立了“因数与倍数”的概念。这样,用学生已有的数学知识引出了新知识,减缓了难度,这一环节的教学,我觉得还是收到了预设的效果。
能不重复、不遗漏、有序地找出一个数的因数,是本课的教学难点。在教学中,我是这样设计的:在根据112=12,26=12,34=12三个乘法算式说出了谁是谁的因数、谁是谁的倍数后,教师紧接着提问:12的因数有哪些?学生看着黑板上的算式很快地找出12的因数,接着再提问:你是用什么方式找到12的因数的?在学生说出方法后,为了让学生探索出找一个因数的方法,我让学生自己找一找15的因数有哪些。预设在汇报时,能借此解决如何有序、不重复、不遗漏地找出一个数的因数。但在实际交流时,学生的方法出现了两种意见,并且各抒己见,因为15的.因数只有两对,无论怎样找都不会遗漏。作为老师,我这时没有把我的意见强加给学生,而是以男女生比赛的形式,让学生分别找16、18的所有因数。由于部分学生运用从小到大一对一对地找很快找出这两个数的因数,另一部分却在无序的情况下,不是重复就是遗漏,这样在比较中,不重复、不遗漏、有序地找出一个数的因数的方法,学生就能够很好地接受并掌握。同时在练习中我设计了其中一道题是猜我的电话号码,激发起学生的兴趣,我是这样想的:重在培养学生善于联想,勇于探索的习惯。由个体现象联想到同类现象并能深入探索,这是创造的源泉。虽然在这个环节上花了比较多的时间,但对学生自主探索、自主学习起到了很好的促进作用。
这节课另一个给我感触最深的是:就是在引导学生归纳总结出一个数的因数的特点时,由于及时跟上个性化的语言评价,激活了学生的情感,学生的思维不断活跃起来。借助这一学习热情让学生自己探索找一个数的倍数的方法。教师相信学生,学生学习兴趣更浓。不仅探讨出从小到大找一个数的倍数而且发现了倍数的特点。这一环节教学的成功,也使我改变了教学的观念――适时放手,会看到学生更精彩的一面。以后教学需大胆相信学生,深入钻研教材,既备教材又了解学情,作到收放自如,充分发挥学生的潜能。
因数和倍数教学反思 第17篇
因数和倍数是揭示两个整数之间的一种相互依存关系,在课前谈话中我利用生活与数学之间的联系,来帮忙学生理解因数倍数相互依存的关系。比如,我上课前利用班级中学生的父子关系和朋友关系来说明“朋友、父子”词语的含义,它是指两个人之间的一种关系,只能造句为“某人是某人的朋友”。这样的话局把生活中的相互依存关系迁移到数学中的倍数和因数,这样设计较自然贴切,让学生感受到数学与生活的联系,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,又帮忙学生理解了倍数和因数之间的相互依存关系。
教育家第斯多惠曾说过:“一个坏的教师奉送真理,一个好的教师则教人发现真理。”因此教学中,教师要重视学生的主体地位,给学生带给充分思考和自我表现的空间,引导他们利用已有的知识去探索发现新的知识。如何找一个数的因数是这节课的重点也是难点。根据学生的实际状况,我进行了重组教材,先让学生根据乘法(除法)算式“一对对”地找出18、15、24的因数。透过“质疑”:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。在探究倍数时,我则大胆的放手,让学生自主探索找一个数倍数的方法,给学生带给了广阔的思维空间。这样透过多种形式的教学,既激发了学生的学习兴趣,又极大地提高了课堂教学的实效性。学生在自我找因数和倍数练习后又总结了最大的因数和最小的倍数都是它本身。我想这就应比教师的传授要好百倍。
由《倍数和因数》教学片断想到的 第18篇
题记
“智慧”虽是一个很古老的词语, 但很难给它下一个比较统一的定义。“智慧数学”就是应运而生的一种教学主张。“智慧数学”还原了学生作为一个学习和发展中的人探索和发现数学的过程, 培养了基于成功智力的数学学力, 学生的智慧必将随之生长。近日, 笔者听了一节智慧数学的课例《倍数和因数》, 其间的智慧贯穿全课, 可谓在点滴之间, 现采撷一个最有“智慧”的教学片断与大家分享。
【课堂再现】
师:请你找出12的因数。
生:12的因数有1、2、3、4、6、12。
师:30的因数有哪些?
生:30的因数有1、2、3、5、6、10、15、30。
师:你认为因数与哪些关键词或数有关? (在表格中打“√”)
师:请你用你选择的与因数有关的关键词或数组织一段话来描述一下关于因数的收获。
生1:我选乘法和成对这2个关键词, 比如, 我们在找36的因数时可以利用 () () =36, 而且成对地找, 不会重复与遗漏。
生2:我选1和最小这2个关键词, 我觉得一个数最小的因数是1。
生3:我选最大和本身这2个关键词, 我认为一个数最大的因数是它本身。
生4:我选有限这个关键词, 我觉得一个数的因数是有限的。
师:写出3的倍数。
师:对于写一个数的倍数, 你能总结出一些关键词、一段话吗?
(此环节最后适时出现智慧心语:我们寻找一个数的因数, 如同在探寻数的“基因”, 我们列举一个数的倍数, 是在建立数与数的广泛联系。)
通常教师在处理这一环节时都是于“习惯处行走”:“对于一个数的因数 (倍数) , 你发现了什么?”然后由学生一条条地总结或者由教师引导着得出一个个结论。智慧数学则提倡打开智慧的心门, 从一句话、一个问题、一个教学环节入手, 独具匠心地设计了一个表格, 让学生们选与因数有关的关键词或数, 接着又让学生们自己设计有关倍数的关键词, 这样在学生们的头脑中自然生成了一个数的因数 (倍数) 的特点, 可谓真正做到了“用数学自身的魅力去打动学生”。
“智慧数学”的教学不在于教师讲授多少知识点, 而在于积极开拓学生们的视野, 鼓励学生们展开想象的翅膀, 提出更多的为什么;“智慧数学”的教学不在于教学方法如何精细, 而在于学生们是否在学习过程中有主动参与和自由表达的机会;“智慧数学”的教学不在于学生们从书本、教师那里接受了多少, 而在于他们批判地吸收、内化了多少, 是否真正具有发展的原动力, 对自己的数学学习是否有足够的自信, 在数学学习中获得了哪些思想启迪、精神熏陶
五上数学因数和倍数单元教学反思
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


