磁场对运动电荷的问题
磁场对运动电荷的问题(精选8篇)
磁场对运动电荷的问题 第1篇
磁场对运动电荷的作用力
鄱阳县第二中学:*** ★新课标要求
(一)知识与技能
1、知道什么是洛伦兹力,理解安培力和洛伦兹力的关系。
2、知道洛伦兹力产生条件,会用左手定则判定洛伦兹力的方向。
3、知道洛伦兹力大小的推理过程。
4、应用公式F=qvBsinθ解答有关问题。
5、应用洛伦兹力有关知识解释生产生活中有关的一些问题。
(二)过程与方法
通过洛伦兹力大小的推导过程进一步培养学生的分析推理能力。
(三)情感、态度与价值观
让学生认真体会科学研究最基本的思维方法:“对比—推理—假设—实验验证”
★教学重点
1、利用左手定则会判断洛伦兹力的方向。
2、掌握进入磁场方向的带电粒子,受到洛伦兹力大小的计算。
★教学难点
1、理解洛伦兹力对运动电荷不做功。
2、洛伦兹力方向的判断。
★教学方法
实验观察法、讲述法、分析推理法
★教学用具:
电子射线管、电源、磁铁、投影仪、投影片
★教学过程
(一)引入新课:同学们,我们首先来观看一下神奇而有美丽的极光。播放《美丽的极光》影片。
师:你们知道极光一般出现在什么地方吗? 生:两极等高纬度地区。
师:为什么极光不能在赤道等低纬度地区出现呢? 生:学生好奇。
师:我们通过这一节课的学习就将知道为什么极光这美丽而又神秘的面纱,这就是磁场对运动电荷的作用力(板书标题)
一、洛伦兹力(板书)
师:我们在上一节中学习了磁场对通电导线的作用力,即安培力的大小和方向。生:大小FqvBsin,方向:左手定则
师:磁场对通电的导线才有作用力,那么这个作用就与电流有关,那么电流是如何形成的呢?
生:电荷的定向移动形成的
师:由上述的两个问题你可以想到什么?
生:磁场对通电导线的安培力可能是作用在大量运动电荷的作用力的宏观表现,也就是说磁场可能对运动电荷有力的作用。
师:很好。磁场对运动电荷究竟有没有作用力,我们口说无凭,能否通过实验来验证一下呢?
实验验证
师:要验证磁场对运动电荷是否有作用力,我们不仅需要一个磁场(展示蹄形磁铁),还需要运动电荷。那么运动电荷怎么得到呢?
展示:阴极射线管(结合视频材料)
介绍:阴极射线管的玻璃管内已经抽成真空,当左右两个电极按标签上的极性接上高压电源时,阴极会发射电子。在电场的加速下飞向阳极,电子束掠射到荧光板上,显示出电子束的轨迹。
演示:没有磁场时电子束是一条直线。用一个蹄性磁铁在电子束的路径上加磁场,尝试不同方向的磁场对电子束径迹的不同影响,直至出现电子束在磁场中偏转。
结论:磁场对运动电荷的确有作用力,我们把这一个作用力命名为洛伦兹力。(板书)运动电荷在磁场中受到的作用力叫做洛伦兹力,安培力是洛伦兹力的宏观表现。
二:洛仑兹力的方向(板书)
师:作为一种力,洛伦兹力是有方向的,那么,我们怎样来确定它的方向呢? 引导学生:既然安培力是洛伦兹力的宏观表现,那么洛伦兹力的方向是不是可以根据安培力的方向判断方法来判断呢?
生:可以,因为运动的电荷可看成等效电流。
师:很好,我们知道电流的方向是:规定正电荷移动的方向规定为电流的方向,那么正电荷所受力的方向就应该与电流的所受力的方向一样。那么我们怎么判断呢?
生:用左手定则判断
正电荷运动的方向与电流的方向相同,负电荷运动的方向与电流的方向相反。总结:(板书)
1.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使四指指向正电荷运动的方向,这时拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向。
2.负电荷受力的方向与正电荷受力的方向相反。深化
师:刚才,我们在判定洛伦兹的方向时,我们注意到电荷运动方向、磁场的方向、洛伦兹力的方向具有三维关系。为了帮助同学们更好地把握它们之间的关系,下面我们运用三维图再来分析一下洛伦兹力和电荷运动方向、磁场方向的关系。
师:甲图我们可以用左手定则判断,乙图中磁场方向与电荷运动方向不垂直时,怎么办? 生:分解速度„(结合动画)
师:通过这两幅三维图,你能总结一下F、B、V三者之间的方向关系? 生:F与B始终垂直、F与V始终垂直,而B与V不一定垂直。(板书)练习
师:试判断带电粒子刚进入磁场时所受到的洛伦兹力的方向。
三:洛仑兹力的大小(板书)1.问题
师:刚才我们研究了洛伦兹力的方向,那么洛伦兹力大小等于多少呢? 2.思路
师:我们能否根据已有的知识,从理论上进行推导呢? 生:根据安培力和洛伦兹力的关系。3.建模
师:这就需要我们建立一个模型。而模型的建立,我们总是选择简单的,所以: 磁场:匀强磁场
电流:通以恒定电流的直导线,并与磁场垂直
设有一段长为L,横截面积为S的直导线,单位体积内的自由电荷数为n,每个自由电荷的电荷量为q,自由电荷定向移动的速率为v。这段通电导线垂直磁场方向放入磁感应强度为B的匀强磁场中,求
(1)通电导线中的电流(2)通电导线所受的安培力(3)这段导线内的自由电荷数(4)每个电荷所受的洛伦兹力
选择具有代表性的同学,把他的推导过程用实物投影仪展示到大屏幕上,再请这位同学简叙推导过程。
最后总结:(板书)
QnqSv t通电导线所受的安培力F安BILBnqSvL 通电导线中的电流I这段导线内的自由电荷数NnSL 每个电荷所受的洛伦兹力FqvB
师:我们刚刚推导出的公式FqvB的适用条件是什么?
生:当电荷q以速度v垂直进入磁感应强度为B的磁场中,它所受的洛仑兹力FqvB 推广:
师:当运动电荷的方向与磁场的方向夹角为时,电荷所受的洛伦兹力怎么求? 生:分解速度…
结合动画分析,得出结论:FqvBsin 例题:某带电粒子的电量为q10场中,求它受到的洛伦兹力F多大?
四:洛伦兹力的特点:
1.洛伦兹力的方向既垂直于磁场,又垂直于速度,即垂直于v和B所组成的平面. 2.洛伦兹力对电荷不做功,只改变速度的方向,不改变速度的大小. 应用 1.电视机实验
介绍:电视机屏幕要显示出图象,必须要有电子打到荧光屏的各个地方上。那么,电子从哪里来呢?显象管的电子枪能产生大量的高速运动的电子──电子束。但是电子都沿同一个方向运动,有什么办法可以使电子打到荧光屏的各个地方呢?
生:加一水平的偏转磁场。
思考:该怎么加才能使电子打到荧光屏上的A点呢?若要打到B点呢?若要使电子打到荧光屏的位置从B点逐渐向A点移动呢?
生:向外、向内、向内减弱至向外增强。
师:这样,在电视机屏幕上就有光点从左边移动到右边,这在电视技术中叫做行扫描。但是,实际的电视应该电子束打到荧光屏的整个面,而不是一条线,我们该怎么办呢?
生:加一竖直的偏转磁场。
师:这在电视技术中叫做场扫描。如果场扫描和行扫描同时进行,想象一下,光点的运动情况会是怎么样的呢?
动画:扫描(场扫描:50场/秒,所以我们感到整个荧光屏都在发光)
14C,以速率v106m/s射入B102T的匀强磁
2.极光现象
问题:极光是来自太阳的高能粒子进入大气后,与大气发生作用而产生的。为什么在赤道却从来没有它的身影呢?
生:解释垂直射向赤道(向东偏转)和两极(长驱直入)的正电荷,并得出结论。师:至于有的时候高纬度地区也有极光出现,有兴趣的同学课后可以通过上网等方式查阅。地磁场使得在赤道等低纬度地区没有极光的身影,这的确是一种遗憾,但是,也正因为地磁场的存在,使我们人类的生产生活免遭宇宙高能粒子的伤害。
师:现在,我们明白了上课开始时那个美丽有神秘的极光现象吗?
板书设计:
磁场对运动电荷的作用 一 磁场对运动电荷的作用力
运动电荷在磁场中受到的作用力叫做洛伦兹力,安培力是洛伦兹力的宏观表现。二 洛伦兹力的方向──左手定则 三 洛仑兹力的大小
1、当运动电荷q以速度v垂直进入磁感应强度为B的磁场中,它所受的洛仑兹力FqvB
2、当运动电荷的方向与磁场的方向夹角为时,我们可以分解速度,它所受的洛仑兹力FqvBsin
四 洛伦兹力的特点
1.洛伦兹力的方向既垂直于磁场,又垂直于速度,即垂直于v和B所组成的平面. 2.洛伦兹力对电荷不做功,只改变速度的方向,不改变速度的大小.
磁场对运动电荷的问题 第2篇
一、教学目标
1.通过实验掌握左手定则,并能熟练地用左手定则判断磁场对运动电荷的作用力——洛仑兹力的方向。
2.理解安培力是洛仑兹力的宏观表现。
3.根据磁场对电流的作用和电流强度的知识推导洛仑兹力的公式f=Bqv,并掌握该公式的适用条件。
二、重点、难点分析
1.重点是洛仑兹力方向的判断方法左手定则和洛仑兹力大小计算公式的推导和应用。2.因电荷有正、负两种,在用左手定则判断不同的电荷受到的洛仑兹力方向时,要强调四指所指方向应是正电荷的运动方向或负电荷运动的反方向。
三、教具
(学生电源或蓄电池)、阴极射线管,蹄形永久磁铁、导线若干。
四、主要教学过程
(一)引入新课
1.设问:我们已经掌握了磁场对电流存在力的作用、安培力的产生条件和计算方法,那么磁场对运动电荷是否也有力的作用呢?
2.实验:
改变。
(二)教学过程设计 1.洛仑兹力(板书)
2.洛仑兹力产生的条件(板书)
q≠0,电荷运动速度v≠0,磁场相对运动电荷速度的垂直分量B⊥≠0,三个条件必须同时具备。在这里教师进一步强调,当运动电荷垂直进入磁场时受到磁场力的作用最大,教材只要求学生掌握这种情况。
3.洛仑兹力方向的判断:(板书)学找出一种判断方法。也可联系安培力方向的判断推理确定洛仑兹力方向的判断方法——左手定则。
4.显象管的工作原理 应用左手定则判断
(三)小结
磁场对运动电荷的问题 第3篇
学习进阶理论是一种用来研究学生思维方式发展层次的理论.学习进阶是对一段时期内儿童学习或者探究某主题时,其思维方式的连续且不断精致化发展的描述.从1980年开始,许多研究者开始提出并强调概念转变的学习.当人们将概念转变研究的时间单位拉长,并对概念转变的模式进行整合,就能对一段时间内的概念转变模式建构认知模型,这就是学习进阶的研究.学习进阶强调的是发展的过程,是学生的学习从一个状态到另一个状态的逐步发展过程.[1]
二、学习进阶理论应用于习题教学的研究
学习进阶包含五个基本要素:(1)进阶终点.即学习目标,一般是根据社会预期对学科本质的分析和更高水平教育的准入要求等确定的.(2) 进阶维度. 一般是学科内或科学实践过程中的核心概念,通过追踪学生在这些维度上的发展可以了解其整体学习进程.(3)多个相互关联的成就水平.在学习进阶所追踪的发展路径上存在多个相互关联的中间步骤(成就水平),它们反映了学生思维发展过程的普遍阶段.(4)各水平的预期表现.处于特定理解水平的学生在完成某类任务时所应有的表现,这为评估工具的开发提供了具体的参考指标.(5)特定的评测工具.用于追踪学生在预期进阶路径上的发展情况.学习进阶通常含有一套从开发、验证到使用的完整评估方法.[2]
学习进阶理论具有四方面特点:(1) 围绕核心概念建构;(2)刻画学生知识和能力的不同层级; (3)通过学习表现,呈现层级发展的证据;(4)体现课程和教学的影响.
学习进阶理论为习题教学提供了理论基础,一个核心概念(重要规律)的应用也应存在着思维发展变化进阶过程,为了研究进阶中的认知水平、能力层级,本文借助SOLO理论进行评价.
SOLO分类理论融合了信息加工理论和皮亚杰认知发展理论的优点,克服了布鲁姆教育目标分类学的理论困难.它能系统地描述学习者面对不同学习任务时的表现,既能反映学生认知质的差异,也能反映量的差异. SOLO分类理论对学生回答具体问题时的表现给予了五种结构上的定义. (1)前结构:没有形成对问题的理解,回答问题逻辑混乱,或同义反复.(2)单点结构:只能联系单一事件,找到一个线索就立即跳到结论上去. (3)多点结构:能联系多个孤立事件,但未形成问题的知识网络.(4)关联结构:能够联想事件, 并能将多个事件联系起来.(5)拓展抽象结构:能够进行抽象概括,结论具有开放性,使得问题本身的意义得到拓展.[3]
在SOLO分类理论中,单点结构水平和多点结构水平主要表征学生学习的数量特征;关联结构水平和拓展抽象水平则侧重表征学生学习的结构即质量特征.[4]下面以磁场对运动电荷的作用为例,探究实现核心概念综合应用水平的转变、进阶的三重境界.
三、习题教学中核心概念应用进阶的三重境界
(一)由单点结构水平进阶为多点结构水平
带电粒子在匀强磁场中做匀速圆周运动,可以计算带电粒子在磁场中运动的周期及半径.此过程中,学生的认知仍处于单点结构水平.欲使学生进阶至多点结构阶段,需要完成基本的练习,不能一步到位.
例1 (2014年高考·全国课标理综卷Ⅰ)如图1,MN为铝质薄平板,铝板上方和下方分别有垂直于图平面的匀强磁场(未画出).一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿越铝板后到达PQ的中点O. 已知粒子穿越铝板时, 其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )
解析粒子穿越铝板时动能损失一半,则粒子穿越铝板后的动能为穿越铝板前动能的一半,即速度是原来的倍,又由牛顿运动定律及洛伦兹力公式,有,得,结合半径关系可知,选项D正确.
点评掌握半径及周期的计算是此阶段的教学目标,适当的变式训练,有助于多点结构水平的形成.该题可形成如下变式:(1)已知粒子穿越铝板时, 其速率或动量减少一半,速度方向和电荷量不变,不计重力. 铝板上方和下方的磁感应强度大小之比为多少?(2)若粒子可经过若干次穿越铝板,则粒子在某次穿越铝板过程中,在铝板上方和下方运动的时间之比为多少?
(二)由多点结构水平进阶为关联结构水平
所谓关联结构水平是指,学生对于问题有了整体的把握并能独立地解决问题. 能够将多个事件联系起来,掌握多个物理规律的综合应用.基本目标是能结合数学知识及物理学的知识解决较为复杂的问题.
带电粒子在有界磁场中的运动,粒子的运动轨迹受边界的约束.有界磁场的区域一般有:单边有界、双边有界、方形有界、圆形有界、三角形有界、双磁场等等.关联结构水平的进阶要求能分析在多种复杂情形下带电粒子在磁场中的运动问题,下面仅以图圆形边界约束下粒子的运动问题为例进行分析.
例2 (2010年自主招生·清华5校)如图2,圆形区域内有一垂直纸面的匀强磁场.P为磁场边界上的一点. 有无数带有同种电荷、具有同样质量的粒子在纸面内沿各个方向以同样的速率通过P点进入磁场.这些粒子射出边界的位置均处于边界的某一段弧上,这些圆弧的弧长是圆周长的. 将磁感应强度的大小从原来的B1变为B2,结果相应的弧长变为原来的一半,则等于( )
解析具有同种电荷、同样质量的粒子在纸面内沿各个方向以同样的速率进入匀强磁场中,其轨道半径相同.如图3所示,圆周周长的所对应的弦中,以该弦为直径的圆即符合题意,其半径r1=Rsin60°,式中R为圆形磁场区域之半径.同理,磁感应强度大小为B2时,r2=Rsin30°.由半径公式,有.因此,选项D正确.
点评从P点射出的所有相同的带电粒子,尽管粒子速度方向不同,但在同一匀强磁场中,其轨道半径均相同.分析之关键在于图3所示的轨迹圆的确定,简单的方法是直接通过画动态圆而得到. 该题表明,关联结构之水平表现在对动态圆特征的认识.
(三)由关联结构水平进阶为拓展抽象结构水平
拓展抽象结构水平主要表现在学生不仅有了对于问题的整体把握,而且还能对于问题进行抽象概括,使之适用于新的问题情境.能将知识抽象、扩展后进行应用.基本目标是能够解决较为综合或复杂的问题,解题时具有创新的解题思想或解题方法.
带电粒子在复合场中的运动问题,主要有三种类型,带电粒子在分离的电场、磁场中运动;带电粒子在叠加的电磁场中运动、带电粒子在交变的电场、交变的磁场中运动.带电粒子在复合场中运动的问题,是力学知识与电磁学知识的综合应用,侧重考查考生的分析综合能力、应用数学处理物理问题的能力.
例3 (2015年高考·浙江理综卷)使用回旋加速器的实验需要把离子从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m、速度为v的离子在回旋加速器内旋转,旋转轨道是半径为r的圆,圆心在O点,轨道在垂直纸面向外的匀强磁场中,磁感应强度为B.为引出离子束,使用磁屏蔽通道法设计引出器. 引出器原理如图4所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O′点(O′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P点进入通道,沿通道中心线从Q点射出.已知OQ长度为L.OQ与OP的夹角为 θ.
(1)求离子的电荷量q,并判断其正负;
(2)离子从P点进入,Q点射出,通道内匀强磁场的磁感应强度应降为B′,求B′;
(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B不变,在内外金属板间加直流电压,两板间产生径向电场,忽略边缘效应.为使离子仍从P点进入,Q点射出,求通道内引出轨迹处电场强度E的方向和大小.
解析(1)离子做圆周运动,由牛顿运动定律,有.解得且为正电荷.
(2)如图5所示,O′Q=R,OQ=L,O′O=R-r.
引出轨迹为圆弧,由牛顿运动定律,有,解得.在△O′OQ中,由余弦定理,有
由于,因此向外,由牛顿运动定律,有
引出轨迹为圆弧
点评该题为高考压轴题,粒子在磁场及电场中的运动模型考生比较熟悉,但是,能否利用两种运动模型间的区别与联系,熟练运用几何知识完成求解对考生提出了相对较高的要求.理解题意并画出示意图,根据已有的知识结构(数学与物理两方面),对中等以上的考生有较强的区分度.实践表明:考生在一定程度上拓展抽象水平的进阶,与学生的智力发展的水平是有紧密关联的.教学中应注意因材施教,根据学情进行有效教学.
基于学习进阶理论视域下的习题教学,其构建和呈现学习进阶的主要方法是,从认知科学与教学论视角出发.对于某一个主题的教学内容进行认知心理学分析,聚焦于理解核心概念意味着什么?新手与专家的理解有何差异?教学中通过怎样的路径可以由幼稚水平逐渐发展为良好科学素养应有的理解水平?这类方法通过评测,并与预期表现一起描绘出学习进阶中相互关联的多个成就水平,此类方法为逐级进展法.[2]该方法对教学实践有重要的应用价值.习题教学中学生对某类核心概念的应用均可以参照上述案例进行设计.
磁场对运动电荷的问题 第4篇
一、 创新教学模式,加强过程探究
在传统的高中物理教学模式中,学生的学习是一个被动的过程,老师只管填鸭式讲课,过多的侧重于学生是否能接受,而没有注重学生智力的开发,更没有关注是否激发了学生的学习兴趣。现在已有的教学模式不能满足教学的目的了,因此要创新,让学生从以前的被动学习变成主动的学习探究。比如,教材中的洛伦兹力这一节内容,按照大纲,已有的教学模式主要是要求学生学会洛伦兹力的计算公式,即用f=qvB来计算力的大小,并要掌握力的方向的判断,即洛伦兹力的左手定则。但是课本上对于这两点的讲解只是直接给出了结论,并没有讲解其探究的过程,这样在课堂上,学生只能是被动的接受知识。因此想要引起学生的兴趣,开发学生的智力,就要求老师创新教学模式,可以通过实验演示的方法来进行探究说明,如图 1 所示,教师首先把阴极射线管与匀强磁场组合,先不加匀强磁场,打开加速电源,形成电子束,可以发现摄像头清晰显示一段蓝色阴极射线,方向竖直向上。然后再加上匀强磁场,发现阴极射线束左偏,说明受到了洛伦兹力作用。继续加大磁场,发现阴极射线束左偏形成圆形轨迹,如图2,说明一定存在做匀速圆,并且该电子受洛伦兹力的方向指向圆心。再引导学生认识到洛伦兹力方向与速度方向、磁场方向存在一定关系,让学生找到左手可以表示这些关系,左手定则就这样出现,潜移默化告知学生这仅仅是一种表示方法,让学生明白为什么用左手定则来判断洛伦兹力的方向。
图1阴极射线管与匀强磁场组合
图2真实阴极射线管空间分布
二、增加实践教学,培养动手能力
在高中物理教学中,演示实验是引起学生兴趣、开发学生智力的重要手段,同时也能有效的提高教学质量。每当开始新的一节内容时,老师用演示实验做导课,学生因为导课内容而对即将学习到的新知识而产生浓厚的学习兴趣,从而激发学生主动的接受知识,从而顺利的达到教学目的。比如,开始新内容时用演示实验导课:观察通了电的螺线管,会发现槽内的电解液不停的旋转,学生会因为这一现象而对新课内容感兴趣,激发学生想了解其内容,从而主动的去学习、探究,再经过老师的讲解,顺利的达到物理教学的目的。再比如,在讲显像管时,其工作原理是重要的一个知识点,通过实验的模拟,既让学生深刻理解其内容,还能培养了学生实验动手能力,更能满足学生的好奇心。
三、运用科技手段,丰富课堂内容
现代教学中,很多老师开始喜欢运用计算机的多媒体来辅助教学,因为随着计算机技术的快速发展,多媒体可以将一些抽象的、难理解的微观现象及其发展的经过通过动画、图像、声音等有形的东西形象、直观的展现在课堂上,更利于学生的理解,同时还能激发学生的学习兴趣。比如,讲授洛伦兹力时其中的“安培力是洛伦兹力的宏观表现”,对于这一结论,如果单纯的让老师用嘴去解释,学生是难以理解的,制作一个flash动画:一段通电导线垂直于磁场方向放入匀强磁场中,安培力对其产生作用,导线切面的图上显示每个电子的定向移动方向恰恰相反与电流的方向,导线受到的安培力正好就是每个运动电荷受到的洛伦兹力合力。通过flash动画的演示,学生能够透彻的理解这一结论,清楚的认识了微观上的安培力,就不需要老师再多做其它的解释。又比如,讲解用左手定则去判断洛伦兹力的方向时,用flash动画去演示怎样运用左手定则判断方向将会形象很多,通过三维动画图片来展现磁场方向、电荷运动方向、洛伦兹力方向三者之间的关系;关于极光的形成原因,首先展现出地球磁场的空间分布图,再展现出垂直的射向地球的向东偏转正电荷与长驱直入的两极正电荷,通过动画的演示,学生更容易理解、接受,在提高教学质量的同时解决了教学难点。
四、结语
综上所述,在高中物理教学中演示实验出现的频率非常高,如此高频率的出现就需要老师们在日常教学过程中特别的注重演示实验课的设计了,既不能让学生们只是乐在上演示实验课,也不能让学生有了视觉疲劳,无论怎样在运用演示实验时一定要遵循简单的操作、高的可见度、直观的现象、明确的目的、适度的演示和高效的成功率等基本的原则。新课改要求老师们要充分发挥想象力在已有的教学模式上创新,而演示实验正好迎合了新课改的这一特点,因此演示实验可以真正发挥其特长,通过结合现代化教学手段,在以后的高中物理教学中必将起到极其关键的作用。
参考文献
[1]人民教育出版社物理室编著.物理(第二册)[M].北京:人民教育出版社,2006:150-160.
[2] 吴海清,黄尚鹏.高中物理中磁场对运动电荷的作用之教学反思[J]. 高等函授学报(自然科学版),2012(5),88-89.
5第五节:磁场对运动电荷的作用 第5篇
西北师大附中 白景曦
第五节 磁场对运动电荷的作用
白景曦
(西北师范大学第一附属中学 甘肃 兰州 730070)
摘要
磁场对运动电荷的作用力叫洛伦兹力;洛伦兹力的大小:fqvBsin,洛伦兹力的方向由左手定则确定。
关键词:洛伦兹力
左手定则
特点
引言
磁场对电流有力的作用,什么是电流呢?电荷的定向移动就形成电流,于是我猜想:磁场对运动的电荷肯定有力的作用,磁场对电流的作用力其实就是磁场对每个电荷的作用力的合力。我的猜想是否正确呢?本节课我们就来研究磁场对运动电荷的作用。
第1课时:洛伦兹力的大小和方向
新课教学:
实验:磁场对运动电荷有力的作用 装置:电子管、蹄形磁铁
现象:不加磁场电子束沿直线运动;加磁场电子束发生偏转。
结论:磁场对运动电荷有力的作用
一、洛伦兹力
1.什么是洛伦兹力:磁场对运动电荷的作用力。洛伦兹力的方向如何确定呢?
分析:我们知道磁场对电流的作用力用左手定则来判断,磁场对运动电荷的作用力当然可以用左手定则来判断。怎么判断呢?
2.方向
(1)左手定则:伸出左手,让四指和拇指垂直并且在同一个平面内,让磁感线垂直
高二物理教案
西北师大附中 白景曦
穿过手心,四肢指向正电荷的运动方向,拇指所指为正电荷所受洛伦兹力的方向;或四指指向负电荷运动方向的反方向,拇指所指为负电荷所受洛伦兹力的方向。
练习:判断电荷所受洛伦兹力的方向。
洛伦兹力的大小与哪些因素有关,有什么关系呢? 3.大小
我们猜想过:安培力就是各个运动电荷所受洛伦兹力的合力,因此我们可以根据安培力的大小来研究洛伦兹力的大小。
设置情境:如图所示,一段长L,横截面积为S的导线垂直放入磁感应强度为B匀强磁场中。若已知导线中单位体积内有n个电荷,每个电荷的带电量为q,导线中通电流I时,电荷运动的平均速率为v。求每个电荷所受洛伦兹力为多大?
解析:
根据FBIL,InqvS,得
FB(nqvS)L
每个电荷所受洛伦兹力:fFnLSqvB 现在我们会计算洛伦兹力的大小了没有?会了,怎么计算呢?fqvB;我说不对,为什么呢?
这个规律是在电荷的运动方向与磁场方向垂直的条件下得到的。(1)当vB时,fqvB;(2)当v//B时,f0;
高二物理教案
西北师大附中 白景曦
(3)当v与B成角(图示),fqvBsin。
练习2:电子的速率v=3×106 m/s,垂直射入B=0.10 T的匀强磁场中,它受到的洛伦兹力是多大?
解析:f=qvB=1.60×10-19×3×106×0.10=4.8×10-14 N
练习3: 来自宇宙的质子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些质子在进入地球周围的空间时,将()
A.竖直向下沿直线射向地面
C.相对于预定点稍向西偏转
B.相对于预定地面向东偏转 D.相对于预定点稍向北偏转
选B.地球表面地磁场方向由南向北,质子是氢原子核带正电,根据左手定则可判定,质子自赤道上空竖直下落过程中受洛伦兹力方向向东.上题中洛伦兹力会改变质子的速度大小吗?为什么?不会,因为洛伦兹力的方向始终垂直于运动电荷的运动方向。
二、洛伦兹力的特点:对运动电荷始终不做功。
三、应用:如图所示。
结论
本节课收获如下:
1.知识:(1)洛伦兹力的方向;(2)洛伦兹力的大小。2.方法:等效法
参考文献:
[1] 人民教育出版社物理室编著.物理第二册教师教学用书.北京:人民教育出版社,2003.[2] 人民教育出版社物理室编著.物理第二册(必修加选修).北京:人民教育出版社,2006.高二物理教案
西北师大附中 白景曦
[3] 人民教育出版社.延边教育出版社编著.物理第二册(必修加选修)教案.吉林:延边教育出版社,2008.[4] 马兰刚著.物理第二册(必修加选修)教案.甘肃:未来教育出版社,待版.
磁场对运动电荷的问题 第6篇
我的说课分课标分析、教学资源、学情分析、教法学法、教学过程、设计体会六部分:
第一部分:课标分析:
本课的课标要求是:通过实验,认识洛伦兹力,会判断洛伦兹力的方向,会计算洛伦兹力的大小。了解电子束的磁偏转原理以及在科学技术中的应用。
根据课标要求和我对教材的理解确定本节的教学目标如下:
(1)知识与技能:
A、会用左手定则判断洛伦兹力的方向。
B、会计算洛伦兹力的大小。
C、知道电视显像管的基本构造以及它工作的基本原理。
(2)过程与方法:
A、通过演示、实验、观察,形成洛伦兹力的概念
B、通过探究明确洛伦兹力与安培力的关系(微观与宏观),洛伦兹力的方向也可以用左手定则判断
C、通过思考与讨论,推导出洛伦兹力的大小公式F=qvBsinθ
D、最后了解洛伦兹力的应用——电视显像管中的磁偏转
(3)情感态度与价值观:
A、培养学生的科学思维和研究方法引导学生学会观察、分析、推理;
B、培养学生主动与他人合作的精神、自主学习探究的精神;
C、培养学生正确的学习态度,让学生关注国内外科技发展的现状与趋势。
确定本节的重点是:1、洛伦兹力方向的判断
2、洛伦兹力大小的计算
难点是:洛伦兹力计算公式的推导
第二部分:教学资源:
1、教材资源:我使用的是普通高中课程标准实验教科书物理选修3—1第三章第五节《磁场对运动电荷的作用力》。本节课既是安培力知识的延续,又是为下一节《电荷在匀强磁场中的运动》的学习打基础,而且在以后的力学综合问题中经常会涉及到洛伦兹力与电场力等其它力的综合。在近两年的高考中都是以大题的形式出现,可见其重要性。
2、生活资源:电视机显像管、阴极射线管、感应圈、学生电源、蹄形磁铁,使学生领会物理与生活的联系。
3、网络资源:通过网络上的影像资料帮助学生开阔视野,理解新知识,使学生知道网络上不只是游戏、聊天……也有许多对我们自身发展有用的东西。
第三部分:学情分析:
(1)在知识上:学生已经对安培力有深刻的认识,知道其方向的判断和大小的计算,所以我采用比较的方式来突破洛伦兹力的方向判断这一重点。在推导出洛伦兹力大小的计算公式后再用比较的方式将公式推广。
(2)在能力上:学生对宏观与微观的联系的理解比较困难,学生逻辑思维能力相对较差,为攻克这一难点,我根据学生的实际情况为学生搭梯子,创设问题情境来解决。
为了达成本节的教学目标,突出重点,攻克难点,我采用如下的教法和学法
第四部分:教法和学法
从实际生活中的现象及所学的知识进行质疑→通过探究→来解疑,经历多次的比较,使知识得到理解;学生通过观察、分析、探究、讨论、归纳总结完成本节的学习任务。
这样设计符合新课改的学生为主体,教师为主导的精神,也符合学生的认知规律。
第五部分:教学过程
由于课堂教学是学生知识的获得,技能技巧的形成,智力、能力的发展以及情感态度与价值观养成的主要途径。为了达到预期的教学目标,我对整个教学过程进行了以下的设计:
(一)设置情境 引入新课(二)师生互动 探究新知
(三)联系实际 照应开课(四)课堂小结 板书设计
(五)课外探究 发散思维
(一)设置情境 引入新课
为了提高学生学习兴趣,我采用了两部分引课,首先播放极光的影像资料,(提出为什么从宇宙深处射来的带电粒子会在地球两极上引起极光呢?)然后,我展示生活中电视机的显像管(提出显像管中电子只是细细的一束,为什么能使整个屏幕发光?)指出解开这两个问题的钥匙就是磁场对运动电荷的作用力,这个力我们把它称之为洛伦兹力,引入本课。这样设计的原因之一是学生对宇宙的秘密比较向往,实际生活中的现象学生比较关注,容易把注意力从课下转到课上来,原因之二隐藏了问题的答案,为磁场对运动电荷有力的作用打下伏笔。原因之三是新课标提倡物理要与生活生产相联系,这和新课标的精神相吻合。
(二)师生互动 探究新知
新知识一:洛伦兹力的方向
为突出这一重点,使学生获得直观的感性认识,我演示阴极射线在磁场中偏转的实验,提醒学生注意实验中的v、B、偏转方向的关系,根据演示实验的结果引导学生探究用什么方法能直观判断洛伦兹力的方向?教师根据学生探究的实际情况进行点拨:只要将运动的电荷等效成电流,利用安培力的方向判断方法是可以判断出运动电荷受力方向的,到此学生结合教材就可以得到判断洛伦兹力的方向的左手定则。由于判断安培力的方向也是用左手定则,学生很容易提出质疑:那二者有何区别呢?由学生对比分析得出结论:即四指所代表的意义不同:安培力中四指代表电流的方向,而洛伦兹力中四指代表正电荷运动的方向或负电荷运动的反方向,与等效电流的方向相同。为巩固所学新知识,进行实战演练(一)(二),这样就进一步验证了实验的结果,会使学生对所得结论深信不疑。明确了二者的区别之后,引导学生进一步探究安培力与洛伦兹力的联系,通过导线中微观电荷运动情况判断其所受洛伦兹力的方向和整个导线所受安培力方向的关系就不难得出:安培力是洛伦兹力的宏观表现,二者是宏观与微观、合力与分力的关系,为洛伦兹力大小的推导做好充分准备。这部分的设计也是新课改要求充分发挥学生的主体作用和教师主导作用的很好体现。
新知识二:洛伦兹力的大小
这是本课的难点,我结合教材中的思考与讨论、根据学生的认识规律将复杂问题简单化,设置四个小问题让学生依次去探究:
导线的方向与磁场的方向垂直,即导线中电荷定向运动的方向与磁场的方向垂直。
设导线中每个带电粒子定向运动的速度都是v,单位体积的粒子数为n,1、算出在时间t内的通过截面的粒子数?
2、如果粒子的电荷量记为q,由此可以算出q与电流I的关系?
3、写出这段长为vt的导线所受的安培力F?
4、写出每个粒子所受的力即它的洛伦兹力?
这样就为生学生提供解决问题的逻辑线索,降低了解决问题的难度。
通过探究推导得出:F=qvB(B⊥v),学生在每个问题解决过程中,能够锻炼学生的逻辑推理能力,在推理过程中,渗透宏观世界与微观世界的联系,以及解决物理问题的一种思想:即通过设置一些中间量,最后将其消掉得出我们所需要的结论。
在得到结论F=qvB后,再由公式推出B=F/vq,通过与电场强度E=F/q的比较,我们可以更深刻的认识磁:它只与运动的电荷有关,表现为公式中反映运动的物理量v,使所学知识得到升华。
因v与B不一定都垂直,让学生根据安培力计算公式的推导去探究当B与v平行、一般情况下如何计算电荷所受的洛伦兹力?学生经过探究不难得出:B∥v时:F=0 一般情况下:F=qvBsinθ,在这里可以进一步说明电荷受洛伦兹力的条件是什么?(运动电荷 速度与磁场不平行),由于电场对电荷也有作用力,为了加强学生对电场和磁场的区分和理解,可以让学生去总结带电粒子在电场和磁场中受力有何不同?使学生的思维得到发散。为了更好的学习下一节课,引导学生探究洛伦兹力对带电粒子运动的速度有什么影响?洛伦兹力对带电粒子做功吗?引导学生由左手定则得到洛伦兹力与速度的方向始终是垂直的,和圆周运动的向心力的特点是一样,只能改变速度的方向,不能改变大小,对带电粒子不做功,这样也会使学生知道不能孤立的学习,要注意前后知识的联系。
(三)联系实际,照应开课
理论来自于实践,更要服务于实践,从而解决开课时提出的两个问题,关于极光让学生思考得出结论:是因为地球周围存在地磁场使带电粒子发生偏转,而电视机的显像管可以抛给学生,让学生阅读教材、结合思考与讨论了解其结构和原理,知道是显像管中偏转线圈产生的偏转磁场使电子束发生了偏转,使整个屏幕发光。在此还可以联想到前面电场中学习到的示波管的原理,让学生课后结合教材35页去比较二者的区别。这两部分是高考的热点和难点,这样可以使学生更好理解电荷在电场和磁场中运动情况,区分电偏转和磁偏转的原理。
(四)课堂小结,板书设计
让学生去总结本节课的主要内容。板书设计如下:
(五)课外探究,发散思维
让学生根据所本节所学的知识去探究生活和科技中还有哪些应用洛伦兹力的例子?课后进行交流。
这样设计可以增强学生学习的兴趣,开阔学生的视野,使学生的思维得到发散。
第六部分:设计体会
1、从学生的实际出发,来处理教材、选择教法、指导学法。
2、学生的潜力是无穷的,教师在进行教学设计的过程中要注意关键位置的引导,就能起到事半功倍的效果。
磁场对运动电荷的问题 第7篇
一.说教材分析
1.物理学体系中本章是经典电磁学理论的基本内容,而本节课是安培力的延续,又是后面学习带电体在磁场中运动的基础,反应磁场和运动电荷的相互作用,是学生后面了解现代科技回旋加速器,质谱仪,磁流体发电机等的基础,还是力、电、磁综合问题分析中重要的一部分。从新课程改革以来,几乎每年高考都有涉及洛仑兹力的计算大题,由此,足以说明其重要性。
2.教材结构:分三部分首先通过观察演示实验,讨论洛伦兹力的方向,这一部分是学生的一个实验探究活动。然后将安培力看作是大量运动电荷所受洛伦兹力的宏观表现,通过安培力公式导出洛伦兹力的公式,这一部分是学生的一个理论探究活动。最后,研究带电粒子在磁场中的运动,这一部分是学生的一个理论分析和实验验证的探究活动。
教材的这种安排,符合了新课程标准,起到了承上启下的作用,使物理学习能连续进行;符合学生的发展的要求;体现了教材重视课堂教学中的师生互动,学生自觉参与活动和学生合作探究的新课程教学理念。
二.说学情分析
1.知识与能力基础
学生已具备力学、电磁学相关知识,学习完磁场对通电导线作用即安培力。并且也熟悉一直以来物理学的“提出问题—猜想假设—实验验证”的科学探究方法。而且高二的学生已经有了一定的观察、分析、推理能力及空间想象能力,是学习洛仑兹力的能力基础
2.思维障碍
对微观粒子具体运动形态模糊不清,容易导致洛伦兹力大小学习过程产生困难。
三.说教学目标:
知识与技能:
1.通过实验,认识洛伦兹力,理解洛伦兹力跟安培力之间的关系。会判断洛伦兹力的方向。
2.了解洛仑兹力公式的推导,会计算洛伦兹力的大小。
3.会运用洛伦兹力对运动电荷不做功分析带电粒子垂直进入磁场中做匀速圆周运动,并能推导其半径和周期。
过程与方法:
1.观看“神奇的极光”幻灯片,复习安培力,从微观的角度分析猜想磁场对运动的电荷有洛仑兹力的作用。分析讨论形成洛伦兹力的概念。
2.通过观察阴极射线管中电子束在磁场中的偏转实验探究洛伦兹力的方向,总结归纳出左手定则,体验研究物理学的实验方法。
3.利用多媒体课件对比安培力和洛伦兹力,建立电流的微观模型,导出洛伦兹力公式,认识科学探究方法的多样性。
4.分析论证、实验验证,探究微观带电粒子垂直射入磁场中做匀速圆周运动及其规律。提高学生的分析探究能力。
情感态度与价值观:
1.由实验观察得知洛伦兹力的存在及洛伦兹力方向判定,培养实事求是的科学态度。
2.由建立模型推导得出洛伦兹力大小的公式,养成严密推理的科学作风。
3.由推理分析、实验验证微观带电粒子垂直射入磁场中做匀速圆周运动及其规律,提高学生的分析探究能力,树立科学思想。
教学目标依据:依据高中物理新课程标准。
重点、难点分析:
1.重点:⑴、安培力是洛伦兹力的宏观表现;
⑵、根据F洛、V、B三者的方向关系,会判断洛伦兹力方向;
⑶、会计算洛伦兹力大小。
重点依据:掌握了以上两点,才能全面深刻地认识洛伦兹力,是后面了解现代科技回旋加速器,质谱仪,磁流体发电机等的基础,是力、电、磁综合问题学习的基础。
2.难点:⑴、洛伦兹力公式的推导;
⑵、微观带电粒子垂直射入磁场中做匀速圆周运动及其规律。
难点依据:洛伦兹力探究学习过程中,学生从宏观到微观是难点,运用已有知识推理分析问题其能力要求较高。
四.说教法、学法
在教学中以实验探究方法为主,辅之讲授法、演示法、讨论法等多种教学方法,教学中注重启发学生的思维,培养学生间协作精神,加强师生间的双向活动。
五.说教学过程
探究一:洛仑兹力
1、新课引入(提出问题--猜想假设--实验观察)
推理:观赏了美丽、神奇的极光照片,从英国科学杂志《自然》2002粘4月11日刊登论文讲述了地磁场日益严重的弱化,导致一些人造卫星出现电子故障,引起科学界对这个问题的普遍关注。在领略奇妙物理现象的同时,引发对环境思考,体会地球的和谐与脆弱,激发保护环境意识。情景史料引入,引人入胜。
实验探究一:提出问题—猜想假设—实验验证
①当一段直导线垂直放置在磁场中时不受安培力的作用,当直导线垂直与磁场方向并且通上电流以后有最大安培力的作用,电流在磁场中受到安培力作用。
②电流是怎样形成?
③磁场对这些运动着的电荷是否也有作用力?
学生猜想:磁场对运动电荷有(无)作用力 验证:演示实验—射线管(激起求知欲好奇心)
现象:在没有外磁场时,电子束是沿直线前进的,若把射线管放在磁铁的磁场中,电子束运动的径迹发生了弯曲。
说明:运动电荷受到磁场的作用力-------洛伦兹力。介绍阴极射线管:
从阴极发射出来的电子,在阴阳两极间的高压作用下,使其加速,形成电子束,轰击到真空管中的惰性气体,使惰性气体发光,可以显示电子束的运动轨迹。
(1)实验现象:在没有外加磁场时,电子束沿直线运动;如果把射线管放在蹄形磁体的两极间,荧光屏上显示的电子束运动的径迹发生了弯曲。通过演示实验“阴极射线在磁场中的偏转”让学生确信洛伦兹力的存在,发现洛伦兹力的方向与磁场方向和电荷的运动方向都有关系,推断洛伦兹力的方向可以依照左手定则来判断。
实验结论:运动电荷确实受到了磁场力的作用。
(板书):
一、洛伦兹力——物理上把磁场对运动电荷的作用力叫做洛伦兹力。概念的强调有助于学生形成严谨 的科学态度
荷兰物理学家,他是电子论的创始人、相对论中洛伦兹变换的建立者,并因在原子物理中的重要贡献(塞曼效应)获得第二届(1902年)诺贝尔物理学奖。被爱因斯坦称为“我们时代最伟大,最高尚的人”。
探究二:洛仑兹力方向(提出问题--猜想假设--实验验证—总结练习)
提出问题:我们回顾一下电流形成和电流方向的规定;安培力方向的判定方法:左手定则。根据上面实验的一束电子流在磁场中的偏转情况,洛伦兹力又是安培力的微观表示,你能否分析得到一个判断洛仑兹力方向的方法呢? 猜想假设:磁场对电流的作用力实质上就是磁场对运动电荷作用力。也就是说洛伦兹力可能与电荷的运动方向、磁场方向有关。安培力的方向用左手定则来判断,洛伦兹力是否也可以采用同样方法。
实验验证:观察阴极射线的电子流在磁场中的运动,先判断电流的方向,用左手定则判断安培力的方向,推断得到电子的受力方向。由学生交流自己的判断方法。总结练习:今天同学们共同研究得出洛仑兹力方向使用左手可以判定,总结刚才左手判断的方法,就是左手定则,练习教材课后题。
通过练习提醒学生注意:电荷所受的洛伦兹力既垂直于磁场方向,又垂直于电荷运动方向。即垂直于磁场方向和电荷运动方向所决定的平面。若不垂直怎样,设疑引思考。
探究三:洛仑兹力大小(建立模型—小组讨论—得出结论)建立模型:以上的我们讨论了洛仑兹力的方向跟磁场方向和运动电荷的速度方向有关。那么洛仑兹力的大小与那些因素有关呢?
小组讨论:安培力是洛仑兹力的宏观表现,要确定洛仑兹力大小,首先要从微观角度上分析确定电流强度大小。
根据以前学习的知识,同学们回忆一下:在t秒内有多少个电荷通过导体某一截面?电流强度的微观表达式是什么?
电流微观表达式:I=nqvs(n:单位体积自由电荷数;q:每个自由电荷电荷量;v:电荷定向移动平均速率;s:导体横截面积。)载流导线所受安培力:F=BIL(B与I垂直)
F=(nqvs)BL=(nLs)qvB(nLs为这段导线含有的运动电荷数)得F洛=qvB(电荷q所受的洛伦兹力)得出结论:F洛=qvB(B⊥V时)F洛=0(B∥V时)
探究四:研究带电粒子在磁场中运动(引导学生用理论解决实际问题,培养实践能力。)电视显像管的工作原理
思考与讨论:
1.如何使电子束打在荧光屏A点和B点?
2.再由B逐渐向A点移动,磁场该怎样变化?(拓展思路)
研究性学习:
1、今天我们学习了带电粒子的运动方向垂直于磁场方向的情形,请同学们自己研究学习(1)B∥V,(2)B⊥V,(3)B与V成θ角,三种情形中洛仑兹力和带电粒子的运动规律。
2、在许多科学仪器和工业设备,例如质谱仪,粒子加速器,电子显微镜,磁镜装置,霍耳器件中,洛伦兹力都有广泛应用。
3、既然安培力是洛伦兹力的宏观表现,洛伦兹力对运动电荷不作功,何以安培力能对载
流导线做功呢?实际上洛伦兹力起了传递能量的作用,它的一部分阻碍电荷运动作负功,另一部分构成安培力对载流导线作正功,结果仍是由维持电流的电源提供了能量。
作业、(1)阅读教材信息浏览“地磁与极光”。
(2)并把P124 1—4做到作业本上。
六.说板书设计
3.5 磁场对运动电荷的作用力
一、洛伦兹力
定义:运动电荷在磁场中受到的力
二、洛伦兹力的方向
1.判定--左手定则
2.特点:B和V方向不一定垂直,F洛必垂直于B、V确定的平面。
三、洛伦兹力的大小
F洛=qvB(B⊥V时)
F洛=0(B∥V时)
F洛=qvBsinθ
(B与V有夹角θ)
四、洛伦兹力的应用
七.说教学效果
磁场对运动电荷的问题 第8篇
1 电场与磁场分析
1.1 电场
电场是电荷变化和磁场附近存在的特殊物质, 此种物质与通常意义的物质不同, 并非由分子、原子等粒子构成, 但可以通过很多现象和证据证明其存在。研究表明, 电场和一般物质在力、能量等方面表现出相同的性质。但两者也存在不同之处:进入电场中的电荷会受到电场的作用, 产生电场力。如果电荷在电场中发生位移, 则表明电场力对电荷做功。电场属于矢量场, 具体方向和正电荷受到作用力的方向一致。
1.2 磁场
能生成磁力的空间存在磁场, 也是特殊形态的物质。磁体附近存在磁场, 磁场是磁体彼此产生作用力的媒介。磁体之所以能产生磁性, 主要是在电流的作用下实现的。即磁场来源于运动电荷、变化磁场。磁场存在的基本特性就是对场内的运动电荷施加影响, 其对磁体和电流施加的作用力就是如此产生[1]。
2 电磁学体系下运动电荷电场与磁场存在的关系
2.1 研究历程
以前, 人们认为磁与电各自独立, 不存在关联。麦克斯韦研究出的电磁理论, 促使电场与磁场统一在一个理论体系之下, 从宏观角度解释了一切电场、磁场现象。更重要的是, 其也将光学理论纳入到这个理论体系之下, 对人们认识客观世界产生重要影响。电磁学和经典电动力学存在较为密切的关联, 在内容和原则上并不存在差别[2]。前者侧重研究电磁情况, 后者则更注重理论。在麦克斯韦发布《电磁论》之后, 由于理论过于艰涩, 且无法在当时的条件下得到实验的证明, 因而在较长一段时间内没有受到应有关注[3]。1885年, 赫兹在一次实验中发现, 将一束电流输入到线圈之后, 次级绕组的两侧就会产生电火花, 当时认为这属于电磁共振。于是在次年设计了一个感应器, 放置在直线振荡器周围, 利用电流造成间隙出现火花, 此种情况就是电磁波的产生与传递现象。随后, 赫兹通过一系列实验证明电场与磁场的真实存在, 从实证角度证明麦克斯韦理论的科学性, 至此, 麦克斯韦的电磁理论在世界范围内引起轰动。
2.2 电场与磁场的理论联系
两者都是矢量场, 均有大小与方向。但电场存在源场, 具体而言, 散度不是0, 磁场则没有源场, 散度是0。在电场中, 没有处于闭合状态的电场线, 属于无旋场。磁场中的磁场线则总是处于闭合状态, 存在旋场。对磁感应强度而言, 其与电场强度相比而言, 两者均是使用比值方式进行定义的物理量, 均能对场的强弱与方向进行表示。前者只有在将一段通电导线以90°放进磁场之中时才能顺利得到应用, 导线在磁场中没有受到磁力的影响, 并不代表没有强度。因为此种情况还可能是因为导线和磁场保持平行状态导致的。对同一个导线而言, 在匀强磁场中的不同方向时均会表现出不同的磁场力。电荷在没受到电磁力影响时, 电场强度为0, 一个电荷处于匀强电场时, 承受的电场力属于恒力。对磁感线而言, 其与电场线均是研究人员为了直观地研究两种场而假设存在的曲线, 在现实中并不存在, 但可在实验中借助技术手段对其进行模拟, 两种线的疏密程度都会对场的程度进行描述。但是两者存在明显的差别, 前者处于闭合状态, 后者则属于非闭合曲线。安培定律主要用于判定电流方向, 能实现对磁感线的判定。在此理论中, 电流是理论产生的源头, 引发后续结果的是磁感线。此理论中的电流包括直线和圆环两种形式。左手定律则是对电流、运动电荷在受到外部磁场影响时, 表现出的电流方向、磁场方向以及作用力方向的一种理论。安培力是一种磁场力, 洛伦兹力也具备此种性质, 导体中的全部电荷在受到洛伦兹力影响后直接对导体产生影响, 表现出的就是安培力, 安培力也就是洛伦兹力在宏观角度上的体现。两种力的方向均可利用左手定律进行判定, 在对安培力进行分析时, 4根手指顺着电流方向摆放, 对洛伦兹力进行判定时, 4根手指则顺着正电荷的前行方向摆放, 在能确定负电荷运动方向的情况下, 也可将4根手指顺着其反方向进行摆放。对洛伦兹力而言, 受到影响的对象是运动电荷, 并未对运动电荷发挥做功作用。安培力的影响对象则是出于通电状态的导体, 且能对导体做功。
2.3 电场与磁场的关系
为了研究便利, 此次研究以运动电荷对导体产生圆环运动为例, 分析产生于运动电荷的电场与磁场之间的根本联系。当点电荷以一定速度围绕圆环形的导体进行运动时, 在各种参考系下, 电场和磁场的强度均会有不同表现, 如果以圆环为惯性参考系, 这个参考系可以对电场产生感应, 也必然会感应到磁场。因为, 在电场运动时, 产生的电流能形成磁场。如果将点电荷所在的参考系作为惯性参考系, 圆环的运动方向则为左, 此参考系只能感应到静电场, 无法感应到磁场。由于麦克斯韦方程能在任何惯性下发挥作用。因此, 在圆形参考系下要符合高斯定理的要求。但此处需要注意, 处于此参考系下的电场在时间推移的情况下不断发生改变, 因此选定适当时机使用高斯定理, 通过一系列计算后发现, 圆环参考系虽然能对磁场产生感应, 但并未处于完全独立的状态, 这种情况和此参考系能感应到电场有关。因此, 不管是点电荷运动, 还是圆环运动, 具体表现存在差异均是由于参考系不同, 根据相对性原理, 可以判定以上研究的两种情况没有本质性的差异。可以判定点电荷必然没有感应到磁场, 圆环参考系则必定感应到磁场, 则可确定的磁场是否为0仅是在相对意义层面而言。进一步表明电场与磁场在本质上属于同一客体 (也就是电磁场) 处于两种参考系下表现出的两种不同形式的反应。此研究的例子能在电磁学的理论体系下从根本上揭示电场和磁场存在的联系, 也证实电磁场具有相对性。实际上, 电与磁能互相转化仅能说明两种方程能实现相互耦合, 并不能说明两者能统一于同一物质体系下。但是经过此次研究论证, 此种观点得到证实。
3 结语
电场与磁场的联系是人类历史上的重大发现, 彻底改变了电与磁彼此孤立的局面, 为很多重大发现和发明创造良好条件。经过实际验证发现, 电场与磁场实际上是电磁场在各自参考系下出现的两种反应, 深刻揭示了电场与磁场的关系。
参考文献
[1]秦哲, 胡艳敏.静电场和静磁场的对称性和不变性分析[J].教育教学论坛, 2015, 25 (48) :137-138.
[2]潘长宁, 何军, 周昕.“电磁场与电磁波”与“大学物理·电磁学”教学衔接问题的探讨[J].教育教学论坛, 2015, 16 (3) :159-160.
磁场对运动电荷的问题
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。