流体力学实验课件
流体力学实验课件(精选9篇)
流体力学实验课件 第1篇
流体力学是力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。下面小编给大家带来流体力学课件,欢迎大家阅读。
流体力学课件
一、流体的基本特征
1.物质的三态
在地球上,物质存在的主要形式有:固体、液体和气体。
流体和固体的区别:从力学分析的意义上看,在于它们对外力抵抗的能力不同。
固体:既能承受压力,也能承受拉力与抵抗拉伸变形。
流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。
液体和气体的区别:气体易于压缩;而液体难于压缩;液体有一定的体积,存在一个自由液面;气体能充满任意形状的容器,无一定的体积,不存在自由液面。
液体和气体的共同点:两者均具有易流动性,即在任何微小切应力作用下都会发生变形或流动,故二者统称为流体。
2.流体的连续介质模型
微观:流体是由大量做无规则运动的分子组成的,分子之间存在空隙,但在标准状况下,1cm3液体中含有3.3×1022个左右的分子,相邻分子间的距离约为3.1×10-8cm。1cm3气体中含有2.7×1019个左右的分子,相邻分子间的距离约为3.2×10-7cm。
宏观:考虑宏观特性,在流动空间和时间上所采用的一切特征尺度和特征时间都比分子距离和分子碰撞时间大得多。
(1)概念
连续介质(continuum/continuous medium):质点连续充满所占空间的流体或固体。
连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u(t,x,y,z)。
(2)优点
排除了分子运动的复杂性。物理量作为时空连续函数,则可以利用连续函数这一数学工具来研究问题。
3.流体的分类
(1)根据流体受压体积缩小的性质,流体可分为:
可压缩流体(compressible flow):流体密度随压强变化不能忽略的流体。
不可压缩流体(incompressible flow):流体密度随压强变化很小,流体的密度可视为常数的流体。
注:
(a)严格地说,不存在完全不可压缩的流体。
(b)一般情况下的液体都可视为不可压缩流体(发生水击时除外)。
(c)对于气体,当所受压强变化相对较小时,可视为不可压缩流体。
(d)管路中压降较大时,应作为可压缩流体。
(2)根据流体是否具有粘性,可分为:
实际流体:指具有粘度的流体,在运动时具有抵抗剪切变形的能力。
理想流体:是指既无粘性又完全不可压缩流体,在运动时也不能抵抗剪切变形。
二、惯性
一切物质都具有质量,流体也不例外。质量是物质的基本属性之一,是物体惯性大小的量度,质量越大,惯性也越大。单位体积流体的质量称为密度(density),单位:kg/m3。
三、压缩性
1.压缩性
流体的可压缩性(compressibility):作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。压缩性可用体积压缩率k来量度。
2.体积压缩率k
体积压缩率k(coefficient of volume compressibility):流体体积的相对缩小值与压强增值之比,即当压强增大一个单位值时,流体体积的相对减小值。
3.体积模量K
流体的压缩性在工程上往往用体积模量来表示。体积模量K(bulk modulus of elasticity)是体积压缩率的倒数。
k与K随温度和压强而变化,但变化甚微。
说明:a.K越大,越不易被压缩,当K时,表示该流体绝对不可压缩。
b.流体的种类不同,其k和K值不同。
c.同一种流体的k和K值随温度、压强的变化而变化。
d.在一定温度和中等压强下,水的体积模量变化不大
一般工程设计中,水的K=2×109 Pa,说明Dp =1个大气压时。Dp不大的条件下,水的压缩性可忽略,相应的水的密度可视为常数。
四、粘度
1.粘性
粘性:即在运动的状态下,流体所产生的抵抗剪切变形的性质。
2.粘度
(1)定义
流体的粘度:粘性大小由粘度来量度。流体的粘度是由流动流体的内聚力和分子的动量交换所引起的。
(2)分类
动力粘度:又称绝对粘度、动力粘性系数、粘度,是反映流体粘滞性大小的系数,单位:N"s/m2。
运动粘度ν:又称相对粘度、运动粘性系数。
(3)粘度的影响因素
流体粘度的数值随流体种类不同而不同,并随压强、温度变化而变化。
1)流体种类。一般地,相同条件下,液体的粘度大于气体的粘度。
2)压强。对常见的流体,如水、气体等,m值随压强的变化不大,一般可忽略不计。
3)温度。是影响粘度的主要因素。当温度升高时,液体的粘度减小,气体的粘度增加。
a.液体:内聚力是产生粘度的主要因素,当温度升高,分子间距离增大,吸引力减小,因而使剪切变形速度所产生的切应力减小,所以m值减小。
b.气体:气体分子间距离大,内聚力很小,所以粘度主要是由气体分子运动动量交换的结果所引起的。温度升高,分子运动加快,动量交换频繁,所以粘度增加。
3.牛顿内摩擦定律
a.牛顿内摩擦定律: 液体运动时,相邻液层间所产生的切应力与剪切变形的速率成正比。
说明:
1)流体的切应力与剪切变形速率,或角变形率成正比。——区别于固体的重要特性:固体的切应力与角变形的大小成正比。
2)流体的切应力与动力粘度m成正比。
3)对于平衡流体du /dy =0,对于理想流体m=0,所以均不产生切应力,即t =0。
b.牛顿平板实验与内摩擦定律
2.牛顿流体、非牛顿流体
牛顿流体(newtonian fluids):是指任一点上的剪应力都同剪切变形速率呈线性函数关系的流体,即遵循牛顿内摩擦定律的流体称为牛顿流体。
非牛顿流体:不符合上述条件的均称为非牛顿流体
流体力学实验课件 第2篇
出现
流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。中国有大禹治水疏通江河的传说。秦朝李冰父子(公元前3世纪)领导劳动人民修建了都江堰,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。
对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。
15世纪意大利达芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。
17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。
发展
17世纪力学奠基人I. 牛顿研究了在液体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他对粘性流体运动时的内摩擦力也提出了以下假设:即两流体层间的摩阻应力同此两层的相对滑动速度成正比而与两层间的距离成反比(即牛顿粘性定律)。
之后,法国H. 皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的L. 欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系伯努利方程。
欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。
从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国J.-L. 拉格朗日对于无旋运动,德国H. von 亥姆霍兹对于涡旋运动作了不少研究.上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体,所以这种理论阐明不了流体中粘性的效应。
理论基础
将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于18和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。
由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。为了简化方程,学者们采取了流体为不可压缩和无粘性的假设,却得到违背事实的达朗伯佯谬物体在流体中运动时的阻力等于零。因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。
与流体动力学平行发展的是水力学(见液体动力学)。这是为了满足生产和工程上的需要,从大量实验中总结出一些经验公式来表达流动参量之间关系的经验科学。
使上述两种途径得到统一的是边界层理论。它是由德国L. 普朗特在19创立的。普朗特学派从1904年到1921年逐步将N-S方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的.设计中去。这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。使上述两种情况得到了统一。
飞机和空气动力学的发展
20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以茹科夫斯基、恰普雷金、普朗特等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。
机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。
分支和交叉学科的形成
从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。
以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。
这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。
流体力学实验课件 第3篇
一、课件素材发展及FLUENT软件
随着计算机技术的普及, 课堂组织教学形式呈现出多样性发展趋势。利用多媒体计算机图象处理功能, 容易解决传统教学中存在的具体与抽象、形式与逻辑之间的矛盾。在教学中, 学生最不容易想象和最难理解的抽象的知识, 可借助动画演示而收到良好的教学效果, 拓展了学生思维想象空间, 分解了知识难点, 使学生更容易理解[1]。
多媒体素材的优劣直接决定了多媒体教学效果的好坏。传统上采用FLASH、3DMAX等处理软件制作多媒体素材, 这类素材具有动态显示、容易制作等优点, 但缺少与实际模型的有机结合, 往往仅是定性演示, 无法做到定量数据具体分析的效果。而随着教学改革实践和理论探索要求的不断提高, 越来越多的课件制作教师希望课件素材更有真实性、可靠性。虽然一些商家开发出大量多媒体教学素材, 但是由于开发人员不具备扎实的专业知识, 使得总体情况并不十分乐观, 能满足课堂教学要求的多媒体素材仍然较少。
经过流体力学校级精品课程建设课题组多年的教学实践, 将FLUENT软件引入本科生流体力学课堂教学的教学方式拓宽了现有的传统意义上的多媒体技术教学手段。这种教学方式要求专业教师应具有深厚的计算流体力学的理论基础及熟练操作使用数值计算软件的能力, 因它在实践教学应用中对每位专业教师提出了更高的要求。[2]FLUENT是现代最流行的流体流场数值模拟软件。在流体力学课件制作方面主要表现:
1.牛顿内摩擦定律的演示与分析;
2.流体静压强的演示与分析;
3.管中层流、紊流的流动状态演示与分析;
4.局部阻力损失演示与分析;
5.边界层现象演示与分析;
6.孔口流动和管嘴流动演示与分析。
二、FLUENT软件模拟流体流动过程
以流体在突然扩大管中的流动为例, 具体阐述一下制作过程。
已知条件:突然扩大管细管直径为20mm, 粗管直径为60mm, 总长度为200mm。管内流动介质为水, 进口速度为1000mm/s。
要使用FLUENT软件, 首先明确研究对象性质, 建立研究对象物理模型, 并在此基础上建立研究对象数学模型;然后将流体流动的物理特性应用到模拟计算模型;最后通过FLUENT软件输出所需的流体性质。
1.根据已知条件, 建立管内流体流动的几何模型, 划分网格, 设定边界条件, 并导出网格和边界条件数据文件。网格模型如图1所示。
2.将网格和边界条件数据文件导入FLUENT软件, 选择求解类型, 定义物理模型, 设置边界条件参数和初始条件, 进行数值计算, 并导出数值模拟结果数据文件。数值计算结果如图2、图3所示。从图中清晰看出, 在突然扩大段, 压力出现负值, 并有明显的涡流现象产生, 这是造成局部能量损失的主要原因。
3.为了便于探讨速度场分布情况, 可以将导出数值模拟结果数据文件导入数据处理软件Tecplot进行处理, 处理结果如图4所示。从图中可以看出, 流体进入粗管以后, 流体x轴方向的流动速度衰减较快, 并且在突然扩大段的近壁处, 流体x轴方向的流动速度出现负值, 说明流体在此处呈现涡流流动状态。
突然扩大管局部阻力损失的理论计算公式[3]为:
其中A2—突变面下游横截面积, m 2;
A1—突变面上游横截面积, m 2;
u1—突变面上游平均流速, m/s。
实际流体的伯努利方程[3]为:
将仿真结果代入上式, 其中Z1=Z2=0, P1=96Pa, , P2=186Pa, u1=1m/s, u2=0.11m/s, hf=0, 得
从理论计算和模拟计算比较可以看出, 模拟结果与实际结果吻合较好, 说明模拟结果真实可靠。
三、结论
课题组利用商业软件FLUENT开发了流体力学双语教学课程的教学课件素材, 能够逼真的模拟各种条件下实际流场的流动状态, 有助于学生掌握和理解教师在语言上难以表达, 变化过程复杂或肉眼观察不到的流动现象;同时由于参数设置比较贴近实际, 可以对一些工程流动问题进行定量分析, 因此有效地调动了学生学习的兴趣和热情。这种开发利用商业计算软件制作一些概念和原理比较抽象的专业课程内容, 并实现高校专业课程多媒体课程教学有很好的推广和借鉴意义。
参考文献
[1]吴国忠, 李栋.基于CFD技术的“空气调节”教学课件素材制作研究[J].牡丹江大学学报, 2008, (5) :151-153
[2]郑捷庆, 邹锋, 张军等.C F D软件在工程流体力学教学中的应用[J].中国现代教育装备, 2007, (10) :119-121
理论力学多媒体课件的制作与应用 第4篇
【关键词】理论力学 多媒体课件 制作 应用
一、理论力学多媒体课件的制作
(一)重视理论联系实际
对于理论力学相关的基本概念,应该由实例将其引入,可以通过文字、图片等的超链接将与之相关的工程案例融入其中,并插入大量的电子图片、图像资料,以此来为学生建立二维、三维静态、动态的力学分析模型,然后基于切合实际的模型之上建立相关问题的理论分析以及计算方法,这样一来,学生就能够将例题分析、例题计算和实际工程相联系起来。教育者只有将理论和实际融入理论力学的课件当中,将文字、图形、照片、案例、活动紧密地结合起来,不断强化理论和实际的联系,才能有效地培养学生发现——分析——解决实际工程问题的能力。
(二)重视对课堂教学板书方式的模仿
教育者应该始终按照从简单到复杂、从形象到抽象、从实际到理论再回到实际的原则制作理论力学的课件。在制作课件的时候,应该选用逐行、逐段时间差的方法来显示相关的理论推导以及解题的各个步骤,对于极为重要的概念应该采用逐字显示法,重要的公式采用填充效果显示法。这种时间差显示法能够配合教育者的授课节奏,能够较好地模仿传统课堂教学的板书方法,进而才能增强学习效果。理论力学多媒体课件应该尽量地和教育者日常授课习惯以及授课节奏保持一致,最大限度地降低因为教学方法的变化带来的不适应,尽量与学生的认知规律相一致,以此来保障学生更容易理解、记忆、应用相关的理论力学知识。
(三)重视对课件编排的科学性
理论力学具备了概念繁多、图形复杂、技巧丰富等特点,因此,教育者在制作理论力学多媒体课件的时候,应该主次分明、重点突出、精选素材,保证课件编排的科学性:重点编排基础概念以及基本方法,详细阐述略为复杂的概念,详细推导复杂公式。由于各个专业学习的侧重点不同,教育者应该对某些教学内容注明专业对象,这样一来在授课的时候,教育者就可以依据专业的不同对课件内容进行适宜的调整,进而节约大量的板书时间,提高教学效率。
二、理论力学多媒体课件的应用
(一)多媒体和板书的有机结合
多媒体虽然是一种先进的科学技术,但是和过去的板书教学并不存在矛盾关系,两者有机结合起来,能够相互取长补短。教育者可以依据教学内容以及授课对象的不同,选择多媒体和板书相结合的教学手段。至于那些文字和图像相结合的教学知识,应该选用多媒体教学比重略大的手段,与此同时也要积极利用直观的教学环境。对于那些条条框框的知识点,教育者应该在授课过程中通过板书教学在黑板上留下痕迹,以此来帮助学生更好地理顺知识点。
(二)教学互动
在教学过程中,教育者不能一味地盯着黑板、课件,应该及时充分地从学生的表情获取教学效果的相关信息,比如学生是否在听课、是否理解、是否存在疑问等等,并根据相关信息及时地调整授课节奏和重点。具体方法如下:将主要的教学内容制作成主幻灯片,是授课的主线,剩下的内容制作成子幻灯片,设置为隐藏状态,这样一来教育者就可以根据实际来适当地增删授课内容;将例题显示在屏幕上,不仅节约了教育者的板书时间,而且教育者还可以利用学生分析例题的时间走下讲台,及时解答学生的各种问题;在小结课件之时,教育者能够拥有更多的时间进行启发式提问,通过师生间的互动,教育者能够更好地掌控授课效果。
(三)利用教育者自身这个媒体
对于教学活动而言,课件仅是它的一个组合部分,而最重要的其实还是教育者自身,准确说来是教育者的语言。语速应该适中,保持抑扬顿挫,以便学生及时思考;语气应该简明、清晰,需要之时插入相关问题和讨论,以此来激发学生学习的兴趣。当然这里所指的教育者语言还包括了教育者的肢体语言,它能够将教学课堂生动形象化。总而言之,教育者就应该充分地利用自身这个媒体来弥补理论力学多媒体课件的不足之处。
三、结语
总而言之,理论力学是众多力学课程以及专业课的基础,直接影响到后续课程的开展,在课程体系中占据着不可或缺的重要地位,教育者务必应该加以重视。随着教育界深入改革进程的不断加快,多媒体被广泛地应用到教学活动的方方面面,有效地提高了教学的质量水平,当然理论力学也不例外。本文就针对理论力学多媒体课件的制作和应用进行了简要的分析,以此希望理论力学多媒体课件的制作和应用能够更加完善,进而有效地培养学生的实际应用能力。
【参考文献】
[1]葛文璇,许薇,陈静等. 理论力学多媒体课件的制作[J]. 中国现代教育装备,2012(1).
[2]王晔,杨姝. 塑性力学电子课件制作与课程建设初探[C]. 2006力学教学与教学改革交流会会议论文集,2006.
工程力学课件 第5篇
工程力学课件
1约束与约束反力
【目的与要求】、使学生对约束的概念有清晰的理解、掌握柔性、光滑面、光滑铰链约束的 构造及约束反力的确定;、能正确的绘制各类约束的约束反力,尤其是铰链约束、二力杆、三力构件的约束反力的画法。
【重点、难点】、约束及约束反力的概念。、工程中常见的约束类型及约束反力的画法。
自由体:在空间运动,其位移不受任何限制的物体。
非自由体:在空间运动,其位移受到某些方面任何限制的物体。
主动力:约束反力以外的其他力
约束 ——对非自由体某个方向的移动期限制作用的周围物体。
约束反力(约束力)——约束对被约束物体作用的力。
约束反力的特点——约束反力的方向总是与非自由踢被约束所限制的位移方向相反。
一、柔索约束
1.实例
2.约束反力的特点:(拉力)
大小:待定
作用点;连接点
方向:柔索对物体的约束力沿着柔索背向被约束物体。
二、光滑表面约束
1.实例
约束反力的特点(FN)
大小:待定
方向:沿着接触面的公法线指向物体内部。
作用点:接触点
三、光滑铰链约束
1.固定铰支座
1)实例
2)反力特点:(Fx,Fy)大小:待定
方向:互相垂直的二分力
作用点:铰链转动中心
2.可动铰支座
1)实例
方向:垂直于支撑面
作用点:铰链转动中心
3.中间铰链
1)实例
2)反力特点 大小:待定。
方向:互相垂直的二分力。
作用点:铰链转动中心。
四.光滑球铰链约束(Fx,Fy,Fz)
1.实例
2.约束及反力特点
1)约束特点:通过球与球壳将构件连接,构件可以绕球心任意转动,但构件与球心不能有任何移动.
2)约束力:当忽略摩擦时,球与球座亦是光滑约束问题
3)约束力通过接触点,并指向球心,是一个不能预先确定的空间力.可用三个正交分力表示.
【小结】、本节课详尽地介绍了工程中常见的各种约束 构造及约束反力的确定。、光滑铰链约束的不同类型所具有的特点和 区别是本节课的难点,、应通过扎实的练习,熟练掌握工程中常见的各种 约束及约束反力的正确画法。
工程力学课件
2知识与技能
1、掌握力学的基本概念和公理。
2、熟练运用各个力学公理。
教学重点难点
静力学公理的运用。
教学过程
所谓公理就是无需证明就为大家在长期生活和生产实践中所公认的真理。静力学公理是静力学全部理论的基础。
公理一 二力平衡公理
作用于同一刚体上的两个力成平衡的必要与充分条件是:力的大小相等,方向相反,作用在同一直线上。可以表示为:F=-F/或F+F/=0
此公理给出了作用于刚体上的最简力系平衡时所必须满足的条件,是推证其它力系平衡条件的基础。在两个力作用下处于平衡的物体称为二力体,若物体是构件或杆件,也称二力构件或二力杆件简称二力杆。
公理二 加减平衡力系公理
在作用于刚体的任意力系中,加上或减去平衡力系,并不改变原力系对刚体作用效应。
推论一 力的可传性原理
作用于刚体上的力可以沿其作用线移至刚体内任意一点,而不改变该力对刚体的效应。
证明:设力F作用于刚体上的点A,如图1-2所示。在力F作用线上任选一点B,在点B上加一对平衡力F1和F2,使 F1= F2=F
则F1、F2、F构成的力系与F等效。将平衡力系F、F2减去,则F1与F等效。此时,相当于力F已由点A沿作用线移到了点B。
由此可知,作用于刚体上的力是滑移矢量,因此作用于刚体上力的三要素为大小、方向和作用线。
公理三 力的平行四边形法则
作用于物体上同一点的两个力可以合成为作用于该点的一个合力,它的大小和方向由以这两个力的矢量为邻边所构成的平行四边形的对角线来表示。如图1-3a所示,以FR表示力F1和力F2的合力,则可以表示为:FR=F1+F2。即作用于物体上同一点两个力的合力等于这两个力的矢量合。
在求共点两个力的合力时,我们常采用力的三角形法则:(如图1-3b)所示。从刚体外任选一点a作矢量ab代表力F1,然后从b的终点作bc代表力F2,最后连起点a与终点c得到矢量ac,则ac就代表合力矢FR。分力矢与合力矢所构成的三角形abc称为力的三角形。这种合成方法称为力三角形法则。
推论二 三力平衡汇交定理
刚体受同一平面内互不平行的三个力作用而平衡时,则此三力的作用线必汇交于一点。
证明:设在刚体上三点A、B、C分别作用有力F1、F2、F3,其互不平行,且为平衡力系,如图1-4所示,根据力的可传性,将力F1和F2移至汇交点O,根据力的可传性公理,得合力FR1,则力F3与FR1平衡,由公理一知,F3与FR1必共线,所以力F1的作用线必过点O。
公理四 作用与反作用公理
两个物体间相互作用力,总是同时存在,它们的大小相等,指向相反,并沿同一直线分别作用在这两个物体上。
物体间的作用力与反作用力总是同时出现,同时消失。可见,自然界中的力总是成对地存在,而且同时分别作用在相互作用的两个物体上。这个公理概括了任何两物体间的相互作用的关系,不论对刚体或变形体,不管物体是静止的还是运动的都适用。应该注意,作用力与反作用力虽然等值、反向、共线,但它们不能平衡,因为二者分别作用在两个物体上,不可与二力平衡公理混淆起来。
公理五 刚化原理
变形体在已知力系作用下平衡时,若将此变形体视为刚体(刚化),则其平衡状态不变。
此原理建立了刚体平衡条件与谈形体平衡条件之间的关系,即关于刚体的平衡条件,对于变形体的平衡来说,也必须满足。但是,满足了刚体的平衡条件,变形体不一定平衡。例如一段软绳,在两个大小相等,方向相反的拉力作用下处于平衡,若将软绳变成刚杆,平衡保持不变。把过来,一段刚杆在两个大小相等、方向相反的压力作用下处于平衡,而绳索在此压力下则不能平衡。可见,刚体的平衡条件对于变形体的平衡来说只是必要条件而不是充分条件。
板书设计
1、公理一:二力平衡公理
作用于同一刚体上的两个力成平衡的必要与充分条件是:力的大小相等,方向相反,作用在同一直线上。可以表示为:F=-F/或F+F/=0
2、公理二:加减平衡力系公理
在作用于刚体的任意力系中,加上或减去平衡力系,并不改变原力系对刚体作用效应。
3、公理三:力的平行四边形法则
作用于物体上同一点的两个力可以合成为作用于该点的一个合力,它的大小和方向由以这两个力的矢量为邻边所构成的平行四边形的对角线来表示。如图1-3a所示,以FR表示力F1和力F2的合力,则可以表示为:FR=F1+F2。即作用于物体上同一点两个力的合力等于这两个力的矢量合。
4、公理四 作用与反作用公理
复合材料力学课件 第6篇
复合材料力学课件:
复合材料力学研究的内容:
同常规材料的力学理论相比,复合材料力学涉及的范围更广,研究的课题更多。
首先,常规材料存在的力学问题,如结构在外力作用下的强度、刚度,稳定性和振动等问题,在复合材料中依然存在,但由于复合材料有不均匀和各向异性的特点,以及由于组分材料几何(各组分材料的形状、分布、含量)和铺层几何(各单层的厚度、铺层方向、铺层顺序)等方面可变因素的增多,上述力学问题在复合材料力学中都必须重新研究,以确定那些适用于常规材料的力学理论、方法、方程、公式等是否仍适用于复合材料,如果不适用,应怎样修正。
其次,复合材料中还有许多常规材料中不存在的力学问题,如层间应力(层间正应力和剪应力耦合会引起复杂的断裂和脱层现象)、边界效应以及纤维脱胶、纤维断裂、基体开裂等问题。
最后,复合材料的材料设计和结构设计是同时进行的,因而在复合材料的材料设计(如材料选取和组合方式的确定)、加工工艺过程(如材料铺层、加温固化)和结构设计过程中都存在力学问题。
当前,复合材料力学的研究工作主要集中在纤维增强复合材料多向层板壳结构的改进和应用上。这种结构是由许多不同方向的单向层材料叠合粘结而成的,因此叫作多向层材料结构。单向层材料中沿纤维的方向称为纵向;而在单向层材料子面内垂直于纤维的方向称为横向。
材料力学英文课件 第7篇
材料力学英文课件
材料力学定义
固体力学的一个分支,研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。
在结构承受载荷或机械传递运动时,为保证各构件或机械零件能正常工作,构件和零件必须符合如下要求:①不发生断裂,即具有足够的强度;②构件所产生的弹性变形应不超出工程上允许的范围,即具有足够的刚度;③在原有形状下的平衡应是稳定平衡,也就是构件不会失去稳定性。对强度、刚度和稳定性这三方面的要求,有时统称为“强度要求”,而材料力学在这三方面对构件所进行的计算和试验,统称为强度计算和强度试验。
为了确保设计安全,通常要求多用材料和用高质量材料;而为了使设计符合经济原则,又要求少用材料和用廉价材料。材料力学的目的之一就在于为合理地解决这一矛盾,为实现既安全又经济的设计提供理论依据和计算方法。
材料力学课程
课程简介
材料力学课程是一门用以培养学生在工程检验与设计中有关力学方面设计与计算能力的技术基础课,本课程主要研究工程结构中构件的承载能力问题。通过材料力学的学习,能够对构件的强度、刚度和稳定性问题具有明确的基本概念,必要的基础知识,比较熟练的计算能力,一定的分析能力和初步的实践能力。
材料力学课程是高等工科院校中土木工程专业一门主干专业课程。在教学过程中要综合运用先修课程中所学到的有关知识与技能,结合各种实践教学环节,进行土木工程毕业生所需的基本训练,为学生进一步学习有关后续专业课程和有目的从事工程检验与设计工作打下基础。因此材料力学课程在土木工程专业的教学计划中占有重要的地位和作用。
课程目标
材料力学是由基础理论课过度到专业课程的技术基础课。通过该课程的学习,要求学生对杆件的强度、刚度和稳定性问题具有明确的基本概念、必要的基础知识、比较熟练的计算能力、一定的分析能力和初步的实验能力。
教学内容及要求
第一章 绪论及基本概念(2课时)
内容:材料力学的任务和研究对象;变形固体的基本假设;内力、截面法;应力的概念;线应变和剪应变;杆件变形的基本形式。
重点讲解:内力、应力和应变的概念和胡克定律。介绍本课程重点内容及学习方法。第二章 轴向拉伸与压缩(6课时)
内容:轴向拉伸和压缩的基本概念和实例;截面法、轴力和轴力图;直杆横截面和斜截面上的应力,最大剪切应力;低碳钢和铸铁的拉伸试验及拉伸时材料的力学性质;低碳钢和铸铁的压缩试验及压缩时材料的力学性质;许用应力,强度条件;圣维南原理;轴向拉伸和压缩时的变形;应变能、比能;应力集中的概念。
重点讲解轴向拉(压)杆内力、应力以及强度计算的概念,截面法在求解拉(压)杆内力中的具体应用。详细介绍材料在拉伸与压缩时的力学性能。重点讲解轴向拉(压)杆的应变和变形计算
公式。对拉压应变能作一般性介绍。对斜截面上的应力、应力集中的概念及连接部分的强度计算作一般性介绍。
第三章 扭转(6课时)
内容:扭转的概念和实例;扭矩和扭矩图;薄壁圆筒扭转时的应力和变形;纯剪切、剪切虎克定律、剪应力互等定理;圆轴扭转时的应力和变形;强度和刚度条件;扭转时的弹性应变能;非圆截面扭转的概念。
重点讲解圆轴扭转时的应力和变形计算,强度和刚度条件。对非圆截面轴扭转及薄壁杆扭转作简单介绍。
第四章 弯曲应力(10课时)
内容:对称弯曲的概念和实例;梁的计算简图、剪力、弯矩及其方程;剪力图和弯矩图;弯矩、剪力和分布载荷集度的关系及其应用。纯弯曲时的正应力公式;弯曲正应力的强度计算;矩形截面梁和工字形截面梁的剪应力;弯曲剪应力的强度计算;提高弯曲强度的措施;弯曲中心的概念。
重点讲解梁的内力及其计算方法,剪力图和弯矩图的画法。介绍平面弯曲概念,剪力、弯矩方程的写法。利用弯矩、剪力与分布荷载集度间的关系画弯矩图作为难点仔细讲解,反复训练。梁在纯弯曲时的正应力计算,梁的强度校核。介绍梁横截面上的切应力,合理截面问题。一般介绍截面核心的概念。
第五章 梁弯曲时的位移(6课时)
内容;梁的挠曲线及其近似微分方程;用积分法求梁的挠度和转角;根据叠加法求梁的挠度和转角;梁的刚度校核;提高弯曲刚度的措施;梁弯曲时的变形能。
重点讲解梁的挠度和转角,梁的挠曲线近似微分方程。详细介绍用积分法、叠加法求梁的挠度和转角,梁的刚度校核,简单超静定梁计算。一般介绍提高弯曲刚度的措施。
第六章 简单的超静定问题(6课时)
内容:静不定结构的概念和实例;静不定结构的特点;力法解静不定结构;拉压扭转静不定问题。
重点讲解用力法分析静不定问题。其它问题简单介绍。
第七章 应力状态与强度理论(8课时)
内容:应力状态、主应力和主平面的概念;平面应力状态下的应力分析-解析法和图解法;三向应力状态基本概念;平面应力状态下的应变分析;广义虎克定律;强度理论的概念;材料破坏形式;四种常用强度理论、莫尔强度理论。
应用LaTeX制作工程力学课件 第8篇
在工程力学的计算过程中,需要对构件进行受力分析并绘制受力图,如果受力分析和力的分解能够以电子课件的形式准确的展示出来,将能够有效地激发学生的学习兴趣,提高认知能力。工程力学课件要求绘图必须具有一定的准确度,才能够更真实、更直观地展现出其受力结果和分析结果,才能达到课件设计的真正目的。现在国内主要是用微软件公司的PowerPoint软件来制作各类课件。然而PowerPoint的绘图功能比较有限,且实现对图形的准确控制比较繁杂,不利于工程制图、工程力学等工科类课件的制作。另外,采用Flash等工具虽然也能够实现工科类课件的制作,并且能够实现一些特殊的功能,但这类工具对制作者的要求比较高,需要经过专门的学习才能胜任。因此,本文通过一个具体的实例介绍如何利用latex的beamer宏包[1]和Tikz宏包[2]来制作工科类课件。
2 任务描述
如图1所示的手动剪断机,现在要求求解力对点的矩。工程力学中为了方便进行构件的受力分析与计算,通常忽略实际零件的真实细节,将其抽象成为如图2所示的形式。因此,课件应能够准确地表达出图2所示结果,并以动画的形式演示图3所示的力的分解结果。
3 实现过程和注释
要完成该任务,可以利用TeXworks、WinEdt等工具来编辑Latex源文件,也可以使用Windows中的记事本来完成,但是文件名必须以.tex为后缀名。具体代码如下:
上述代码中,第1-2行是引入完成此任所需要beamer宏包和Tikz宏包,用以支持课件的演示动画和图形绘制;第8行则引入Tikz宏包中的箭头式样和计算功能,用以定制具体的箭头式样,满足绘图时的尺寸标注规范;第9行用以确定幻灯片的式样;第10-17行定义绘图时所要用到各种线型的式样,用以在绘图时直接调用,此种方式最大的优势是利于修改和维护,能够做到一改全改,提高可维护性;第20-49行为幻灯处区,LaTeX的beamer宏包要求每张幻灯必须定义在frame之中;第21-48行包含整个绘图过程和动画定义。整个绘图过程中,第23-27行首先定义了绘图过程中要用到的几个关键点的坐标位置,用以实现准确的图形绘制;第28-33行完成图2所示的图形,其中draw指令用于绘制线段,node指令用于完成点和力的标注,例如点的标注;第35-40行完成绘制力的分解示意图,第42-42行则用于完成尺寸的标注。代码中的第34、41行则是用于控制动画的播放内容及显示顺序,实现动态的演示效果。
要真正实现动画效果的演示,首要用pdfLaTeX将源文件编译两遍或多遍,生成最终的pdf文件。然后,用Adobe Reader 9等pdf文件阅读器打开该pdf文件,并使用全屏模式进行阅读就能看到最终地动画效果。
另外,也可以在上述代码中第2行之后加usepackage{hyperref}和hypersetup{pdfpagemode={FullScreen}}两句代码,即可实现直接进入全屏模式。
3 结语
采用LaTeX的beamer宏包和Tikz宏包,能够方便、精确地实现受力图的绘制,并能够利用Tikz宏包的计算功能,减少了手工计算所带来的误差。而且,采用这种方式来制作诸如工程力学等对图形准确度有一定要求的课件,制作者能够按照类似于AutoCAD的方式来设计绘图过程,便于表达设计者的思路。另外,beamer宏包的动画控制方式也比较简单,能与Tikz宏包紧密结合在一起,方便控制单个或者多个绘图过程,易于展示绘图过程,且比较容易学习和掌握。最后,此种方式制作的课件,具有良好的跨平台性,易于在Linux、Windows等多种平台上使用和发布。
采用这种方式进行课件制作的不足之处在于绘图过程不如PowerPoint等可视化工具直观,即是说,不是采用“所见即所得”的方式来完成课件的制作。并且,采用该方式制作课件要求制作者要具备一定的LaTeX知识或者进行相应的学习才能够完成任务。幸运的是LaTeX的语法比较简单,学习比较容易。
总的来讲,采用LaTeX的beamer宏包加Tikz宏包方式进行课件制作,非常适合于制作公式繁多的、绘图要求一定准确性的理工类课件。
参考文献
[1]陈志杰,李树钓,万福永.LaTeX入门与提高.第2版.高等教育出版社,2005.
[2]Tantau,T.,The TikZ and PGF Packages.Institut fur Theoretis-che Informatik,Universitat zu Lubeck,2008.
流体力学实验课件 第9篇
关键词:水力学;课件教学;传统教学;教学方法;建议
在目前的《水力学》教学中,运用多媒体教学不仅克服了许多传统教学中的缺陷和不足,而且在培养学生创新能力、个性发展方面取得了显著的效果。但多媒体教学并不是万能的,它有自身的缺点和不足,还有很多潜能有待于发掘和利用。只有通过扬长避短,才能真正发挥多媒体辅助教学的先进作用。
课件教学在《水力学》教学过程中的优点
提高效率,突破传统教学中的难点作为一种先进的教学方式,多媒体课件利用计算机的人机交互和多媒体技术以生动的图像、动画对课程中的知识点作了形象动态的描绘,教学过程直观、生动,使学生能够深入理解教学内容,提高学习效率和教学效果。比如在讲解水流从陡坡流动到缓坡时,会发生水跃现象。由于上、下游水位的对比关系不同,既可能形成远离式水跃,也可能形成临界水跃或是淹没水跃。对此学生较难理解。针对此类问题,利用多媒体制作一些动画,使上、下游水位改变,来形象演示水位变化而导致水跃形式的变化,这样就使抽象、难懂的问题变得直观、易懂,加深学生的印象,突破了教学中的难点。
删繁就简,节约课时,增加课堂教学信息量使用多媒体教学,只需将事先准备好的课件在课堂上进行演示,省去了在黑板上书写的时间,节约了课时,从而可以加大教学信息量。在传统教学中,对理论基础知识的学习基本上采用“介绍—原理引用—结论”三段式教学思路,粗线条的教学,缺乏创新。从实践来看,把多媒体技术应用在《水力学》教学中,一方面大大缩短了信息传播的时间和路径,删繁就简,使一些难以用单一语言、文字、图像来讲解的概念能够被较快、较透彻地理解;另一方面,《水力学》中有些概念文字描述较多,公式也较枯燥,利用flash对这些文字、公式进行动画演示,有化枯燥为有趣、化抽象为形象的功效,这对目前学时日益减少而导致课堂板书时间锐减无疑具有积极的意义。
模拟实验《水力学》是理论与实践并重的课程,实验是《水力学》教学的重要环节。在《水力学》实验教学中,可用多媒体课件简要介绍水流的特点、常用的术语、演示实验操作过程,为学生亲自动手做实验提供初步认识。如在讲解紊流的形成过程时,由于涉及水流内部流层的变化和运动,学生往往难以理解。可将紊流的形成过程制作成动画,对流层受到扰动后产生的波动过程进行模拟:在两对力偶的共同作用下,波动幅度将越来越大,最后导致波峰与波谷重合形成涡体。整个过程直观生动,不仅激发了学生的学习兴趣,增强了教学效果,还完整体现了该课程的特点,形象演示了《水力学》的教学内容。
减少粉尘污染,营造清洁卫生的教学环境多媒体教学的另一个较大优势是能够创造清洁卫生的教学环境,减少粉尘污染。粉尘污染对教师和前排学生的影响很大。多媒体教学省去了板书,既节约了时间、减轻了教师的负担,又减少了粉尘污染、创造了清洁卫生的教学环境。
课件教学在《水力学》教学过程中的弊端
在研究和总结运用多媒体教学时,发现也存在着一些问题必须注意克服。
学生思维少,不便记忆,影响教学效果课件教学以其容量大、速度快、易操作、课堂教学效率高而自豪,但由于多媒体的显示速度比传统的板书速度快,其单位教学容量比传统的单位教学容量大,因此学生没有充分的时间考虑有关课堂设问,记笔记也有相当难度。随着近年的连续扩招,学生的基础知识普遍下降,若画面切换太快,没有充分考虑学生的思维水平和思维速度,将极大地影响整体教学效果。
影响师生互动,不一定达到预期目标在使用课件教学时,没有情感的大屏幕成了教学的“主角”,师生间的情感交流以及教师的主导作用和学生的主体地位都有一定程度的削弱,互动性差,很难达到预期目标。《水力学》作为一门与实践结合紧密的专业基础课,具有概念多、公式多等特点,对于公式推导制作的课件,只能是教材内容的照搬,大部分公式的物理意义、各种假定及推导方法,仅给出结论,或只是简单地给出一些推导步骤,对于具体的演算过程等细节问题的演绎缺乏板书。这样,课件的表达就往往不尽如人意,学生难以理解,而黑板是课堂教学中师生之间交流知识、经验和体会一个不可缺少的工具,它是师生互动、考查学生对知识点掌握情况的重要教具,板书也恰恰能根据学生基础的不同和各种随机情况,灵活地为学生推导、演算教学中难以理解的公式和例题。
不利于学生逻辑推理、论证能力的提高及抽象思维能力的培养《水力学》课程中定理的证明、公式的推导以及例题的演算,往往需要学生深入地思考、慢慢地品味与细细地咀嚼,需要教师积极地引导,与学生进行有效沟通与交流,在师生的沟通与交流中使学生的思路得到启发,并逐渐深入下去,融会贯通。多媒体教学可以将抽象的概念、定理、公式变成直观、具体的内容,有助于学生对抽象内容的掌握与理解,但这些不能代替抽象思维,教师应积极引导学生对形象、直观思维的有效思考整理变成抽象思维。抽象思维能力的培养是学生能力培养中的重要内容之一。
课件教学在《水力学》
教学过程中的改进措施
有条不紊,留给学生充足的思考时间多媒体教学要做到有理有节,有条不紊,节奏不宜太快。在《水力学》课件教学中要给学生留有足够的思考时间,充分发挥学生的主观能动性,确保学生理解和掌握相关的知识内容。多媒体教学软件应适应《水力学》教学特点,并满足着重培养学生对基本概念的掌握和对基本原理的运用等方面的需要,既不能是教材的翻版也不能只提供信息,而应通过动画形象的展现引导学生思考、深刻理解和体会相关知识点,同时结合讨论,通过一些实际问题启发式地培养学生的创新思维。
与传统教学紧密结合,按教学内容分别采用不同的授课方式多媒体教学可以理解为传统教学基础上增加了多媒体这一特殊工具,它不可能抛弃所有的传统教学手段。因此在设计多媒体教程时,要把握好多媒体的使用时机,将传统的优秀教学理念以一定形式融入多媒体教学中,正确处理多媒体和粉笔、黑板、普通教具、语言表达之间的关系,处理好多媒体教学时间(主要指操作时间)与适时的课堂讲解、板书、交互、反思时间的关系。实际上,传统教学有着悠久的历史和丰富的经验,尤其是以人为本的教学理念恰好可以弥补现代机器的盲点,真正实现两者教学理念的结合、优势的结合。《水力学》按內容可分为基本原理和应用两大部分。针对不同阶段和不同内容,多媒体教学的过程、形式、内容、时间安排都应有所不同。在原理部分,可将教学内容制作成多媒体课件,使抽象问题直观化,以加深印象。在应用部分,可稍微淡化课件的使用,增加板书的分量,针对具体问题,有侧重地给学生演算,使学生熟练理解和掌握基本知识点,解决实际问题,提高逻辑推理的能力。
以人为本,注重师生交流,提高教学质量使用多媒体教学,要以人为本,明确教学主体与多媒体辅助教学的关系,明确教育教学是“以学生为中心、以教师为主导”的教学思想,计算机课件只能起辅助作用,不能喧宾夺主。教师应灵活地调节课堂进度,在牢牢掌握教学过程主动权的同时,成为学生获取知识、培养能力、人格发展的帮助者、促进者;引导学生观察、思考、分析理解问题,通过师生间面对面的人际交往,帮助学生情、意、志等非智力因素及其人格因素的提高和养成。而计算机教学课件为实现辅助作用,其功能应确定为提供感性材料,加深学生的感知深度;呈现动态板书,增强学生的理解记忆;创设问题情境,激发学生的学习动机和积极思维;演示扩展视野,使学生实现探索发现、创造性地自主学习等。在教学中,教师要善于根据学生情绪的变化发现问题,及时调整教学方法,正确判断教学效果,在发挥主导作用的同时,要十分注重学生的主体地位,讲解时要求学生跟着教师的思路走,及时回答教师提出的问题,师生互动,提高教育教学质量。
精心设计,合理呈现,不断完善《水力学》教学模式自适应性探索一门课程的质量和效果是从设计阶段开始的,没有高水平、高质量的设计和要求,就不可能产生预期的高水平的课堂教学。严密的教学组织是一门课程成功的关键之一,只有对每个环节和细节都做到高要求和精心准备,才能有整个课程的高质量和好效果。因此在设计《水力学》课件时应精选内容,准确定位,突出各章节的重点内容,把握好教学重难点,在充分掌握基本内容的基础上进行重组,自成体系,精心设计出符合学生的认知结构、思维特点、情感特征和兴趣的呈现方式,尽量使设计的课件与教学目标、教师、学生等构成相互作用的有机整体,并不断探索多媒体在《水力学》教学中应用的新领域和新方法。
多媒体教学已经进入发展与提高的应用阶段,全面提高多媒体教学质量,需要从课件开发和教学艺术两方面双管齐下,努力做到课件运用适度、适量、适时,在课堂教学实践中不断优化,使之精益求精。只有每位教师都认真去研究多媒体教学艺术,提高讲授水平,才能用好多媒体资源,真正提高教学效果。
参考文献:
[1]齐清兰,刘凤华.高职高专水力学课程教学改革的理论与实践[J].河北工程技术高等专科学校学报,2003,(4).
[2]张劲.基于自主学习的《水力学》网络课程的设计与实现[J].教育信息技术,2004,(12).
[3]郭维东,李文果,杨丽萍,等.浅谈水力学课程改革思路[J].农业与技术,2004,(1).
[4]梁素韬,韩会玲,郝艳敏.浅谈水力学课程教学改革[J].河北农业大学学报(农林教育版),2003,(4).
[5]向文英,程光均.水力学教学方法探讨[J].高等建筑教育,2001,(2).
[6]张璞扬,张权.谈课堂教学与多媒体技术的辩证关系[J].教育与现代化,2005,(1).
[7]彭军.论多媒体教学的优势[J].教育技术通讯,2000,(11).
作者简介:
刘惠英(1973—),女,陕西凤翔人,讲师,硕士研究生,主要从事水力学教学和研究。
张小兵(1956—),男,江西南昌人,副教授,主要从事水力学教学和研究。
陈磊(1978—),男,江苏宿迁人,扬州大学在读硕士研究生,研究方向为农业水土工程,工作单位为江苏省宿迁市水务局。
流体力学实验课件
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。