电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

车削加工工艺教案

来源:文库作者:开心麻花2025-09-181

车削加工工艺教案(精选6篇)

车削加工工艺教案 第1篇

摘要:数控车床的使用的目的是加工出合格的零件,但合格零件的加工必须要依靠制定合理的加工工艺。本文针对当前数控车床使用者的工艺分析的不合理来进行对比,讲述合理的工艺分析的顺序问题。

关键词:数控车床 车削加工工艺 工艺分析

一、问题的提出

数控车削加工主要包括工艺分析、程序编制、装刀、装工件、对刀、粗加工、半精加工、精加工。而数控车削的工艺分析是数控车削加工顺利完成的保障。

数控车削加工工艺是采用数控车床加工零件时所运用的方法和技术手段的总和。主要内容包括以下几个方面:

(一)选择确定零件的数控车削加工内容;(二)对零件图进行数控车削加工工艺分析;(三)工具、夹具的选择和调整设计;(四)切削用量选择;(五)工序、工步的设计;(六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。

但是分析了上述的顺序之后,发现有点不妥。因为整个零件的工序、工步的设计是工艺分析这一环节中最重要的一部分内容。工序、工步的设计直接关系到能否加工出符合零件形位公差要求的零件。设计不合理将直接导致零件的形位公差达不到要求,导致产生次品。

二、分析问题

数控车床的`使用者的操作水平较高,能够独立解决很多操作难题,但理论水平不是很高,这是造成工艺分析顺序不合理的主要原因, 造成工艺分析顺序不合理的另一个原因是企业的工量具设备不足。

三、解决问题

笔者认为合理的工艺分析步骤应该是:

(一)选择并确定零件的数控车削加工内容;(二)对零件图纸进行数控车削加工工艺分析;(三)工序、工步的设计;(四)工具、夹具的选择和调整设计;(五)切削用量选择; (六)加工轨迹的计算和优化;(七)编制数控加工工艺技术文件。 本文主要对二、三、四、五三个步骤进行详细的阐述。

(一)零件图分析

零件图分析是制定数控车削工艺的首要任务。主要进行尺寸标注方法分析、轮廓几何要素分析以及精度和技术要求分析。此外还应分析零件结构和加工要求的合理性,选择工艺基准。

1.选择基准

零件图上的尺寸标注方法应适应数控车床的加工特点,以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,又有利于设计基准、工艺基准、测量基准和编程原点的统一。

2.节点坐标计算

在手工编程时,要计算每个节点坐标。在自动编程时要对零件轮廓的所有几何元素进行定义。

3.精度和技术要求分析

对被加工零件的精度和技术进行分析,是零件工艺性分析的重要内容,只有在分析零件尺寸精度和表面粗糙度的基础上,才能正确合理地选择加工方法、装夹方式、刀具及切削用量等。

(二)工序、工步的设计

1.工序划分的原则

(1)保持精度原则。工序一般要求尽可能地集中,粗、精加工通常会在一次装夹中全部完成。 为减少热变形和切削力变形对工件的形状、位置精度、尺寸精度和表面粗糙度的影响,则应将粗、精加工分开进行。

(2)提高生产效率原则。为减少换刀次数,节省换刀时间,提高生产效率,应将需要用同一把刀加工的加工部位都完成后,再换另一把刀来加工其他部位,同时应尽量减少空行程。

2.确定加工顺序

(1)先粗后精。按照粗车半精车精车的顺序进行,逐步提高加工精度。

(2)先近后远。离对刀点近的部位先加工,离对刀点远的部位后加工,以便缩短刀具移动距离,减少空行程时间。

(3)内外交叉。对既有内表面又有外表面需加工的零件,应先进行内外表面的粗加工,后进行内外表面的精加工。

(4)基面先行。作精基准的表面应优先加工出来,定位基准的表面越精确,装夹误差越小。

(三)夹具和刀具的选择

1.工件的装夹与定位

数控车削加工中尽可能一次装夹后能加工出全部或大部分代加工表面,尽量减少装夹次数,以保证加工精度。对于轴类零件,通常以零件自身的外圆柱面作定位基准;对于套类零件,则以内孔为定位基准。数控车床夹具除了使用通用的三爪自动定心卡盘、四爪卡盘、液压、电动及气动夹具外,还有多种通用性较好的专用夹具。操作时应合理选择 。

2.刀具选择

刀具的使用寿命除与刀具材料相关外,还与刀具的直径有很大的关系。刀具直径越大,能承受的切削用量也越大。所以在零件形状允许的情况下,采用尽可能大的刀具直径是延长刀具寿命,提高生产率的有效措施。数控车削常用的刀具一般分为3类。即尖形车刀、圆弧形车刀和成型车刀。

(四)切削用量选择

数控车削加工中的切削用量包括背吃刀量ap、主轴转速S(或切削速度υ)及进给速度F(或进给量f )。

切削用量的选择原则,合理选用切削用量对提高数控车床的加工质量至关重要。确定数控车床的切削用量时一定要根据机床说明书中规定的要求,以及刀具的耐用度去选择,也可结合实际经验采用类比法来确定。

一般的选择原则是:粗车时,首先考虑在机床刚度允许的情况下选择尽可能大的背吃刀量ap;其次选择较大的进给量f;最后再根据刀具允许的寿命确定一个合适的切削速度υ。增大背吃刀量可减少走刀次数,提高加工效率,增大进给量有利于断屑。

精车时,应着重考虑如何保证加工质量,并在此基础上尽量提高加工效率,因此宜选用较小的背吃刀量和进给量,尽可能地提高加工速度。主轴转速S(r/min )可根据切削速度υ(mm/min)由公式 S=υ1000/πD(D为工件或刀/具直径 mm)计算得出,也可以查表或根据实践经验确定。

三、结 语

数控机床作为一种高效率的设备,欲充分发挥其高性能、高精度和高自动化的特点,除了必须掌握机床的性能、特点及操作方法外,还应在编程前进行详细的工艺分析和确定合理的加工工艺,以得到最优的加工方案。

参考文献:

[1]《数控车削加工工艺性分析》.周鹏.《消费导刊理论版》 第1期

车削加工工艺教案 第2篇

2.1加工机床的选择

选择加工机床时,要考虑工件的因素和数控机床参数等因素。因为数控机床都有一定的使用范围,因而在选择时要做出相应判断。选择机床时,要根据工件的尺寸、形状、结构、加工要求等进行挑选。同时,机床自身的性能、参数等也会对工件的加工产生一定限制,如主轴转速、最大回转半径等,都是挑选机床时需要考虑的因素。

2.2车削刀具的选择及切削用量

改进车削细长轴加工工艺 第3篇

一、提出问题

车间要生产一批细长轴 (图1) 。本细长轴 (L/D=65) 的尺寸公差、形状公差及表面粗糙度要求都比较高, 常用的车削方法是:工件一夹一顶装夹, 即卡盘夹紧工件一端, 另一端利用尾座用顶尖支承, 然后使用跟刀架, 正向走刀车削。加工后, 发现轴中间部分有明显的振纹, 产生竹节、腰鼓形等变形, 且直径公差、圆柱度公差等都难以达到要求, 很难保证工件的加工精度和表面质量。

二、原因分析

细长轴加工的最大瓶颈是易变形, 影响其变形的因素有很多:一是该工件材料为45号钢, 加工时易产生切削热, 使切削中工件受热产生变形, 甚至会使工件卡死在顶尖间而无法加工。二是装夹引起变形, 轴向顶紧力的作用, 使零件在装夹时就已经形成弯曲变形的趋势, 从而影响了工件尺寸形状精度。三是切削过程中车削力挤压与牵引导致工作变形。四是坯料自重和本身弯曲, 导致工件本身刚性差, 在切削过程中易产生振动和变形, 影响工件的尺寸精度、形位精度和表面粗糙度等。五是刀具几何参数、切削用量选择不当, 造成切削力过大, 工件热变形。六是其他因素引起变形, 如机床振动引起的变形。因此, 车削细长轴的关键技术是解决弯曲变形问题, 实质上也就是如何控制工艺系统的受力变形问题。

三、解决方案

(一) 选择机床。

机床精度高低, 直接影响零件加工精度和表面质量。根据本细长轴精度要求, 选择机床型号为G-CNC6150×1500, 系统为FANUC的, 半闭环数控车床。

(二) 检查。

检查毛坯尺寸, 看是否符合毛坯尺寸要求, 将坯料进行调质处理, 消除内应力, 减小弯曲变形。加工本细长轴, 选择毛坯为Φ25mm, 长度为1, 500mm的45号钢, 进行调质处理。

(三) 校直。

这是非常重要的一道工序。它直接影响到加工过程的顺利进行及加工后的产品质量, 此工序在自制的校直机上进行。要求在两支点支撑, 毛坯在自由状态下在全长的范围内圆跳动在1.5mm以下。

(四) 工件装夹。

采用一夹一弹性夹拉的装夹, 因为顶尖装夹没有弹性, 会加强轴弯曲, 所以尾座采用弹性夹头, 及在车削时需要用跟刀架来增强其刚性, 用3个支撑爪的跟刀架, 逆向进给车削细长轴, 并充分加注切削液, 而刀具经常保持锐利状态, 减少车刀与工件的摩擦发热来控制其热变形伸长, 从而保证细长轴的加工精度和表面质量, 装夹步骤如下:

1.在卡盘一端的工件上车出一个缩颈部分 (图2) , 缩颈直径d≈D/2=12.5mm (D为工件的坯料直径) , 缩颈宽度x≈2y=6 (y为卡爪与缩颈距离) 。由于工件在缩颈部分的直径减少了, 所以柔性就增加了, 起了万向接头的作用, 消除了由于坯料本身的弯曲面在卡盘强制夹持下轴心歪斜的影响。同时, 在细长轴左端缠有一圈较细3mm的钢丝 (图3) , 夹放在卡盘内V型卡槽里, 形成点接触, 以减少接触面积, 使工件在卡盘内能自由调节其位置, 同时保证工件在卡盘中不会因加工产生的内应力而卡死在卡盘中, 还避免夹紧时形成弯曲力矩。

2.在尾架顶夹采用夹拉头, 结构如图4。如图4所示, 为使弹夹拉头能在加工中始终给工件施加轴向拉力, 并保证工件有良好的定心, 工件1与连接轴2之间采用螺纹联接与短圆锥面定心的结构。为此, 在简图4所示工件的预加工中, 应在工件一端加工出一段螺纹 (3-4牙) 及圆锥面 (90°或者120°锥角) 。当夹拉车削结束后, 再将工件一端的螺纹与圆锥部切掉。

图4工作原理, 弹夹拉头基体5与车床尾座通过莫氏锥定心, 滑动套7及深沟轴承11、推力球轴承10、隔离套12、调整环13、联接轴2等件可在基体的内孔中作轴向滑动套为螺纹联接, 可用以调整轴承间隙。加工时, 工件1首先与联接轴进行联接与定位, 然后车床卡盘方可夹紧工件, 旋转与基体螺纹联接的端盖4, 压迫弹簧3, 从而滑动套向尾座方向滑动, 实现对工件的轴向拉紧。

3.采用三个支撑爪的跟刀架 (图5) , 以提高工件的刚性。跟刀架固定在床鞍上, 将跟刀架的铸铁跟爪改为紫铜跟爪, 圆弧R应经粗车后与工件外圆配研, 宽度B大于工件直径, 一般取B= (1-1.5) D。工件外圆被夹持在刀具和三个支承块之间, 要求每个支承爪都能与轴保持相同的间隙, 并能自由移动, 而且上、下、左、右的移动均受到限制, 只能绕轴线旋转, 同时, 不划伤工件表面, 又利于减小工件振动, 还在使用时需对各支承爪的接触情况进行跟踪监视和检查, 随时调整支承爪与工件的间隙, 并注油润滑。跟刀架支撑爪的调整如下:第一, 在工件的已加工表面上调整支撑位置时, 可将支撑爪放在车刀的外侧, 两者距离控制在10mm以内;第二, 首先调整后支撑爪, 调整时使得后支撑爪与工件外圆轻轻接触即可, 然后调整下支撑爪, 最后调整上支撑爪。调整各爪间隙时必须使工件能够转动自如。第三, 支撑爪的修正, 车削时, 发现跟刀架支撑爪与工件有图6所示的不良接触状态时, 必须对支撑爪进行修正。

支撑爪修正可以在普通车床上实现。首先将一把可调镗刀夹持在车床卡盘上, 再调节好事先固定在床鞍上的跟刀架支撑爪位置, 开动车床, 用回转的镗刀加工支撑爪的表面, 确保跟刀架与工件接触的弧面R≥工件半径。

(五) 选用刀具。

一是粗车刀, 采用机夹粗车刀, 采用757) (即Kr=757) ) 左偏刀。刀片材料为YT15, 刀片型号可用119、A117、A120等长方形刀片。刀体采用45号钢, 热处理硬度38-41HRC。刀片夹紧方式为楔块式, 刀片平放, 利用其14 7) 斜面夹紧, 楔块用M8螺钉从刀体底面拉紧。二是精车时采用机夹硬质合金宽刃弹簧精车刀, 采用937) (即Kr=937) ) 左偏刀。刀片材料为YT30, 刀片型号为D241、D229、D237, 利用刀体上的弹性压板和M8螺钉夹固。弹簧刀杆可起到消振作用, 又可防止扎刀。刀具装夹时, 刀尖应低于工件中心0.1~0.15mm, 使弹性刀杆弹性跳动时刀刃不会啃入工件, 影响表面光洁度。三是切削时, 加乳化液润滑, 减少刀具、跟刀架支承块的磨损。

(六) 切削用量的确定。

切削用量选择的是否合理, 对切削过程中产生的切削力的大小、切削热的多少是不同的。因此对车削细长轴时引起的变形也是不同的。粗车和半精车切削用量的选择原则是:尽可能减少径向切削分力, 减少切削热。切削用量见表1。

四、结语

自从这套工艺方案投入使用后, 大大减轻了老师和学生的劳动强度, 受到他们的一致好评, 加工效率也提高了。其具体加工情况如表2所示。

摘要:细长轴 (L/D≥20) 的加工是车削中比较棘手的问题, 原因是细长轴刚性差, 在加工中极容易变形, 使零件误差增大, 不易保证零件的加工质量。为了确保细长轴加工质量, 根据现有条件和生产实践, 优化加工工艺, 经实践取得明显效果。

关键词:细长轴,变形,工艺,装夹方案

参考文献

[1] .王先逵.机械制造工艺学[M].北京:机械工业出版社, 2006

[2] .杨淑子.机械加工工艺师手册[K].北京:机械工业出版社, 2001

浅析细长轴车削加工工艺 第4篇

摘要:所谓细长轴就是工件的长度与直径之比大于25(即L/D>25)的轴类零件称为细长轴。在切削力、重力和顶尖顶紧力的作用下,横置的细长轴是很容易弯曲甚至失稳,因此,车削细长轴时有必要改善细长轴的受力问题。采用反向进给车削,配合以最佳的刀具几何参数、切削用量、拉紧装置和跟刀架等一系列有效措施。结果提高了细长轴的刚性,达到了加工要求。

关键词:细长轴车削工艺变形加工质量预防措施

0引言

所谓细长轴就是工件的长度与直径之比大于25(即L/D>25)的轴类零件称为细长轴。在切削力、重力和顶尖顶紧力的作用下,横置的细长轴是很容易弯曲甚至失稳,提高细长轴的加工精度问题,就是控制工艺系统的受力及受热变形的问题。因此,采用反向进给车削,配合以最佳的刀具几何参数、切削用量、拉紧装置和轴套式跟刀架等一系列有效措施。以提高细长轴的刚性,得到良好的几何精度和理想的表面粗糙度,保证加工要求。

1细长轴类零件的工艺特点

1.1热变形大。细长轴车削时热扩散性差、线膨胀大当工件两端顶紧时易产生弯曲变形。

1.2刚性差。车削时工件受到切削力、细长的工件由于自重下垂、高速旋转时受到离心力等都极易使其产生弯曲变形。

1.3表面质量难以保证。由于工件自重、变形、振动影响工件圆柱度和表面粗糙度。

2提高细长轴加工精度的措施

2.1选择合适的装夹方法

2.1.1双顶尖法装夹法采用双顶尖装夹,工件定位准确,容易-保证同轴度。但用该方法装夹细长轴,其刚性较差,细长轴弯曲变形较大,而且容易产生振动,因此只适宜于长径比不大、加工余量较小、同轴度要求较高、多台阶轴类零件的加工。

2.1.2一夹一顶的装夹法采用一夹一顶的装夹方式。在该装夹方式中,如果顶尖顶得太紧,除了可能将细长轴顶弯外,还能阻碍车削时细长轴的受热伸长,导致细长轴受到轴向挤压而产生弯曲变形。另外卡爪夹紧面与顶尖孔可能不同轴,装夹后会产生过定位,也能导致细长轴产生弯曲变形,因此采用一夹一顶装夹方式时,顶尖应采用弹性活顶尖,使细长轴受热后可以自由伸长,减少其受热弯曲变形;同时可在卡爪与细长轴之间垫入一个开口钢丝圈,以减少卡爪与细长轴的轴向接触长度,消除安装时的过定位,减少弯曲变形。

2.1.3双刀切削法采用双刀车削细长轴改装车床中溜板,增加后刀架,采用前后两把车刀同时进行车削。

两把车刀,径向相对,前车刀正装,后车刀反装。两把车刀车削时产生的径向切削力相互抵消。工件受力变形和振动小,加工精度高,适用于批量生产。

2.1.4采用跟刀架和中心架采用一夹一顶的装夹方式车削细长轴,为了减少径向切削力对细长轴弯曲变形的影响,传统上采用跟刀架和中心架,相当于在细长轴上增加了一个支撑,增加了细长轴的刚度,可有效地减少径向切削力对细长轴的影响。

2.1.5采用反向切削法车削细长轴反向切削法是指在细长轴的车削过程中,车刀由主轴卡盘开始向尾架方向进给。

这样在加工过程中产生的轴向切削力使细长轴受拉,消除了轴向切削力引起的弯曲变形。同时,采用弹性的尾架顶尖,可以有效地补偿刀具至尾架一段的工件的受压变形和热伸长量,避免工件的压弯变形。

2.2选择合理的刀具角度为了减小车削细长轴产生的弯曲变形,要求车削时产生的切削力越小越好,而在刀具的几何角度中,前角、主偏角和刃倾角对切削力的影响最大。细长轴车刀必须保证如下要求:切削力小,减少径向分力,切削温度低,刀刃锋利,排屑流畅,刀具寿命长。从车削钢料时得知:当前角γo增加10°,径向分力Fr可以减少30%:主偏角Kr增大10°,径向分力Fr可以减少10%以上;刃倾角λs取负值时,径向分力Fr也有所减少。

2.2.1前角(γo其大小直接着影响切削力、切削温度和切削功率.增大前角,可以使被切削金属层的塑性变形程度减小,切削力明显减小。

增大前角可以降低切削力,所以在细长轴车削中,在保证车刀有足够强度前提下,尽量使刀具的前角增大。前角一般取γo=15°。车刀前刀面应磨有断屑槽,屑槽宽B=3.5~4mm,配磨brl=0.1-0.15mm,ym=-25。的负倒棱,使径向分力减少,出屑流畅,卷屑性能好,切削温度低,因此能减轻和防止细长轴弯曲变形和振动。

2.2.2主偏角(kr)车刀主偏角Kr是影响径向力的主要因素,其大小影响着3个切削分力的大小和比例关系。随着主偏角的增大,径向切削力明显减小,在不影响刀具强度的情况下应尽量增大主偏角。主偏角Kr=90°(装刀时装成85°-88°),配磨副偏角Kr'=8°~10°,刀尖圆弧半径Y s=0.15~0.2mm,有利于减少径向分力。

2.2.3刃倾角(λs)倾角影响着车削过程中切屑的流向、刀尖的强度及3个切削分力的比例关系。随着刃倾角的增大,径向切削力明显减小,但轴向切削力和切向切削力却有所增大。刃倾角在10。~+10。范围内,3个切削分力的比例关系比较合理。在车削细长轴时,常采用正刃倾角+3°一+10°,以使切屑流向待加工表面。

2.2.4后角较小ao=am=4°-6°,起防振作用。

2.3合理地控制切削用量切削用量选择的是否合理,对切削过程中产生的切削力的大小、切削热的多少是不同的。因此对车削细长轴时引起的变形也是不同的。粗车和半粗车细长轴切削用量的选择原则是:尽可能减少径向切削分力,减少切削热。车削细长轴时,一般在长径比及材料韧性大时,选用较小的切削用量,即多走刀,切深小,以减少振动。增加刚性。

2.3.1背吃刀量(村在工艺系统刚度确定的前提下,随着切削深度的增大,车削时产生的切削力、切削热随之增大,引起细长轴的受力、受热变形也增大。因此在车削细长轴时,应尽量减少背吃刀量。

2.3.2进给量(f)进给量增大会使切削厚度增加,切削力增大。但切削力不是按正比增大,因此细长轴的受力变形系数有所下降。如果从提高切削效率的角度来看,增大进给量比增大切削深度有利。

2.3.3切削速度(v)提高切削速度有利于降低切削力。这是因为,随着切削速度的增大,切削温度提高,刀具与工件之间的摩擦力减小,细长轴的受力变形减小。但切削速度过高容易使细长轴在离心力作用下出现弯曲。破坏切削过程的平稳性,所以切削速度应控制在一定范围。对长径比较大的工件,切削速度要适当降低。

实践证明:进给量f>0.5时,防振效果很显著。而稍微加大吃刀深度,就很容易引起振动。当切削速度为中速时,细长轴工件常会发生振动。采用高速车削时,由于离心力作用,振动也较大,一般采用不太高的切削速度来加工细长轴的。根据加工经验,长径比在40:1~120:1之间,在ap=3mm情况下。取v=40m/min、f=0.3~0.5mm/r:或采用v=45-100m/min,f=0.6~0.12mm/r时,加工细长轴时不容易引起振动,但应使车刀的倒棱加宽到0.3~0.6mm,屑槽宽在6~7mm,同时工件直径应大于50mm,否则工件易产生弯曲变形。

3结论

数控车削加工工艺优化研究论文 第5篇

经多次试验验证,在对纯镍材料进行加工的过程中,存在刀具磨损严重、使用寿命短、生产效率低下的问题。切削过程中,纯镍材料与刀具的摩擦会产生强烈的震动和高噪声(经检测已超过100dB)。由于刀具的磨损非常严重,在切削一个工件时就要更换十余次刀具。频繁更换刀片造成工件的表面光度不够,只能在加工后期使用锉刀纱布对工件继续打光磨平,浪费了大量人力物力。此外,每次更换刀具都要经历编程、对刀、关闭启动计算机等工序,容易造成计算机故障。事实上,经此工艺加工的工件,不能很好地保障质量,且生产效率低下。如果造成一件工件成为废品,将会产生较大的经济损失。可见,这样进行批量生产时,产品效率和质量均不能保证。因此,探寻优化纯镍的车削加工工艺迫在眉睫。此外,选择采用耐磨性能较好的刀具进行切削时,上述问题仍然存在。因此,还需要寻找新的途径解决上述问题。

3.2纯镍加工时刀具磨损的特点

由试验观察可知,切削纯镍工件时,刀具的磨损主要集中在刀刃附近,且刀刃处的切割热也较高。切削完成后,在副后刀面上会出现一道清晰的沟槽。在切削速度较低的情况下,会出现刀面的磨损,切削面也因较高的切割热而变形,而沟槽的出现会引起强烈的震动和噪声。上述现象会使刀具过早失效,造成加工效率低下、工件表面质量不高、刀具的寿命缩短。3.3纯镍的数控车削加工工艺优化在经历多次探索和尝试后,终于找到了可以解决刀具磨损严重、产生明显沟槽等问题的方法,下面简述这三种新途径。

3.3.1采用涂层硬质合金刀具

在分析刀具磨损成因时,判断镍-钴的亲合会造成刀具的严重磨损。为避免这种状况的发生,决定采用TiN(TiC)涂层硬质合金刀片进行试验。在按照正常的工序加工工件后,于显微镜下观察刀具的磨损程度。结果显示,涂层虽然脱落,但刀具表面无明显的磨损痕迹,且副刀面无沟槽。涂层的脱落可能是牢固度不够,在改进工艺加固涂层后可以取得更好效果。

3.3.2复合聚晶立方氮化硼车削刀

硬质合金会因扩散机理而产生沟槽,采用涂层涂抹合金也增加了刀具成本。经验证,采用复合聚晶立方氮化硼车削刀效果甚佳。复合聚晶立方氮化硼车削刀的硬度与硬质合金刀具相比可以提高20倍,在车削过程中无噪声、无振动,工件表面的光度良好,切屑均匀,无沟槽的产生。分析机理,主要是因为复合聚晶立方氮化硼车削刀硬度高、热稳定性好,因而适于切削纯镍材料。

3.3.3新型陶瓷刀具

山东工业大学研制的新型陶瓷车刀SG5是一种高强度、高热稳定性、高硬度的新型刀具,主要成分是Al2O3-SiC。该刀具硬度是硬质合金刀具的10倍,可以满足切削要求,且成本只有立方氮化硼刀具的1/10,在适用价值和经济适用性上都满足条件,可以经过进一步验证推广。以上三种新方法尚未成熟,有必要进行进一步探讨。但是,这三种方式都具有一定的实用价值,可为数控车削纯镍材料的工艺改进提供一定的借鉴。

4结语

纯镍材料的数控车削加工工艺一直存在刀具磨损严重、噪声大、震动大等问题。解决这些问题,对推进数控车削工艺的发展具有重要意义。本文经分析产生上述问题的机理和成因,提出了三种优化措施。多次试验显示,三种方式基本能解决前述问题,且经济适用性较好,有进一步研究推广的空间。探究纯镍材料的数控车削加工工艺的优化方法有利于推动镍类材料的加工工艺的发展,进而加速数控车削加工工艺的成熟。

参考文献

[1]徐世鹏,李祯.纯镍的车削加工[J].航天工艺,1983,(3):12-14.

[2]刘藜,陶起伦,李祯.纯镍的车削和断屑切削试验[J].航天工艺,1985,(2):27-33.

[3]倪春杰.轴上套环的数控车削加工工艺设计及优化[J].兰州石化职业技术学院学报,,(2):12-14.

车削加工教案 第6篇

【教学目的及要求】

1.了解车床型号、组成、运动和用途。

2.熟悉车刀、量具和主要附件的基本结构与使用方法。

3.掌握车削加工的基本技能,能加工轴类、盘套类零件。

4.熟悉车工安全操作规程。

【教学课时】7课时

车削加工讲授内容

一般机器制造中车床约占金属切削机床总台数的20%~35%,主要用于加工内外圆柱面、圆锥面、端面、成形回转表面以及内外螺纹面、蜗杆等。

车床种类很多,其中卧式车床是应用最广泛的一种。

一、车床组成

车床上由机床主轴带动工件旋转。由溜板箱上的大拖板及刀架带动刀具作纵横向直线移动。为了改变上述运动的大小,尚有主运动变速箱(主轴箱)和进给运动变速箱(进给箱)。上述各部分都由床身支承。

车床的组成部分有:

1.主轴箱:安装主轴及主轴变速机构; 2.进给箱:安装作进给运动的变速机构;

3.溜板箱:安装作纵横向运动的传动元件并联接拖板及刀架。

4.刀架:安装车刀,使其作纵向、横向(可自动)或斜向(手动)进给运动。5.尾架:安装尾架套筒及顶尖;

6.床身:用来支承上述各部件,并保证其间相对位置。

二、卧式车床型号

车床型号按照国家标准规定,由汉语拼音和阿拉伯数字组成。如: C A 6

机床主参数代号表示最大车削直径的十分之一,即400mm 机床型别代号(卧式车床)机床组别代号(卧式车床)沈阳机床厂作了重大改进 机床类别代号(车床类)

三、车削运动及车削用量

1.车削运动及车削表面 1)车削运动

在车床上,切削运动是由刀具和工件作相对运动而实现的。按其所起的作用,通常可分为以下两种。

(1)主运动。切除工件上多余金属,形成工件新表面必不可少的基本运动。其特征是速度最高,消耗功率最多。车削时工件的旋转为主运动,切削加工时主运动只能有一个。

(2)进给运动。使切削层间断或连续投入切削的一种附加运动。其特征是速度小,消耗功率少。车削时刀具的纵、横向移动为进给运动。切削加工时进给运动可能不只是一个。

2)车削表面

在车削外圆过程中,工件上存在着三个不断变化着的表面。待加工表面、已加工表面和过渡表面。2.车削用量

在车削时,车削用量是切削速度vc、进给量f和背吃刀量ap三个切削要素的总称。它们对加工质量、生产率及加工成本有很大影响。

(1)切削速度vc

车削时的切削速度是指车刀刀刃与工件接触点上主运动的最大线速度(m/s)。

(2)进给量f

车削时,进给量是指工件一转时刀具沿进给方向的位移量,又称走刀量(mm/r)。(3)背吃刀量ap

车削时,背吃刀量是指待加工表面与已加工表面之间的垂直距离,单位为mm。它又称切削深度(mm)。

3.车削用量的选择

车削用量三要素中影响刀具耐用度最大的是切削速度,其次是进给量,最小是背吃刀量。所以在粗加工时应优先考虑用大的背吃刀量,其次考虑用大的进给量,最后选定合理的切削速度。半精加工和粗加工时首先要保证加工精度和表面质量,同时要兼顾必要的耐用度和生产效率,一般多选用较小的背吃刀量和进给量,在保证合理刀具耐用度前提下确定合理的切削速度。(1)背吃刀量的选择

背吃刀量ap的选择按零件的加工余量而定,在中等功率车床上,粗加工时可达8~10mm,在保留后续加工余量的前提下,尽可能一次走刀切完。当采用不重磨刀具时,背吃刀量所形成的实际切削刃长度不宜超过总切削刃长度的三分之二。

(2)进给量的选择

粗加工时f的选择按刀杆强度和刚度、刀片强度、机床功率和转矩许可的条件,选一个最大的值;精加工时,则在获得满意的表面粗糙度值的前提下选一个较大值。

(3)切削速度的选择

在ap和f已定的基础上,再按选定的耐用度值确定切削速度(一般查手册决定)。

四、车削时工件的装夹

车床上加工多为轴类零件和盘套类零件,有时也可能在不规则零件上进行外圆、内孔或端面的加工。故零件在车床上有不同的装夹方法。

1.三爪自定心卡盘装夹

这是车床上最通常的一种装夹方法,套盘类工件和正六边形截面工件都适用此法装夹,而且装夹迅速,但定心精度不高,一般为0.05~0.15mm。

2.四爪单动卡盘及花盘装夹

四爪卡盘上的四个爪分别通过转动螺杆而实现单动。它可用来装夹方形、椭圆形或不规则形状工件,根据加工要求利用划线找正把工件调整至所需位置。此法调整费时费工,但夹紧力大。

花盘装夹是利用螺钉、压板、角铁等把工件夹紧在所需的位置上,适用于工件不规则情况。3.顶尖装夹

为了减少工件变形和振动可用双顶尖装夹工件。

常用跟刀架或中心架作辅助支承,以增加工件的刚性。跟刀架跟着刀架移动,用于光轴外圆加工。

当加工细长阶梯轴时,则使用中心架。中心架固定在床身导轨上,不随刀架移动。4.心轴装夹

心轴主要用于带孔盘、套类零件的装夹。以保证孔和外圆的同轴度及端面和孔的垂直度。当工件长径比小时,应采用螺母压紧的心轴。

当工件长度大于孔径时,可采用带有锥度(1:1000~1:5000)的心轴,靠配合面的摩擦力传递运动,故此法切削用量不能太大。

五、车刀的种类

金属切削中,车刀是最简单的刀具,是单刃刀具的一种。为了适应不同车削要求,车刀有多种类型: 1.直头外圆车刀;

2.弯头车刀; 3.偏刀;

4.槽刀或切断刀; 5.镗孔刀; 6.螺纹车刀; 7.成形车刀

六、车削加工

1.外圆车削

外圆车削主要用尖刀、弯头刀和偏刀进行,依车外圆的加工精度和表面粗糙度要求不同,分粗车、半精车和精车。

粗车是尽快从工件上切去大部分加工余量,对尺寸精度和表面粗糙度无严格要求,一般精度为IT12~IT11,表面粗糙度Ra值为50~12.5μm。

半精车作为精车和磨削前的预加工,精度一般为IT10~IT9,表面粗糙度Ra值为6.3~3.2μm。精车是获得所要的尺寸精度和表面粗糙度,精度一般为IT8~IT7,Ra值为1.6μm。2.端面车削

车端面时刀具作横向进给,愈向中心车削速度愈小,当刀尖达到工件中心时,车削速度为零,故切削条件比车外圆要差。

车刀安装时,刀尖严格对准工件旋转中心,否则工件中心凸台难以切除;并尽量从中心向外走刀,必要时锁住大拖板。

3.外圆台阶车削

外圆柱面零件有轴类与盘类两大类。前者一般直径较小,后者一般直径较大。当零件长径比较大时,可分别采用双顶尖、跟刀架和中心架装夹加工。

车削高度大于5mm的台阶轴时,外圆应分层切除,再对台阶面进行精车。

盘类零件一般有孔,且内孔、外圆、端面都有形位精度要求,加工方法大多采用一次装夹下加工,俗称—刀落。要求较高时可先加工好孔,再用心轴装夹车削有关外圆与端面。

4.内孔车削

常用的内孔车削为钻孔和镗孔。在实体材料上进行孔加工时,先要钻孔,钻孔时刀具为麻花钻,装在尾架套筒内由手动进给。

在已有孔(钻孔、铸孔、铰孔)的工件上如需对孔作进一步扩径加工称镗孔,镗孔有加工通孔、盲孔、内环形槽三种情况。

粗车孔精度可达IT11~IT10,表面粗糙度Ra值为12.5~6.3μm;半精车孔精度为IT10~IT9,Ra值为6.3~3.2μm;精车孔精度为IT8~IT7,表面粗糙度Ra值为1.6~0.8μm.对孔径小于10mm的孔,在车床上一般采用钻孔后直接铰孔。5.锥体车削

锥体有配合紧密、传递扭矩大、定心准确、同轴度高、拆装方便等优点,故锥体使用广泛。锥面是车床上除内外圆柱面之外最常加工的表面之一。

最常用的锥体车削方法有以下几种。

(1)转动小刀架法。此法调整方便,由于小刀架(上滑板)行程较短,只能加工短锥面且为手动进给,故车削时进给量不均匀、表面质量较差,但锥角大小不受限制,因此获得广泛使用。

(2)偏移尾架法。一般用于车削小锥度的长锥面。

(3)靠模法。利用此方法加工时,车床上要安装靠模附件,同时横向进给丝杠与螺母要脱开,小刀架要转过90度以作吃刀调节之用。它的优点是可在自动进给条件下车削锥面,且一批工件能获得稳定一致的合格锥度,但目前已逐渐为数控车床所代替。

(4)宽刀法。宽刀法要求切削刃与工件轴线的夹角等于a/2,切削刃必须磨直,工件加工锥面必须很短,否则容易引起振动而破坏工件的表面粗糙度。此法既适于车短锥面,也可车短锥孔。

6.螺纹车削

螺纹种类很多,按牙形分有三角形螺纹、梯形螺纹和方牙螺纹等。按标准分有公制螺纹和英制螺纹两种,公制螺纹中三角螺纹的牙形角为60度,用螺距或导程来表示其主要规格。各种螺纹都有左旋、右旋、单线、多线之分,其中以公制三角螺纹应用最广,称普通螺纹。

(1)螺纹车刀及其安装。螺纹牙形角要靠螺纹车刀的正确形状来保证,因此三角螺纹车刀刀尖及刀刃的交角应为60度,而且粗车时车刀的前角0应等于0°,刀具用样板安装,应保证刀尖分角线与工件轴线垂直。

(2)车床运动调整。

为了得到正确的螺距P,应保证工件转一转时,刀具准确地纵向移动一个螺距,即

n丝P丝nP

通常在具体操作时可按车床进给箱表牌上表示的数值按欲加工工件螺距值,调整相应的进给调整手柄即可满足要求。

(3)螺纹车削注意事项。由于螺纹的牙形是经过多次走刀形成的,一般每次走刀都是采用一侧刀刃进行切削的(称斜进刀法),故这种方法适用于较大螺纹的粗加工。有时为了保证螺纹两侧都同样光洁,可采用左右切削法,采用此法加工时可利用小刀架先作左或右的少量进给。

在车削加工件的螺距P与车床丝杠螺距P丝不是整数倍时,为了保证每次走刀时刀尖都正确落在前次车削好的螺纹槽内,不能在车削过程中提起开合螺母,而应采用反车退刀的方法。

车削螺纹时严格禁止以手触摸工件和以棉纱揩擦转动的螺纹。

7.车槽与切断

车槽可分外圆上的槽,内孔中的槽和端面上的槽。车宽5mm以下的槽,可以将主切削刃磨成与槽等宽,一次进给即可车出。若槽较宽,可用多次横车,最后一次精车槽底来完成。一根轴上有多个槽时,若各槽宽相同,用一把车槽刀即可完成,效率较高。

切断刀的形状与车槽刀类似,但是,当切断工件的直径较大时,切断刀刀头较长,切屑容易 堵塞在槽中而使刀头折断,故把切断刀的头高度加大。切断刀的主切削刃必须调整到与机床旋转中心等高,较高或较低都会使切至靠近工件中心部分时形成小凸台,易使刀头损坏。切断时进给必须均匀。当接近切断时需放慢进给速度,否则易使刀头折断。

8.车成形表面

手柄或圆球等零件上的曲线回转表面叫成形表面。(1)双向车削法

先用普通尖刀按成形表面的大致形状粗车许多台阶,然后用两手分别操纵作纵向和横向同时进给,用圆弧车刀车去台阶峰部并使之基本成形,用样板检验后需再经过多次车削修整和检验,形状合格后还需用砂纸和纱皮适当打磨修光。此法适用于单件小批生产,虽操作技术要求高,但不需要特殊的设备和刀具。

(2)成形刀法

成形刀的刀刃形状与成形表面的形状一致,只需用一次横向进给即可车出成形表面,也可先用尖刀按成形表面的大致轮廓粗车出许多台阶,然后再用成形刀精车成形。此法生产效率较高,但刀具刃磨困难,车削时容易振动,故只适用于在批量较大的生产中,车削刚性好、长度短且形状简单的成形面。

(3)靠模法

它与用靠模法车锥面类似,只要将模尺改为成形面靠模尺即可。此法操作简单、生产效率高,但需要制造专用靠模,故只适用于在大批大量生产中车削长度较大、形状较简单的成形面。

9.滚花

车削加工工艺教案

车削加工工艺教案(精选6篇)车削加工工艺教案 第1篇摘要:数控车床的使用的目的是加工出合格的零件,但合格零件的加工必须要依靠制定合理...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部