电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

反比例函数教学设计范文

来源:盘古文库作者:莲生三十二2025-09-181

反比例函数教学设计范文第1篇

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力.

3、通过对反比例函数的应用,培养学生解决问题的能力.

教学重点:

掌握从实际问题中建构反比例函数模型.

教学难点:

从实际问题中寻找变量之间的关系.

教学过程:

某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,你能解释他们

2这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地的压力合计600N,那么:

(1)含S的代数式表示p,p是S的反比例函数吗?为什么?

2(2)当木板面积为0.2m时,压强是多少?

(3)如果要求压强不超过6000Pa,木板面积至少要多大? (4)在直角坐标系中,作出相应的函数国象. 课堂小结:

反比例函数教学设计范文第2篇

1.知识与技能

会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.

2.过程与方法

通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应用.

3.情感、态度与价值观

让学生体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数学美. 教学重点 :理解反比例函数的意义,确定反比例函数的解析式 难点:反比例函数的解析式的确定 教学方法:自主、合作、探究 教学用具:多媒体 教学过程:

一、复习旧知

1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时, y

都有唯一确定的值与之对应

,则称x为

自变量

,y叫x的

函数

.

2、正比例函数一般形式是y=

(

≠0) , 它的图象是一条过原点的

3、一次函数一般形式是y=

(

≠0) 它的图象是一条

二、新知引入

师:提出问题,让学生先独立思考完成,再合作交流,经历探索反比例函数意义的过程。 下列问题中,变量间的对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化; (3)已知北京市的总面积为1.68104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? 生:(1)

(2) (3)S=

2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? 生:

不可以,也不可以

师:这就是我们这节课要探讨学习的新内容:板书:反比例函数。

二、新知讲解

1、【分析】

上述问题中的函数关系式都有 的形式,其中k为常数.

归纳

一般地,形如 (k为常数,且k•≠0)•的函数称为反比例函数。

注意

在 中,自变量x是 分式的分母,当x=0时,分式 无意义,所以x•的取值范围

x≠0 .

探究

在上面的三个问题中,两个变量的积均是一个常数(或定值),这也是识别的两个量是否成反比例函数关系的关键. 注意:三种等价形式:

3、例题讲解

例1 已知y是x的反比函数,并且当x=2时,y=6. (1)写出y关于x的函数解析式

(2)当x=4时,求y的值. 解:(1)设 ,因为当x=2时,y=6, 所以有

解得K=12 因此

(2)把x=4代入 得

【点拨】(1)由题意,可设y= ,把x=2,y=6代入即可求得k,进而求得y关于x的函数关系式.(2)在(1)所求得的函数关系式中,把x=4代入即可求得y的值

三、当堂训练

[学生独立完成 ,集体进行评议]

1.若函数y=xm-3是反比例函数,则m的值为(

)

3、在下列函数中,y是x的反比例函数 的是(

)

(A)

(B)

(C)

(D)

1.用函数解析式表示下列问题中变量间的对应关系:

(1)一个游泳池的容积为 2 000 m3,游泳池注满水所用时间 t(单位:h)随注水速度 v(单位:m3/h)的变化而变化;

(2)某长方体的体积为 1 000 cm3,长方体的高 h(单位:cm)随底面积 S(单位:cm2)的变化而变化;

(3)一个物体重 100 N,物体对地面的压强 p(单位:Pa)随物体与地面的接触面积 S(单位:m2)的变化而变化.

四、归纳小结

1、反比例函数的定义:形如

(k为

常数,k≠0)的函数称为反比例函数,自

变量

的取值范围是

.

2、反比例函数有时也写成 或 (k为常数,k≠0)的形式.

五、强化训练

1、下列哪个等式中的y是x的反比例函数? A

B

C

D

2、反比例函数经过点(2,-3),则这个反比例函数关系式为 ____

五、强化训练

3、下列函数关系中,是反比例函数的是:

A 、圆的面积s与半径r的函数关系

B、三角形的面积为固定值时(即为常数)

C、人的年龄与身高关系

D、小明从家到学校,剩下的路程s与速度v的函数关系

五、强化训练

4、矩形的面积为4,一条边的长为

,另

一条边的长为y,则y与

的函数解析式为_________

5、已知y是

的反比例函数,当

=2时

(1)求y与

的函数关系式;

(2)当 时,求y的值;

(3)当 时,求

的值 拓展练习

3.已知 y 与 x2 成反比例,并且当 x=3 时,y=4.

(1)写出 y 关于 x 的函数解析式;

(2)当 x=1.5 时,求 y 的值;

反比例函数教学设计范文第3篇

1.知识与技能

会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.

2.过程与方法

通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应用.

3.情感、态度与价值观

让学生体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数学美. 教学重点 :理解反比例函数的意义,确定反比例函数的解析式 难点:反比例函数的解析式的确定 教学方法:自主、合作、探究 教学用具:多媒体 教学过程:

一、复习旧知

1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时, y

都有唯一确定的值与之对应

,则称x为

自变量

,y叫x的

函数

.

2、正比例函数一般形式是y=

(

≠0) , 它的图象是一条过原点的

3、一次函数一般形式是y=

(

≠0) 它的图象是一条

二、新知引入

师:提出问题,让学生先独立思考完成,再合作交流,经历探索反比例函数意义的过程。 下列问题中,变量间的对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化; (3)已知北京市的总面积为1.68104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.

1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? 生:(1)

(2) (3)S=

2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗? 生:

不可以,也不可以

师:这就是我们这节课要探讨学习的新内容:板书:反比例函数。

二、新知讲解

1、【分析】

上述问题中的函数关系式都有 的形式,其中k为常数.

归纳

一般地,形如 (k为常数,且k•≠0)•的函数称为反比例函数。

注意

在 中,自变量x是 分式的分母,当x=0时,分式 无意义,所以x•的取值范围

x≠0 .

探究

在上面的三个问题中,两个变量的积均是一个常数(或定值),这也是识别的两个量是否成反比例函数关系的关键. 注意:三种等价形式:

3、例题讲解

例1 已知y是x的反比函数,并且当x=2时,y=6. (1)写出y关于x的函数解析式

(2)当x=4时,求y的值. 解:(1)设 ,因为当x=2时,y=6, 所以有

解得K=12 因此

(2)把x=4代入 得

【点拨】(1)由题意,可设y= ,把x=2,y=6代入即可求得k,进而求得y关于x的函数关系式.(2)在(1)所求得的函数关系式中,把x=4代入即可求得y的值

三、当堂训练

[学生独立完成 ,集体进行评议]

1.若函数y=xm-3是反比例函数,则m的值为(

)

3、在下列函数中,y是x的反比例函数 的是(

)

(A)

(B)

(C)

(D)

1.用函数解析式表示下列问题中变量间的对应关系:

(1)一个游泳池的容积为 2 000 m3,游泳池注满水所用时间 t(单位:h)随注水速度 v(单位:m3/h)的变化而变化;

(2)某长方体的体积为 1 000 cm3,长方体的高 h(单位:cm)随底面积 S(单位:cm2)的变化而变化;

(3)一个物体重 100 N,物体对地面的压强 p(单位:Pa)随物体与地面的接触面积 S(单位:m2)的变化而变化.

四、归纳小结

1、反比例函数的定义:形如

(k为

常数,k≠0)的函数称为反比例函数,自

变量

的取值范围是

.

2、反比例函数有时也写成 或 (k为常数,k≠0)的形式.

五、强化训练

1、下列哪个等式中的y是x的反比例函数? A

B

C

D

2、反比例函数经过点(2,-3),则这个反比例函数关系式为 ____

五、强化训练

3、下列函数关系中,是反比例函数的是:

A 、圆的面积s与半径r的函数关系

B、三角形的面积为固定值时(即为常数)

C、人的年龄与身高关系

D、小明从家到学校,剩下的路程s与速度v的函数关系

五、强化训练

4、矩形的面积为4,一条边的长为

,另

一条边的长为y,则y与

的函数解析式为_________

5、已知y是

的反比例函数,当

=2时

(1)求y与

的函数关系式;

(2)当 时,求y的值;

(3)当 时,求

的值 拓展练习

3.已知 y 与 x2 成反比例,并且当 x=3 时,y=4.

(1)写出 y 关于 x 的函数解析式;

(2)当 x=1.5 时,求 y 的值;

反比例函数教学设计范文第4篇

第二步:组内合学,通过组内对学、群学,展示学会的,学会不会的。教师设计引导,完成对反比例函数更清晰和准确的认识。

第三步:班级展示,通过学生对学习情况的展示,教师有针对性的进行课堂点拨追问,完成本节课的学习。

第四步:整理反思,通过课堂学生与学生之间,教师与学生之间的互动交流,修正学案内容,并形成自己的反思总结。

第五步:达标测评,对本节课的基础知识和技能进行学习反馈,教师了解掌握学生学习情况,便于下一阶段的学习。

二、本节课突出了“四本”的基本要求

1、以学生为本,整个课堂充分放手让学生去学习,以学生为主体,调动了学生的积极性。

2、以文为本,课堂活动以课本为基础,围绕课本知识展开活动,突出了课本的设计意图。

3、以实为本,课堂真实有效,学练结合,具有很高的实用性。

4、以真为本,课堂不做假,真实的展现了学生的学习思路和思考过程,课堂以真为本更显实效和高效。

三、本节课的不足

1、教师放手不够,还是担心学生学不到位,没有充分的放手把学习还给学生。

2、课堂的整个流程还需进一步细致打磨,让每一个环节更适合学生的学习,才能有更高效的学习效率。

反比例函数教学设计范文第5篇

本节课是在学习了反比例函数的性质之后的一节习题课。这节课的教学目标是帮助学生理解并灵活应用反比例函数的性质,初步掌握数形结合思想,会结合函数图像比较大小,巩固用待定系数法求函数解析式,培养学生的学习兴趣,发展学生的能力。

新课程改革提出的要求是:让学生通过交流、合作、讨论的方式,积极探索,改进学习方法,提高学习质量,逐步形成正确地数学价值观。在整个教学过程中,应始终注重学生的参与意识,注重学生对待学习的态度是否积极;注重引导学生从数学的角度去思考问题。但是在实际教学过程中,没有留有足够的时间和空间让学生去思考、交流,直接剥夺了学生展示自己的机会。结果学生只是被动的接收,主动的去学习、探究就少了,学生运用数学方法分析、解决实际问题的能力没有得到很好的训练。

在习题的设计上虽然注重了梯度和形式,但习题的顺序可调整,另外有一道补充的例题难度稍大,学生解决起来容易出错,这是课前选题的时候不够精心而造成的,以后在课前准备上多下功夫。本节课感觉比较好地方就是变式训练及思想方法的运用,也达到了课前预想的效果,在以后的课上可沿用变式训练,对数学课的教学应该有好处。

通过这节课让我意识到在以后的课堂教学中,应注重发展学生的应用意识。通过丰富的实例引入数学知识,引导学生应用数学知识解决实际问题,体会数学的应用价值.努力帮助学生认识到数学与我有关,与实际生活有关,数学是有用的,我要用数学,我能用数学。尽量留给学生更多的空间,更多的展示自己的机会,让学生在充满情感的、和谐的课堂氛围中,在老师和同学的鼓励与欣赏中认识自我,找到自信,体验成功的乐趣,从而树立了学好数学的信心。 创设了轻松和谐的教学环境与氛围,师生互动较好,这样能使学生主动开动思维,利用已有的知识顺利的解决这几个问题。在讲解例题的同时,试着让学生利用图象解决问题,培养学生数形结合的思想,并提示学生注意自变量在实际情境中的取值范围问题。而后,给学生几分钟的思考时间,让他们通过平时对生活的细心观察,生活中有关反比例函数的有价值的问题,说出来与全班共同分享。这一环节的设置,不仅体现新教改的合作交流的思想,更主要的培养他们与人协作的能力。更好的发展了学生的主体性,让他们也做了一回小老师,展示他们的个性,这样有益于他们健康的人格的成长。最后在总结中让学生体会到利用反比例函数解决实际问题,关键在于建立数学函数模型,并布置了作业。从总体看整个教学环节也比较完整。

本节课的教学,我本意是通过反比例函数及其图像相关问题的复习,引出本节课所要讨论的问题反比例函数的应用,而后通过对问题1的讨论切入正题,重点研究 “数”与 “形”的互相渗透,并通过这节课的学习让学生体会“数形结合”的数学思想,利用函数图像来解决应用题。在教学中,我发现这种教学设计出现了以下几个问题。

首先,目标教学的第一环节,前测激趣,但没有达到激趣的目的,这种引课方式,在课堂反映出来显得非常平淡,没有新意,没能引起学生的认知发生冲突,激发学生的求知欲。

其次,在导探激励环节中,问题设计较好,但问题的处理上操之过急,没能让学生切实做出函数图像,通过问题迫使学生利用函数图像来解决问题,达到真正看图说话,因此就数形的内在联系学生体会不是很深刻。

为了一开始就能充分调动学生的情商,激发他们的学习动机和好奇心,激发他们的求知欲,使他们的思维进入最佳状态,我就上面存在的问题作如下改进。

反比例函数教学设计范文第6篇

一、教材内容的编排选取本节课例题为原课本改造题和自行设计题,选取标准主要定位在用反比例函数知识解决问题的能力,新课内容整个过程以用模寻模建模为主线,例题编排遵循顺序由浅入深,循环拔高的原则,形式上尽量多样,在解决相关问题中渗透数型结合,分类、转化等数学思想,充分挖掘教材的思想性。

二、教法与学法教学上尽可能给学生提供思考的空间及时间,以充分体现学生的主体地位,并发挥教师的主导作用,通过动手实践、自主探索、合作交流,让学生在亲身体验反比例函数的应用中都能得到充分发展。

三、教学手段与策略本设计充分发挥现代化教学工具的作用,增加课堂教学容量,突出重点,突破难点,符合初中生获取知识以直观感知为主的特点。

一、教材分析1.教材的地位、作用反比例函数的应用是在七年级学习变量与变量之间的关系、八年级学习正比例函数及一次函数之后进行的,为九年级下册学习二次函数做准备,因此本节课起着承上启下的作用。它既是反比例函数性质的巩固和应用,也是用函数思想解决问题的典型例子,同时又蕴涵着数型结合,分类、转化等数学思想。2.教学目标认知目标:反比例函数的应用。能力目标:培养学生自主探究、合作交流的能力及渗透数型结合,分类、转化等数学思想。情感目标:通过讨论交流,合作学习,培养学生团结协作,乐于助人的思想品质。3.教学的重点、难点教学重点:用反比例函数的知识解决问题。教学难点:(1)用反比例函数的性质解决不等式问题。(2)用反比例函数知识解决动态几何中相关问题。

二、教法与学法分析数学新课程标准十分强调数学学习内容的选择、教学活动的设计以及教学的评价。强调数学学习内容要有利于学生主动进行观察、实验、验证、推理与交流等数学活动;有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式 。教师应向学生提供现实、有趣、富有挑战性的学习素材,以便学生自主展开探究,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、获取数学思想和方法、积累广泛的数学活动的经验。根据这一指导思想,本课选择的教学方法和学法指导如下:教学方法:问题情境建立模型应用拓展学法指导:合作交流、操作探究、评价发展

三、教学程序环节教学内容形式设计意图一复习引入已知反比例函数 的图象经过点A(3,-2),请问:(1)它的图象在第几象限?(2)它的图象在每个象限内, 随 的增大如何变化?学生练习教师归纳通过练习,复习反比例函数的定义、图象、性质。为应用做铺垫二师生互动讲授新课用模《反比例函数的应用》(板书)课件演示用生活中的问题引出课题,同时自然过渡到问题11.用模 [巩固应用意识]问题1 已知一定体积的面团做成拉面,面条的总长度 和面条粗细(横截面积)S 满足反比例函数 ,问面条粗为1.6 时,面条的总长度是多少?学生独立完成教师有效点拨①本节课教科书中的第1个例题起点过高,所以设计较为简单的问题1做铺垫,让不同层次的学生都有所学。②从生活中的问题入手,激发学生探究问题的兴趣。让学生体会数学就在我们身边, 数学源于生活并服务于生活,从而获得良好的情感体验。寻模幻灯演示爱国主义教育,过渡到问题2环节教学内容形式设计意图师生互动讲授新课寻模2.寻模 [强化应用意识]问题2 某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么(1) 用含S的代数式表示p,并求木板面积为0.2 m2时.压强是多少?(2) 在直角坐标系中,作出相应的函数图象.(3)观察函数图象,如果要求压强不超过6000 Pa,木板面积至少要多大?独立思考分组讨论组间交流课件演示①本例是课本中本节课的第一个例题,由于原例题有5个问题太杂,且第3问涉及到分式不等式,超出了课程标准的要求,所以对原题的问题进行改造,将5个问题合并成3个问题,对于问题(3)采用学生能够接受的图象解法,同时配上多媒体课件,使学生有直观体验,化解了本节课难点。②从学生的实际出发,用他们熟悉和感兴趣的问题情境引出问题2,促使学生展开数学探究,展现数学与现实生活及其他学科的综合,突出数学化的过程,让学生体验数学知识的科学性、工具性、应用性。建模幻灯演示过渡到问题3环节教学内容形式设计意图师生互动讲授新课建模3.建模 [拓展应用意识]问题3 已知□ABCD中,AB = 4,AD = 2,A=45,E是AB边上的一动点,DE延长线交CB的延长线于F,设AE= ,CF = 。(1)求 与 之间的函数关系。(2)当△ADE为等腰三角形时,求 的值。CDBEAF?教师引导学生观察发现分类几何画板直观演示

这道题简单而丰富:①确立反比例函数关系式,培养学生数型结合,化归思想。②通过一题多解,培养学生发散思维能力。③通过运动变化,渗透分类思想。④动画演示,学生有直观感受整个动态过程,可使问题迎韧而解。 三巩固练习 课本 : 做一做 学生作答

分层训练消化新知完善知识结构 四共同小结

本节课我们学习了反比例函数的应用.在解决问题时注意:1.分析变量之间的关系2.列出关系式3.求解

学生小结教师点拨

建构新的知识网络,培养归纳、概括能力,强调用反比例函数解决问题的关键步骤 五作业布置

1.必做题课本P160 习题5.42.选做题附学生练习提纲上 学生课后完成

反比例函数教学设计范文

反比例函数教学设计范文第1篇1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程.2、体会数学与现实生活的紧密...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部