电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

变电站综合自动化系统探析

来源:盘古文库作者:开心麻花2025-10-051

变电站综合自动化系统探析(精选6篇)

变电站综合自动化系统探析 第1篇

变电站综合自动化系统浅析

1、引言

随着科学技术的不断发展,电力系统不可避免地进入了微机控制时代,变电站综合自动化系统取代传统的变电站二次系统,已成为当前电力系统发展的趋势。变电站综合自动化就是通过监控系统的局域网通信,将微机保护、微机自动装置、微机远动装置采集的信号,经过数据处理以及功能的重新组合,按照预定程序和要求,对变电站实现综合性的监视和调度。它的核心是自动监控系统,纽带是监控系统的局域网通信。

建峰化肥分公司一化装置301总变电站92年送电投入运行,运行最初几年现场设备的状态、报警由模拟盘集中报警,运行电流及相关参数需运行值班人员现场手动抄表记录,不能及时、快速的反应设备的运行状况和运行参数。2000年9月份301总变电站初步实施了微机监控系统改造,通过近10年的硬件改造和软件升级,目前监控系统具备遥测、遥信、保护监控以及UPS、直流电源装置的综合在线监控。二化装置的总变电站于2009年8月送电投入运行,建站之初已配套建立微机监控系统,以以太网方式对全站的设备实施在线监控控制和遥控操作。完善的综合自动化监控系统的投入为变电站的微机化管理、安全运行提供了可靠的保障,为电气值班、检修人员判断电气设备状态以及故障提供直观的依据,减少故障查找时间,提高事故处理效率具有重要的意义。

2、综合自动化系统基础知识

2.1 系统结构形式 2.1.1 分层分布式

1)分层式的结构,在分层分布式结构的变电站控制系统中,整个变电站的一、二次设备被划分为三层:过程层、间隔层、站控层。过程层主要指变电站内的一次设备,如线路、变压器、电容器、断路器、电流互感器、电压互感器等,它们是变电站综合自动化系统的监控对象;间隔层主要指各种智能电子装置,例如测控装置、保护装置等,它们利用电流电压互感器、变动器、继电器等设备获取过程层各设备的运行信息,如电流、电压、频率、温度等信息,从而实现对过程层进行监视、控制和保护,并于站控层进行信息的交换,完成对过程层设备的遥测、遥信、遥控、遥调等任务。站控层主要指计算机监控系统,它借助通信网络完成与间隔层之间的信息交换,从而实现对全变电站所有一次设备的当地监控功能以及间隔层设备的监控、变电站各种数据的管理及处理。

2)分布式的结构,间隔层的各种以微处理器为核心的智能电子设备,与站控层的计算机装置网络相连,构成分布式计算机系统——由多个分散的计算机经互联网络构成的统一计算机系统。间隔层各个智能电子设备与站控层的各计算机分别完成各自的任务,并且共同协调合作,完成对全变电站的监视、控制等。2.1.2 组屏及安装方式

这里所说的组屏及安装方式是指将间隔层各智能电子设备及站控层各计算机以及通信设备如何组屏和安装。一般情况下,在分层分布式变电站综合自动化系统中,站控层的各主要设备都布置在主控室内;间隔层的电能计量单元和一些公共单元也独立组屏安装在主控室里,间隔层的其他智能装置则根据需要安装在不同的地方,按间隔层中智能装置的安装位置,变电站综合自动化系统有以下三种不同的组屏及安装方

式:

1)集中式的组屏及安装方式

这种方式是将间隔层的各保护测控装置根据功能分别组装为变压器保护测控屏、线路保护测控屏等多个屏柜,把这些屏都集中安装在变电站的主控室内。2)分散与集中相结合的组屏及安装方式

这种方式是将配电线路的保护测控装置分散安装在所对应的开关柜上,而将高压线路的保护测控装置、变压器的保护测控装置均集中组屏安装在主控室内。3)全分散式组屏及安装方式

这种方式间隔层中所有间隔的保护测控装置,包括抵押配电线路、高压线路和变压器等间隔的保护测控装置均分散安装在开关柜上或距离一次设备较近的保护小间内,各装置只通过通信电缆与主控室内的变电站层设备之间交换信息。这种安装方式节省了大量的二次电缆,而且因为不需在主控室放置很多的保护屏,极大的简化了变电站面积。

目前变电站综合自动化系统的功能和结构都在不断地向前发展,全分散式的结构式是目前的发展方向,主要原因有:一方面分层分散式自动化系统的突出优点;另一方面,随着新设备、新技术的进展,使得原来只能集中组屏的高压线路保护装置和主变压器保护也可以考虑安装在高压场附近,并利用日益发展的光纤技术和局域网技术,将这些分散在各开关柜的保护和集成功能模块联系起来,构成一个全分散化的综合自动化系统。2.2 系统功能

变电站综合自动化的内容包括变电站电气量的采集和电气设备的状态监视、控制和调节,实现变电站正常运行的监视和操作,保证变电站的正常运行安全,当安全事故时,由继电保护等完成瞬间电气量的采集、监视和控制,并迅速切除故障,完成事故后的恢复操作,因此,它具有的基本功能应包括以下几个方面:

2.2.1 测量、监视、控制功能 2.2.2 继电保护功能

变电站综合自动化系统中的继电保护主要包括线路保护、电力变压器保护、母线保护、电容器保护等。微机保护是综合自动化的关键环节,它的功能和可靠性如何,在很大程度上影响了整个系统的性能。各类装置能存储多套保护定值,能远方修改整定值等。2.2.3 自动控制智能装置的功能

变电站综合自动化系统必须具有保证安全、可靠供电和提高电能质量的自动控制功能,一般有以下四个自动控制功能:电压、无功综合控制,低频减负荷控制,备用电源自投控制、小电流接地选线控制。2.2.4 远动及数据通信功能

2.2.5 自诊断、自恢复和自动切换功能

3、一化301总变电站综合自动化系统分析

一化总变电站在2000年9月份新增加了一套微机监控系统,在投用之初只能对现场电气低压电动机的运行状态以及部分电机电流进行时时监控。2008年301总变供电系统保护装置实施全面升级改造,采用施耐德sepam系列的微机保护装置后,才全面提升了301总变电站的微机化智能管理。下面针对一化总变 监

控系统进行分析。3.1 结构分析

301总变电站为90年代初设计的变电站,站内低压配电的电机保护仍采用LR2型热继电器保护,为了在保证这种老变电站的设备不做改造的基础上,能成功的引入微机自动化管理系统。它采用分层分布式的设计理念,将高压系统与低压系统独立两套监控系统,即将35KV、6KV设备及380V进线保护装置由一套监控系统进行时时监控,另一套监控系统作为380V低压负荷运行监控。同时均配有有源音箱实现音响报警,打印机进行变电站技术数据管理;软件方面采用PowerSCADA 3000电力监控系统,实现设备的事件记录查询、事故录波数据采集及分析、负荷管理及电量统计分析、运行报表管理等。3.2 组屏及安装方式

组屏及安装方式采用分散与集中相结合原则,低压设备监控信号采集至控制室遥信屏、遥测屏内。高压设备信号采集及35KV/6KV/380V保护信号由现场控制柜通过通讯电缆至控制室通讯管理机,通过RS-232端口与后台机实现在线监控。其中35KV、6KV、380V进线保护以及6KV高压电机保护均分散安装在现场控制开关柜上,通过通讯网络连接来完成保护、测量、控制功能的时时监测。3.3 功能特点

3.3.1 硬件设备方面,采用DSS-PRTU通信管理机及网络交换机(10/100Mbps)作为通信管理层主要设备。现场控制层设备由301区域微机保护装置,智能监控设备及其他具备智能通信功能的设备组成。AI量处理满足遥测处理误差<0.1%,报表遥测数据合格率>99.9%,完全满足301日报表要求。DI量处理满足DI正确率:100%,系统的SOE分辨率 <1ms,系统的数据扫描周期5s内。

3.3.2 软件系统方面,具有图形编辑软件、通讯管理软件、事件记录查询软件、故障录波数据采集及分析软件、负荷管理及电量统计分析软件、运行报表编辑及查询软件、各类变配电运行管理软件等功能。具备模拟量处理及限值监视功能,根据当前测量值的大小来判断是否越限,越限作为系统事件记录入事件库,以备查询并可以生成各种各样的统计报表。尤其在故障录波功能方面,在发生故障时保护测控装置能按设定条件启动故障录波,记录故障发生前、过程中、发生后的电压、电流波形数据,能自动上传自动化系统,并转存于系统主机硬盘,以便在主机上调用查看及打印。

3.3.3、其它方面,作为安全保护给系统管理员,301每一个值班小组分配一个用户名和口令,设置不同的管理权限。同时监控系统具有与GPS时钟对时的功能,可接受全球定位系统(GPS)的标准授时信号(IRIG-B)格式,误差小于1ms。

二化总变综合自动化系统探析

二化总变电站是厂总变电所,与单纯供配电功能的变电站,有所差别,比如无需与上级调度通信或远动,自成一独立的系统;无需增设低频减负荷装置、多出了很多电动机的微机保护等等。下面针对二化总变高中压监控系统进行探析。(具体结构参考附图)4.1 结构

它采用分层分布式设计。站控层的构成有后台监控系统、全站校时系统,后台监控系统在硬件方面有两台主机,互为备用。有源音箱实现音响报警,打印机进行变电站技术数据管理;软件方面为Farad200综合自动化系统以及相应网络附件,完成界面操作和使用。全站校时系统配置卫星时钟装置GPS,通过通信端口RS-485与通信服务器进行通信,进行网络层对时广播命令,保证全系统时钟统一。间隔层的各种微

机保护装置、自动控制装置通过以太网与站控层的设备进行通信。4.2 组屏及安装方式

组屏及安装方式采用分散与集中相结合的方式,110KV间隔部分有六屏构成,分别为两进线微机保护测控屏、两主变压器保护测控屏、母差保护屏和母联及PT保护测控屏,另加三通信屏,安装在主控室内。10KV间隔部分采用就地安装方式,10KV进线保护、母联保护以及电机微机保护等分散安装在10KV配电室相应的开关柜上,完成保护功能、测控功能、自动控制功能。4.3 功能

4.3.1 测量、监视、控制功能

在监控主机上能看到母线、电机等的电压、电流、有功及无功功率等参数,在运行过程中,监控系统对采集到的电压电流、频率、主变油温等量不断的进行越限监视,如有越限立即发出报警并记录和显示越限时间和越限值。操作人员可以通过计算机操作界面对断路器和隔离开关进行分、合闸操作,对变压器分接头位置进行调节控制。4.3.2 继电保护功能

110KV、10KV部分的进线保护、变压器保护、母联保护、电机保护都采用SEL产品,功能强大,具有可靠的保护性能。能在前台机、后台机和微机装置三部分对保护定值进行修改。4.3.3 自动控制功能

两台主变为有载调压变压器,能在监控系统上进行手动调压,设有无功补偿电容器,能进行局部的无功补偿调节;采用备用电源自控控制装置,在出现故障时自动装置能迅速将备用电源自动投入使用。结束语

建峰化肥分公司一化301总变和二化总变电站两套监控系统均采用分层分布式设计,符合当前变电站监控系统的主流技术。在先进技术不断发展的今天,变电站自动化系统以其系统化、标准化和面向未来的概念正逐步取代了繁琐而复杂的传统控制保护系统。

附图(二化变电站综合自动化系统网络及组屏图)

变电站综合自动化系统探析 第2篇

变电站综合自动化系统

第一章

变电站综合自动化技术基础 第一节

变电站综合自动化的基本概念

一、常规变电站状况

电力系统的环节:发、输、配、用 变电站的基本作用:配电 常规变电站的二次系统构成:

继电保护 就地监控 远动装置 录波装置 保护屏 控制屏 中央信号屏 录波屏

常规变电站的二次系统的缺点:

(1)安全性、可靠性不能满足现代电力系统高可靠性的要求。

(2)供电质量缺乏科学的保证。指标:U、F、谐波

(3)占地面积大,增加了征地投资。

(4)不适应电力系统快速计算和实时控制的要求。

(5)维护工作量大,设备可靠性差,不利于提高运行管理水平和自动化水平。

二、变电站综合自动化的基本概念

变电站综合自动化是将变电站的二次设备(包括测量仪表、信号系统、继电保护、自动装置和远动装置等)经过功能的组合和优化设计,利用先进的计算机技术、现代电子技术、通信技术和信号处理技术,实现对全变电站的主要设备和输、配电线路的自动监视、测量、自动控制和微机保护,以及与调度通信等综合性的自动化功能。

变电站综合自动化系统,即利用多台微型计算机和大规模集成电路组成的自动化系统,代替常规的测量和监视仪表,代替常规控制屏、中央信号系统和远动屏,用微机保护代替常规的继电保护屏,改变常规的继电保护装置不能与外界通信的缺陷。

三、变电站实现综合自动化的优越性

(1)提高供电质量,提高电压合格率。

(2)提高变电站的安全、可靠运行水平。

(3)提高电力系统的运行、管理水平。

(4)缩小变电站占地面积,降低造价,减少总投资。

(5)减少维护工作量,减少值班员劳动,实现减人增效。

第二节

变电站综合自动化的内容、主要功能及信息量

一、变电站综合自动化的内容 电气量的采集 电气设备(如断路器等)的状态监视、控制和调节。

由继电保护和故障录波等完成瞬态电气量的采集、监视和控制,并迅速切除故障和完成事故后的恢复正常操作。

高压电器设备本身的监视信息(如断路器、变压器和避雷器等的绝缘和状态监视等)。将变电站所采集的信息传送给调度中心外,还要送给运行方式科和检修中心,以便为电气设备的监视和制定检修计划提供原始数据。

二、变电站综合自动化的基本功能

监控子系统的功能

微机保护子系统的功能

自动控制装置的功能

远动及数据通信功能 2.1 监控子系统的功能(一)数据采集

(1)模拟量的采集

1)交流模拟量:U、I、P、Q、COS、F 2)直流模拟量: DC220V、DC5V、DC24V(2)开关量的采集(3)电能计量

1)电能脉冲计量法

2)软件计算方法

(二)事件顺序记录

包括断路器跳合闸记录、保护动作顺序记录

(三)故障记录、故障录波和测距

(1)故障录波与测距

微机保护装置兼作故障记录和测距 采用专用的微机故障录波器

(2)故障记录

记录继电保护动作前后与故障有关的电流量和母线电压

(四)操作控制功能

操作人员都可通过电脑屏幕界面对断路器和隔离开关进行分、合操作,对变压器分接开关位置进行调节控制,应保留人工直接跳、合闸手段,断路器操作应有闭锁功能

(五)安全监视功能

越限监视

监视保护装置是否失电 自控装置工作是否正常等

(六)人机联系功能

(1)人机联系桥梁:显示器、鼠标和键盘。

(2)显示画面的内容 :

1)显示采集和计算的实时运行参数

2)显示实时主接线图 3)事件顺序记录

4)越限报警

5)值班记录

6)历史趋势

7)保护定值和自控装置的设定值

(3)输入数据:变比、定值、密码等 ①定时打印报表和运行日志; ②开关操作记录打印; ③事件顺序记录打印; ④越限打印; ⑤召唤打印; ⑥抄屏打印; ⑦事故追忆打印。

①主变和输电线路有功和无功功率每天的最大值和最小值以及相应的时间; ②母线电压每天定时记录的最高值和最低值以及相应的时间; ③计算受配电电能平衡率; ④统计断路器动作次数;

⑤断路器切除故障电流和跳闸次数的累计数; ⑥控制操作和修改定值记录。

(1)谐波源分析(2)谐波检测与抑制(七)打印功能

(八)数据处理与记录功能

(九)谐波分析与监视

2.2 微机保护子系统的功能

(一)保护功能:

①高压输电线路的主保护和后备保护; ②主变压器的主保护和后备保护; ③无功补偿电容器组的保护; ④母线保护; ⑤配电线路的保护;

⑥不完全接地系统的单相接地选线。

(1)它的工作不受监控系统和其他子系统的影响(2)具有故障记录功能

(3)具有与统一时钟对时功能

(二)辅助功能:

(4)存储多种保护整定值

(5)当地显示与多处观察和授权修改保护整定值

(6)设置保护管理机或通信控制机,负责对各保护单元的管理。

(7)通信功能

(8)故障自诊断、自闭锁和自恢复功能。

2.3 自动控制装置的功能

(1)电压、无功综合控制

(2)低频减负荷控制(3)备用电源自投控制(4)小电流接地选线控制(1)系统内部的现场级间的通信(2)自动化系统与上级调度的通信

(1)功能综合化

(2)分级分布式、微机化的系统结构(3)测量显示数字化(5)运行管理智能化

(1)其结构形式有集中式、分布式、分散(层)分布式;

(2)从安装物理位置上来划分有集中组屏、分层组屏和分散在一次设备间隔设备上安2.4 远动及数据通信功能

第三节

变电站综合自动化的基本特征

(4)操作监视屏幕化

第四节

变电站综合自动化的结构形式

装等形式。

一、集中式综合自动化系统

集中式结构的综合自动化系统,指采用不同档次的计算机,扩展其外围接口电路,集中采集变电站的模拟量、开关量和数字量等信息,集中进行计算与处理,分别完成微机监控、微机保护和一些自动控制等功能

集中式结构最大的缺点是:

1)每台计算机的功能较集中,如果一台计算机出故障,影响面大 2)软件复杂,修改工作量大,系统调试麻烦。3)组态不灵活,影响了批量生产,不利于推广。

4)集中式保护与长期以来采用一对一的常规保护相比,不直观,不符合运行和维护人员的习惯,调试和维护不方便,程序设计麻烦,只适合于保护算法比较简单的情况。

二、分层(级)分布式系统集中组屏的综合自动化系统

(一)分层分布式结构的概念

所谓分层式结构,是将变电站信息的采集和控制分为管理层、站控层和间隔层三个级分层布置。

间隔层按一次设备组织,一般按断路器的间隔划分,具有测量、控制和继电保护部分。

站控层的主要功能就是作为数据集中处理和保护管理,担负着上传下达的重要任务。

管理层由一台或多台微机组成,这种微机操作简单方便,界面汉化,使运行值班人员极益掌握。

(二)中、小型变电站的分层分布式集中组屏结构

(三)大型变电站的分层分布式集中组屏结构

(四)分层分布式集中组屏综合自动化系统结构特点

(1)可靠性高,可扩展性和灵活性高;

(2)二次电缆大大简化,节约投资也简化维护量。

(3)分布式系统为多CPU工作方式,各装置都有一定数据处理能力,从而减轻了主(4)继电保护相对独立。

(5)具有与系统控制中心通信功能。(6)适合于老站改造。主要缺点是安装时需要的控制电缆相对较多,增加了电缆投资。控制机的负担。

三、分散分布式系统与集中相结合的综合自动化系统结构

分层分散式结构的变电站综合自动化系统突出的优点如下:

(1)简化变电站二次部分配置,缩小控制室的面积。

(2)减少了施工和设备安装工程量。

(3)简化了变电站二次设备之间的互连线,节省了大量连接电缆。

(4)分层分散式结构可靠性高,组态灵活,检修方便。

以上几点都说明采用分层分散式的结构可以降低总投资,在今后的技术条件下,应该是变电站综合自动化系统的发展方向。

第二章

变电站综合自动化系统的硬件原理

第三章

变电站综合自动化系统的微机保护、监视与控制子系统 第一节

继电保护基本知识

一、继电保护应满足的要求(1)选择性

(2)快速性

(3)灵敏性

(4)可靠性

二、主保护、后备保护和辅助保护

(1)主保护是指满足系统稳定及设备安全要求,有选择地切除被保护设备和全线路故障的保护。

(2)后备保护指的是主保护或断路器拒动时,用以切除故障的保护。(3)辅助保护是为补充主保护和后备保护的不足而增设的简单保护。

三、继电保护的基本原理

(1)反映电流改变的,有电流速断、定时过流及零序电流等保护;(2)反映电压改变的,有低电压(或过电压)、零序电压保护等;(3)既反映电流又反映电流与电压间相角改变的,有方向过电流保护;

(4)反映电压与电流的比值,即反映短路点到保护安装处阻抗(或距离)的,有距离保护;(5)反映输入电流和输出电流之差的,有变压器差动保护等。第二节

输电线路的微机保护、监视与控制子系统一、输电线路继电保护原理

1、电网相间短路的三段式电流保护

(1)无时限(瞬时)电流速断保护 此种保护的动作电流是按躲过被保护输电线路末端最大短路电流整定的,它没有时限元件。

(2)带时限(限时)电流速断保护 保护范围限定在相邻线路无时限电流速断保护的保护区内,在无时限电流速断保护的基础上增加了一个时限元件△t=0.5s。

(3)定时限过电流保护

定时限过电流保护的动作是按躲过最大负荷电流整定。

定义:方向继电器又称为功率继电器,它的动作具有方向性,即规定当功率由母线流

2、电网相间短路的方向电流保护

向线路时它才动作,进而使整个方向电流保护动作切除故障。

二、输电线路的自动重合闸

定义:自动重合闸装置就是将跳闸后的断路器自动重新投入的装置,简称AAR装置。

1、单电源供电线路的三相一次自动重合闸

(1)当线路发生瞬时性故障或由于其他原因使断路器误跳闸时

(2)线路上发生永久性故障时

(3)手动跳闸及遥控跳闸时

(4)闭锁重合闸

(5)手动合闸到故障线路时

2、双电源供电线路的三相一次自动重合闸

(1)故障点断电时间问题

(2)同步问题

(3)重合闸实现方式:

①检无压 ②检同期

3、自动重合闸与继电保护的配合(1)重合闸前加速保护

(2)重合闸后加速保护

三、自动按频率减负荷 运行规程规定:电力系统的运行频率偏差为±0.2Hz,系统频率不能长时间运行在49.5~49Hz以下,事故情况下,不能较长时间停留在47Hz以下,系统频率的瞬时值绝不能低于45Hz。

1、自动按频率减负荷的基本工作原理

2、自动按频率减负荷的实现方法

①采用专用的自动按频率减负荷装置

②把自动按频率减负荷的控制分散设在每回馈线保护装置中 ①时限闭锁方式

②低电压带时限闭锁

③低电流闭锁方式 ④滑差闭锁方式

3、对自动按频率减负荷装置闭锁方式的分析

第三节

电力变压器的微机保护、监视与控制子系统一、概述

1、保护内容

(1)主保护配置:

①比率制动式差动保护

②差动速断保护 ③本体重瓦斯、有载调压重瓦斯和压力释放 ①三段复合电压闭锁方向过电流保护 ②三段过负荷保护

③冷控失电,主变压器过温报警 ④二段式零序过电流保护

⑤一段两时限零序电流闭锁过电压保护 ⑥一段两时限间隙零序过电流保护

(2)后备保护配置:

2、配置方案

(1)双绕组变压器

后备保护可以配置一套,装于降压变压器的高压侧(或升压变压器的低压侧)

后备保护可以配置两套: 一套装于高压侧

另一套装于中压侧或低压侧的电源侧

(2)三绕组变压器

二、变压器差动保护基本原理

用环流法构成的两绕组变压器电流差动保护的原理接线图

三、变压器差动保护的特殊问题

(1)两侧电流互感器的形式不同

(2)两侧电流互感器的变比不同

(3)变压器各侧绕组接线方式不同

(4)变压器空载合闸时的励磁涌流

(5)在运行中改变变压器的变比

四、变压器微机保护的电流平衡

(1)微机变压器保护电流互感器接线原则

(2)电流平衡的调整系数

五、电力变压器比率制动差动保护(1)比率制动式差动保护的基本原理

定义:

① 比率制动式差动保护的原理简单地说就是保护的动作电流(差动电流定值)随外部② 比率就是指差动电流与制动电流之比。

③ 制动电流这样选取:在不平衡电流较大的外部故障时有制动作用,而在内部故障时短路电流按比率增大,即能保证外部不误动,又能保证内部短路有较高的灵敏度。

制动作用最小。

(2)和差式比率制动的差动保护原理

(3)变压器励磁涌流的判断及二次谐波制动系数

励磁涌流的特点:

二次谐波制动比定值=0.15(4)变压器的差动速断保护 定义:差动速断保护是差动电流过电流瞬时速动保护。差动速断的整定值按躲过最大不平衡电流和励磁涌流来整定,其整定值可取正常运行时负荷电流的5~6倍。

(5)电流互感器断线监视

六、电力变压器后备保护

(1)复合电压闭锁方向过流保护

① 复合电压闭锁过流保护为三段式: I段动作跳本侧分段断路器(或桥断路器)Ⅱ段动作跳本侧断路器 Ⅲ段跳三侧断路器 ② 复合电压启动判剧: ① 最大值可达额定电流的6~8倍

② 波形是非正弦的,含有很大的非周期分量,特性曲线几乎全部偏在时间轴的一边 ③ 包含以二次谐波为主的高次谐波 ④ 波形之间出现间断

⑤ 励磁涌流开始瞬间,衰减很快

励磁涌流的闭锁条件:将二次谐波分量算出,作为制动分量,与基波分量进行比

关 母线线电压小于本侧母线线电压的低电压定值 负序电压超过负序电压定值 或的关系 ③

方向:

如果作为变压器相邻元件的后备保护,则变压器指向母线为正方向 如果作为变压器本身的后备保护,则母线指向变压器的正向为正方向 I段用于发警告信号 II段用于启动风扇冷却器 III段用于闭锁有载调压 ①

中性点直接接地保护方式

由两段式经零序电压闭锁的零序电流构成,每段设一个时限。I段时限跳母联(或分段)②

中性点不接地的零序保护方式

装设I段两时限的零序无流闭锁零序过电压保护,第一时限跳母联或分段开关,第二时③

中性点经放电间隙接地的零序保护方式(2)变压器过负荷保护

(3)变压器零序保护

断路器或跳三绕组变压器中压侧有源线路;II段时限跳本侧(或全跳)断路器

限跳本变压器各侧

I段两时限方式,第一时限跳高压侧母联开关(或分段开关),第二时限跳本变各侧开第四节

电力电容器的微机保护、监视与控制子系统一、电力电容器的内部和外部故障

(1)电容器内部故障的原因

(2)电容器的外部故障及系统异常

(3)电容器保护配置:

过电压和欠电压的电压保护 限时过电流保护

防止电容器内部故障的电容器组专用保护(1)与电容器串联的电抗器

(2)避雷器的过电压保护

(3)电容器组的电压保护。主要用于防止系统稳态过电压和欠电压。(4)电容器组的电流保护

二、并联补偿电容器组的通用保护

三、电容器组内部故障的专用保护

(1)单Y形接线的电容器组保护:

① 采用零序电压保护 ② 桥式差流的保护方式 ③ 电压差动保护方式

(2)双Y形接线的电容器组保护:采用不平衡电流或电压保护(3)三角形接线的电容器组保护:采用零序电流保护

第五节

电压、无功综合控制子系统一、变电站电压、无功综合控制的原理

在变电站主要的调压手段是调节有载调压变压器分接头位置和控制无功补偿电容器。有载调压变压器可以在带负荷的情况下切换分接头位置,从而改变变压器的变比,起控制无功补偿电容器的投切,可改变网络中无功功率的分布,改善功率因数,减少网

到调整电压和降低损耗的作用。损和电压损耗,改善用户的电压质量。

二、电力系统的电压、无功综合控制的方式

(1)集中控制:指在调度中心对各个变电站的主变压器的分接头位置和无功补偿设备进行统一的控制。

(2)分散控制:指在各个变电站或发电厂中,自动调节有载调压变压器的分接头位置或其他调压设备,以控制地区的电压和无功功率在规定的范围内。

(3)关联分散控制:指电力系统正常运行时,由分散安装在各厂、站的分散控制装置或控制软件进行自动调控,调控范围和定值是从整个系统的安全、稳定和经济运行出发,事先由电压、无功优化程序计算好的,而在系统负荷变化较大或紧急情况或系统运行方式发生大的变动时,可由调度中心直接操作控制,或由调度中心修改下属变电站所应维持的母线电压和无功功率的定值,以满足系统运行方式变化后新的要求。

(4)关联分散控制的实现方法 一是通过监控系统的软件模块实现;另一种是由独立的关联分散控制装置实现。第六节 变电站综合自动化系统的其他子系统一、备用电源自动投入装置 定义:备用电源自投装置是因电力系统故障或其他原因使工作电源被断开后,能迅速将备用电源或备用设备或其他正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电的一种自动控制装置。

(1)备用电源的配置

① 明备用的控制

② 暗备用的控制

①工作电源确实断开后,备用电源才投入。

②备用电源自动投入切除工作电源断路器必须经延时。

③手动跳开工作电源时,备自投投入装置不应动作。

④应具有闭锁备自投装置的功能。

⑤备用电源不满足有压条件,备自投装置不应动作。

⑥工作母线失压时还必须检查工作电源无流,才能启动备自投投入。

(2)微机型的备用电源自投装置的基本特点 ⑦备自投装置只允许动作一次。

二、小电流接地系统单相接地故障的检测

(1)概述

根据系统中发生单相接地故障时接地电流的大小划分:

小电流接地系统:

中性点不接地 中性点经消弧线圈接地

② 大电流接地系统:中性点直接接地(2)小电流接地系统的接地电流 第六节 变电站综合自动化系统的其他子系统

①中性点不接地系统单相接地故障时的接地电流

特征:当电网发生单相接地故障后,非故障电路电容电流就是该线路的零序电流,故障线路首段的零序电流数值上等于系统非故障线路全部电容电流的总和,其方向为线路指向母线,与非故障线路中零序电流的方向相反,系统中性点电压发生较大的位移。

实现方法:基于基波零序电流方向的自动接地选线原理

②中性点经消弧线圈接地系统单相接地故障时的接地电流

特征:在单相接地时,故障线路首端的5次谐波电流在数值上等于系统非故障线路5实现方法:基于5次谐波零序电流方向的自动接地选线原理 次谐波电流的总和,其方向与非故障线路肿次谐波零序电流方向相反,由线路指向母线。第五章

数字化变电站简介

变电站自动化技术经过十多年的发展已经达到一定的水平,在我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,从而大大提高了电网建设的现代化水平,增强了输配电和电网调度的可能性,降低了变电站建设的总造价,这已经成为不争的事实。然而,技术的发展是没有止境的,随着智能化开关、光电式电流电压互感器、一次运行设备在线状态检测、变电站运行操作培训仿真等技术日趋成熟,以及计算机高速网络在实时系统中的开发应用,势必对已有的变电站自动化技术产生深刻的影响,全数字化的变电站自动化系统即将出现 数字化变电站自动化系统的特点

1.1智能化的一次设备

一次设备被检测的信号回路和被控制的操作驱动回路采用微处理器和光电技术设计,简化了常规机电式继电器及控制回路的结构,数字程控器及数字公共信号网络取代传统的导线连接。换言之,变电站二次回路中常规的继电器及其逻辑回路被可编程序代替,常规的强电模拟信号和控制电缆被光电数字和光纤代替。

1.2网络化的二次设备

变电站内常规的二次设备,如继电保护装置、防误闭锁装置、测量控制装置、远动装置、故障录波装置、电压无功控制、同期操作装置等全部基于标准化、模块化的微处理机设计制造,设备之间的连接全部采用高速的网络通信,二次设备不再出现常规功能装置重复的I/O现场接口,通过网络真正实现数据共享、资源其享,常规的功能装置在这里变成了逻辑的功能模块。

1.3自动化的运行管理系统

变电站运行管理自动化系统应包括电力生产运行数据、状态记录统计无纸化;数据信息分层、分流交换自动化;变电站运行发生故障时能即时提供故障分析报告,指出故障原因,提出故障处理意见;系统能自动发出变电站设备检修报告,即常规的变电站设备“定期检修”改变为“状态检修”。数字化变电站自动化系统的结构

2.1 过程层

过程层是一次设备与二次设备的结合面,或者说过程层是指智能化电气设备的智能化部分。过程层的主要功能分三类:(1)电力运行实时的电气量检测;(2)运行设备的状态参数检测;(3)操作控制执行与驱动。

2.2 间隔层

间隔层设备的主要功能是:(1)汇总本间隔过程层实时数据信息;(2)实施对一次设备保护控制功能;(3)实施本间隔操作闭锁功能;(4)实施操作同期及其他控制功能;

(5)对数据采集、统计运算及控制命令的发出具有优先级别的控制;

(6)承上启下的通信功能,即同时高速完成与过程层及站控层的网络通信功能。2 数字化变电站自动化系统的结构 2.3 站控层

站控层的主要任务是:

(1)通过两级高速网络汇总全站的实时数据信息,不断刷新实时数据库,按时登录历史数据库;

(2)按既定规约将有关数据信息送向调度或控制中心;

(3)接收调度或控制中心有关控制命令并转间隔层、过程层执行;(4)具有在线可编程的全站操作闭锁控制功能;

(5)具有(或备有)站内当地监控,人机联系功能,如显示、操作、打印、报警,甚至图像,声音等多媒体功能;

变电站综合自动化系统探析 第3篇

1 综合自动化系统特点

变电站综合自动化系统可以提高变电站的可靠性, 确保设备稳定、安全的运行, 减少日常的维修次数, 降低工作人员的工作强度。综合自动化系统的主要特点是不断电进行系统维护和系统的模块化设计, 它延长了设备带电运行的工作时间, 并在监控对象中使用网络化的通信方式确保数据传送的可靠性和及时性。利用电脑进行自动化的数据处理工作, 可以提高工作效率, 获得较为全面的数据, 进而为系统的维护和分析提供可靠的数据。另外, 一般故障的自我修复和自我诊断提升了设备运行的稳定性和可靠性, 再加上多规约功能, 大大提升了系统的通用性, 即使是不同企业的设备, 都可以在综合自动化系统下正常运行。

2 变电站综合自动化技术存在的问题

2.1 接口问题

在变电站综合自动化系统应用的过程中, 接口问题长期存在, 要想完全解决它存在较大的困难。这主要是因为厂家不同, 生产出的设备接口尺寸和类型也不相同, 这就给变电站工作的开展带来了一些困难。在变电站综合自动化系统中, 抗干扰问题是不能被忽视的。但是, 在综合自动化系统中, 人们常常会忽略电磁兼容的相关问题。这主要是因为传统的变电站综合自动化系统的抗干扰试验采取的措施比较原始, 缺少定量指标。

2.2 保护和监控系统中没有故障滤波装置

由相关资料可知, 在部分变电站的监控和保户系统中, 并没有故障滤波装置。在应用变电站综合自动化系统的过程中, 故障滤波装置已经成为了变电站的一个必要装备。当变电站的配出线出现故障, 引发电闸跳闸问题时, 故障滤波装置会发挥出其作用——当发生跳闸故障时, 故障前后 (10±2) s发生故障时, 瞬时形成的电流值和故障周围的电波内电力的变化情况便于分析故障原因。目前, 在变电站的综合自动化系统中, 滤波装置的应用并不普遍, 因此, 也就无法实时监控系统。

3 综合自动化系统的应用方向

3.1 系统结构的转变

变电站综合自动化系统的结构由之前的功能分散、集中控制转变为分散性网络的发展模式。传统系统结构的设计思想是功能分散, 发展趋势是多个电气单元和间隔单元由一个功能模块管理, 转变为一个电气单元、地理位置和间隔单元由一个模块管理。这种高度分散的发展趋势减少了自动化系统故障对电网造成的影响, 使自动化设备具备更高的适应性和独立性。监控系统的结构在使用了光感互感器后发生了变化——其使用光纤进行信号传递, 没有铁心, 因此, 也不会出现铁磁谐振和磁饱和的问题, 具有比较强的抗电磁干扰能力, 频率响应范围宽, 容量比较大。微机保护单元和测量单元可以共用互感器, 简化了二次设备, 这样就可以将保护单元和测量单元加以融合, 进而实现了一个电气单元和间隔单元由一个模块管理的想法, 并提供了技术支持, 帮助变电站综合自动化系统结构顺利实现分散式控制。

3.2 保护测控系统的作用

变电站综合自动化系统的主要组成部分是济源市保护测控系统, 其主要是负责收集、处理变电站内部的数据, 合理控制开关和断路器等设备。变电站综合自动化系统的间隔层是用来保护测控系统的。保护测控系统可以采集、处理和分析变电站的相关信息。保护测控功能中包括保护和测控2个功能, 它们既可以融合工作, 又相对独立。变电站综合自动化系统运用保护测控系统后, 可以大大减少二次接线, 既节省资金, 又提升了变电站综合自动化系统的可靠性。

3.3 蓝牙技术的发展应用

蓝牙技术具有成本低、微型化、功率小和与现代化的发展相适应的优势。它是一种开放性的语音通信和无线数据的全球规范, 其基础是以成本低的近距离无线连接, 然后为移动和固定设备的通信环境建立起一个短程的、特别连接的无线电技术, 从而解决了以太网在变电站综合自动化中难以布局的问题。虽然蓝牙技术目前还处于起步阶段, 是一项发展中的技术, 但是, 其标准获得了统一, 并且具有较为明显的共享知识产权的优势, 具有较好的发展前景。因此, 相信在不久的将来, 在变电站的设备之间使用无线通信方式是可以实现的。

4 结束语

综上所述, 变电站综合自动化系统受到了计算机网络技术的推动迅速发展, 而变电站自动化发展的新方向就是变电站内部综合自动化系统的应用。该系统的不断健全为其日后的应用奠定了坚实的基础, 能够实现电网系统的智能化、现代化和自动化, 而且还能在一定程度上提升变电站的控制质量和水平, 从而带动我国经济社会的稳定、健康发展。

参考文献

[1]李伟军.提高变电站微机综合自动化系统硬件可靠性的技术措施[J].水电站机电技术, 2014 (01) .

[2]黄亮浩.基于IEC61850的智能变电站综合自动化系统研究[J].中小企业管理与科技 (下旬刊) , 2011 (10) .

变电站综合自动化系统探析 第4篇

关键词:变电站;自动化;技术

当代计算机技术、通讯技术等先进技术手段的应用,随着电网运行水平的提高,为了提高变电站的可控性,各级调度中心要掌握电网及变电站的运行情况,采用远方集中控制操作、反事故措施等,以提高劳动生产率,减少人为误操作的可能,提高运行的可靠性。

1综合自动化系统

1.1设计指导思想。在微机化以前,传统的变电站是面向功能的设计,将变电站分为继电保护、监控、故障录波、电能计费、通信、远动等不同种类的功能,分别设计自己的系统,几部分实现原理和技术也各不相同。随着集成电路和微机技术的发展,在应用中变电站的两项系统,一次系统主要完成电能的传输、分配和电压变换工作;二次系统则是完成对一次设备及其流经电能的测量、监视和故障的告警、控制、保护以及开关闭锁、厂站远动系统等工作。在应用中虽然微机型装置尽管功能不同,硬件结构大同小异,除微机系统自身外,对各种模拟量的数据采集回路和I/O回路组成,所采集的量和所控制的对象显得设备重复、互联复杂。为了从全局出发来考虑全微机化的变电站二次部分的优化设计,尽量使各二次回路部分硬件资源共享、信息共享,从而产生了变电站综合自动化。

1.2變电站综合自动化。随着科学技术的进步,变电站综合自动化系统是一种综合性的自动化系统,主要是应用计算机、现代电子、通信以及信息处理等各项技术,通过重新组合其功能,优化其应用功能,最终实现监视、测量、控制和协调变电站全部设备的运行情况。在应用中为了提高应用性能,变电站综合自动化简化了变电站的二次接线,从而有效的提高了变电站安全稳定运行水平与经济效益,降低变电站的运行维护成本。

1.3变电综合自动化系统的优势。变电站综合自动化以计算机技术为核心,通过应用变电综合自动化系统简化了二次接线,设备可靠性增加,强化设备监视和自诊断,延长了设备检修周期,有效的促进了整体布局紧凑,减少了占地面积,降低变电站建设投资,减少了人的干预,使人为事故大大减少,减少了供电故障。采用新的保护技术和控制方式,可以看到各电压等级的变电站,通过应用现代计算机和通讯技术,实现无人值班或减员增效,实现综合自动化,可以全面提高变电站的监控技术和运行管理水平,促进各专业在介绍上的协调。

2变电站自动化系统

2.1变电站自动化系统的分层组成。间隔层是现场运行的数据采集设备,保护和控制装置。如继电保护及自动控制装置,测控装置、站内直流电源管理设备、多功能电表等等。它们是和一次设备联系最紧密的设备,实际的数据采集,设备控制都是由它们来完成。间隔层和站控层的数据需要通过一些通讯电缆/光缆进行传输,中间还得有一些通信设备,比如通信管理机、交换机、接口设备、网络传输介质等等,用来负责数据的分发和传输,以及原始数据的存储等等。目前,变电站监控系统主要采用串行数据总线、现场总线和以太网等。 站控层包括站内监控后台,操作员站、工程师站、远动服务器等设备。在这一层要对采集上来的数据进行处理,以便显示在终端监控屏幕上。一些变电站遥控指令也可以从这一层发出去,通过网络层最后送到间隔层去执行。

2.2变电站综合自动化系统的主要功能。操作命令的优先级为:就地控制、站控层控制、远方控制。控制电气间隔的断路器、电动隔离开关的分合闸操作,计算机监控系统采集的实时数据根据运行工况实时变化而不断的更新,记录被监控设备的当前状态。按电气间隔的分布配置和集中配置综合测试端,完成开关量、模拟量、脉冲量等信息的采集和处理并能将处理后的信息上传。控制操作与“五防”工作站的接口,所有操作控制均经“五防”工作站防误闭锁逻辑的判断,若发现错误,闭锁该操作并报警。历史数据库对于需要长期保存的重要数据将存放在历史数据库中,如事件顺序记录及事故历史记录、报警历史记录,以及保护定值记录等。远动机与各间隔之间的通信功能,变电站与上级调度之间的通信功能。利用远动装置,从网络层采集间隔层和通信规约转换接口的数据,处理后,按照调度端的远动通信规约,实现变电站数据与调度自动化主站的数据交换。

3 对变电站综合自动化系统的维护

3.1日常管理与维护。变电站的维护工作分成日常维护管理与事故异常处理两种情况,日常管理主要是对遥控调试的准确度进行定期核对,定时维护通信网络,在管理中坚持每半年对变电站的数据进行一次备份。在变电站常态运行时,对电气设备进行数据记录、操作监控、数据验收等维护工作,各个工作人员都必须熟悉变电站综合自动化系统中的监控、调试的操作步骤,对变电站内的各个运行电气参数,如电压、电流、功率流向、事故信号等日常监控熟练,明晰工作内容以及严格规定其工作职责;事故异常处理则是在变电站出现了非正常工作状态时,为应对相应的事故状态而进行的一系列工作。

3.2系统维护。变电站综合自动化系统凭借着功能强大、高自动化水平、占地面积小、运行与维护工作简便的系统特点,在应用中可以实现无人值班远程控制等工作模式。变电站中使用的自动化技术是一种新的产物,是一个弱电系统,受环境电磁干扰现象非常严重,在运行与维护中要充分考虑到电磁干扰带来的可靠性问题。目前在实际应用过程中变电站工作的一些运行人员和技术人员,对变电站综合自动化系统的技术还不是很熟练,在操作应用过程中变电站的可靠性和安全性仍然还存在一些隐患。

4结束语

综上所述,随着中国国民经济持续快速发展,变电系统重要作用日益增加,各行各业对电力质量的要求越来越高,电力系统中各种智能技术的应用日益普遍,可以得知变电站综合自动化系统可以说是电力行业专业综合技术应用改革的一次革命,在今后的一个时期,使得变电站自动化管理和无人值守已是一种必然趋势和必然选择。

参考文献

[1]杨奇逊,变电站综合自动化技术发展趋势.电力系统自动化,2013.

[2]王海猷,变电站综合自动化监控主站的系统资源平衡.电网技术,2012.

[3]河南电力技师学院,电力行业高技能人才培训系列教材.变电站值班员,2013.

变电站综合自动化培训系统 第5篇

摘要:变电站综合自动化培训系统,模拟了真实的综合自动化变电站的工作环境,可进行变电站综合自动化系统和微机保护装置的安装调试及运行维护方面的培训。

关键词:一次系统物理模型 变电站综合自动化培训系统

引言

变电站综合自动化技术已经普及,它是将变电站的二次设备(测量仪表、信号系统、继电保护、自动装置和远动装置等)经过功能的组合和优化设计,利用先进的计算机控制技术、现代电子技术、通信技术和信号处理技术,实现对变电站的主要设备和输、配电线路的自动监视、测量、控制、微机保护以及与调度通信等综合性的自动化功能。

由于变电站综合自动化系统和微机保护装置,替代了传统变电站中的控制台和继电保护装置。为进行变电站综合自动化系统和微机保护装置的安装调试与运行维护及二次回路接线等方面的专业知识、相关技能的培训,研究开发一套“变电站综合自动化培训系统”显得尤为重要。

一、变电站综合自动化培训系统的设计方案

一次系统由物理模型构建了一个典型的220kV变电站,一次系统的每一个设备都有相应的物理模型,提供了变电站综合自动化系统所需的电气量和开关量、操作控制的开关设备。

可模拟变电站正常运行,由监控系统进行监视、测量、控制。

一次系统物理模型可模拟变电站线路、母线、变压器的各种故障,与微机保护配合,可进行保护动作分析和故障录波。

一次系统物理模型正常运行加三相380V电压,分为8个实验台。每个实验台有相应的一次系统图,按照培训内容可以分成5个独立小系统。

1.变电站一次系统物理模型构成

模拟220kV实验系统:此系统由三个实验台联合构成,包括220kV线路A实验台和220kV线路B实验台、220kV双母线实验台。220kV线路设置分相操作的断路器,实现微机保护的综合重合闸功能。

⑴220kV线路、母线实验台

220kV两条线路(每条线路分别由3组电抗器模拟)分别在线路首端和末端处各设置一个故障点,可模拟各种类型、瞬时或永久性故障,与保护的综合重合闸配合可实现单跳单重、三跳三重。线路A按照高频通信的微机保护RCS902配置模拟元件、线路B按照光纤通讯的微机保护CSC103B配置模拟元件。

220kV双母线实验台,可分别在两条母线设置相间和接地故障,可以为母差保护提供实验条件。⑵110kV实验系统

此系统由110kV线路A实验台,110kV线路B实验台联合构成。

110kV两段母线,每段母线有两条串联型出线,两条出线共设4个短路点,均可设置各种类型故障,可以提供两条线路阶段式保护的动作条件和备用电源自动投入装置的实验需求。两个实验台均装设绝缘监察继电器,可以模拟系统有接地故障时的状况,并能发出接地预告信号。

⑶变压器实验系统

本实验系统用一个实验台。模拟主变压器由三台单相三卷变压器组成,接线方式为YN,yn。变压器绕组内、外可设短路点,模拟各种类型故障。

一次系统图绘制在实验台前面板上。操作把手装在系统图的相应位置上。系统的故障点有明显的标识,由开关设置模拟系统各种类型的故障,并以闪光信号形象地显示出短路点和短路类型。变压器实验系统的功能有:变压器接地故障、匝间短路、相间短路实验。

一次系统图绘制在实验台前面板上。断路器的控制开关装在系统图的相应位置上。系统的故障点有明显的标识,由开关设置模拟系统各种类型的故障,并以闪光信号形象地显示出短路点和短路类型。

2.模拟断路器和隔离开关

220kV线路保护有综合重合闸功能,220kV线路设置分相操作断路器。其他位置设置三相操作的断路器及隔离开关。

断路器可以在本实验台操作,也可以由保护测控装置或综自系统遥控操作。实验台上设有操作切换开关。系统中有表示断路器、隔离开关位置的红绿灯。分相操作的断路器分相设置。

就地操作时,实验台上设有与实际系统具有相同功能的控制开关,可以独立实验跳合闸功能。操作时配有红光、绿光、闪光、平光灯光信号。实验台所用的控制开关与现场完全一样,具有预跳、跳闸、跳后、预合、合闸、合后几个位置。

实验台上设有保护装置所需要的断路器压力异常接点,压力异常时能够闭锁相关操作。能够与保护的操作箱配合,保证跳闸、合闸电流的一致。实现自动合闸、跳闸。断路器的主触头容量满足短路电流要求。

表示断路器、隔离开关位置的辅助触点,送到系统模拟屏和(测控装置)监控工作站上,提供所需的开关量。

综合自动化的监控系统图、马赛克模拟系统图与实际开关设备的状态保持一致。3.二次系统的配置

该培训系统配置了广泛应用的变电站综合自动化监控系统、测控装置、继保工程师站、远动工作站、CSC系列和RCS系列微机保护装置等。

220kV线路、母线、变压器配置相应的微机保护装置和故障录波装置。

110母线分段断路器装设微机备自投装置,负荷出线装设微机线路保护、测控、低周减载、自动重合闸一体的保护装置。

二、培训系统的主要功能

一次系统的物理模型,与变电站综合自动化监控系统、远动工作站、微机保护装置共同构建一个变电站综合自动化系统的实际工作环境。

该系统具有以下培训功能:

⑴变电站综合自动化系统安装调试及运行维护;

⑵微机线路、母线、变压器保护装置的安装调试及运行维护;

⑶微机备用电源自动投入装置、微机故障录波装置、测控装置的安装调试及运行维护; ⑷变电站二次回路接线及检查。

三、结论

变电站综合自动化系统的研究 第6篇

学生姓名:郑艳钊

课程名称:变电站综合自动化 所在院系:电气与信息学院 所学专业:电气工程及其自动化 所在班级:电气1404 学 号:A19140098

东北农业大学 2016年11月

摘 要

本次毕业论文通过对变电站自动化的概念和发展趋势,以及变电站综合自动化系统研究的意义和国内外现在发展的状况的论述,探讨了变电站综合自动化系统的功能,结构,保护配置,并且进一步讨论了微机保护硬件的结构和特点。通过对变电站综合自动化系统通信方面的研究,介绍了当前各种总线方式和最新的通信技术,将各种通信方式进行了详细的说明,并将他们的优缺点进行了详细的分析,比较了各种方式的性价比。并且对此前景进行了简介。最后将变电站综合自动化系统的继电保护和综自设备的设置进行了详细的介绍。

变电站是电力系统中不可缺少的重要环节,它担负着电能转换和电能重新分配的繁重任务,对电网的安全和经济运行起着举足轻重的作用。为了提高变电站安全稳定运行水平,降低运行维护成本,提高经济效益,向用户提供高质量电能服务,变电站综合自动化技术开始兴起并得到广泛应用。

变电站综合自动化是将变电站的二次设备应用计算机技术和现代通信技术,经过功能组合和优化设计,对变电站实施自动监视、测量、控制和协调,以及与调度通信等综合性的自动化系统。实现变电站综合自动化,可提高电网的安全、经济运行水平,减少基建投资,并为推广变电站无人值班提供了手段。计算机技术、信息技术和网络技术的迅速发展,带动了变电站综合自动化技术的进步。近年来,随着数字化电气量测系统、智能电气设备以及相关通信技术的发展,变电站综合自动化系统正朝着数字化方向迈进。

关键词:变电站综合自动化,微机保护,继电保护,系统配置,实时数据

一、变电站综合自动化系统的基本功能体现在下变电站综合自动化系统的主要功能 述6个子系统的功能中: 1监控子系统;2继电保护子系统;3电压、无功综合控制子系统;4电力系统的低频减负荷控制子系统;5备用电源自投控制子系统;6通信子系统。

二、传统变电站自动化系统 1.系统结构

目前国内外变电站综合自动化系统的结构,从设计思想分类有以下三种: 集中式

采用不同档次的计算机,扩展其外围接口电路,集中采集变电站的模拟量、开关量和数字量等信息,集中进行处理运算,分别完成微机监控、微机保护和一些自动控制等功能。其特点是:对计算机性能要求较高,可扩性、可维护性差,适用于中、小型变电站。

分布式

按变电站被监控对象或系统功能划分,多个CPU并行工作,各CPU之间采用网络技术或串行方式实现数据通信。分布式系统扩展和维护方便,局部故障不影响其他模块正常运行。该模式在安装上可以集中组屏或分屏组屏。

分散分布式

间隔层中各数据采集、控制单元和保护单元就地分散安装在开关柜上或其他设备附近,各个单元之间相互独立,仅通过通信网互联,并同变电站级测控主单元通信。能在间隔层完成的功能不依赖于通信网,如保护功能。通信网通常是光纤或双绞线,最大限度地压缩 二次设备和二次电缆,节省了工程建设投资。安装既可以分散安装于各间隔,也可以在控制室中集中组屏或分层组屏,还可以一部分在控制室中,另一部分分散在开关柜上。

2.存在的问题

变电站综合自动化系统取得了良好的应用效果参1,但也有不足之处,主要体现在:1一次和二次之间的信息交互还是延续传统的电缆接线模式,成本高,施工、维护不便;2二次的数据采集部分大量重复,浪费资源;3信息标准化不够,信息共享度低,多套系统并存,设备之间、设备与系统之间互联互通困难,形成信息孤岛,信息难以被综合应用;4发生事故时,会出现大量的事件告警信息,缺乏有效的过滤机制,干扰值班运行人员对故障的正确判断。

三、数字化变电站 数字化变电站是变电站自动化发展的下一个阶段,《国家电网公司“十一五”科技发展规划》已明确提出在“十一五”期间要研究数字化变电站并建设示范站,且目前已有数字化变电站建成并投入运行,如福州会展变110千伏数字化变电站。

1.数字化变电站的概念

数字化变电站指信息采集、传输、处理、输出过程完全数字化的变电站,基本特征为设备智能化、通信网络化、运行管理自动化等。

数字化变电站有以下主要特点: 一次设备智能化

采用数字输出的电子式互感器、智能开关等智能一次设备。一次设备和二次设备间用光纤传输数字编码信息的方式交换采样值、状态量、控制命令等信息。

二次设备网络化

二次设备间用通信网络交换模拟量、开关量和控制命令等信息,取消控制电缆。运行管理系统自动化

应包括自动故障分析系统、设备健康状态监测系统和程序化控制系统等自动化系统,提升自动化水平,减少运行维护的难度和工作量。

2.数字化变电站的主要技术特征 数据采集数字化

数字化变电站的主要标志是采用数字化电气量测系统采集电流、电压等电气量,实现了一、二次系统在电气上的有效隔离,增大了电气量的动态测量范围并提高了测量精度,从而为实现常规变电站装置冗余向信息冗余的转变以及信息集成化应用提供了基础。

系统分层分布化

变电站自动化系统的发展经历了从集中式向分布式的转变,第二代分层分布式变电站自动化系统大多采用成熟的网络通信技术和开放式互连规约,能够更完整地记录设备信息并显著地提高系统的响应速度。数字化变电站自动化系统的结构在物理上可分为两类,即智能化的一次设备和网络化的二次设备;在逻辑结构上根据IEC61850通信标准定义,可分为“过程层”、“间隔层”、“站控层”三个层次。各层次内部及层次之间采用高速网络通信。

信息交互网络化与信息应用集成化

数字化变电站采用低功率、数字化的新型互感器代替常规互感器,将高电压、大电流直接变换为数字信号。站内设备之间通过高速网络进行信息交互,二次设备不出现功能重复的I/O接口,常规的功能装置变成了逻辑的功能模块,以实现数据及资源共享。目前国际上已确定IEC61850为变电站自动化通信标准。

此外,数字化变电站对原来分散的二次系统装置进行了信息集成及功能优化处理,因此可以有效地避免常规变电站的监视、控制、保护、故障录波、量测与计量等装置存在的硬件配置重复、信息不共享及投资成本大等问题的发生。

设备操作智能化 新型高压断路器二次系统是采用微机、电力电子技术和新型传感器建立起来的,断路器系统的智能性由微机控制的二次系统、IED和相应的智能软件来实现,保护和控制命令可以通过光纤网络到达非常规变电站的二次回路系统,从而实现与断路器操作机构的数字化接口。

设备检修状态化

在数字化变电站中,可以有效地获取电网运行状态数据以及各种IED装置的故障和动作信息,实现对操作及信号回路状态的有效监视。数字化变电站中几乎不再存在未被监视的功能单元,设备状态特征量的采集没有盲区。设备检修策略可以从常规变电站设备的“定期检修”变成“状态检修”,从而大大提高系统的可用性。

LPCT的测量原理和检验仪的外型

如前所述,LPCT实际上是一种具有低功率输出特性的电磁式电流互感器,在IEC标准中,它被列为电子式电流互感器的一种实现形式,代表着电磁式电流互感器的一个发展方向,具有广阔的应用前景。由于LPCT的输出一般是直接提供给电子电路,所以二次负载比较小;其铁心一般采用微晶合金等高导磁性材料,在较小的铁心截面下,就能够满足测量准确度的要求。

电子式电流互感器校验仪的测试外型如图1所示。电流传感头由LPCT构成,高准确度电流互感器为0.1级,其二次输出信号作为标准信号与电子式电流互感器输出信号进行对比。

系统结构紧凑化和建模标准化

数字化电气量测系统具有体积小、重量轻等特点,可以将其集成在智能开关设备系统中,按变电站机电一体化设计理念进行功能优化组合和设备布置。在高压和超高压变电站中,保护装置、测控装置、故障录波及其他自动装置的I/O单元作为一次智能设备的一部分,实现了IED的近过程化设计;在中低压变电站可将保护及监控装置小型化、紧凑化并完整地安装在开关柜上。

IEC61850确立了电力系统的建模标准,为变电站自动化系统定义了统一、标准的信息模型和信息交换模型,其意义主要体现在实现智能设备的互操作性、实现变电站的信息共享和简化系统的维护、配置和工程实施等方面。

3.IEC61850标准

IEC61850是国际电工委员会TC57工作组制定的《变电站通信网络和系统》系列标准,是基于网络通信平台的变电站自动化系统唯一的国际标准,也将成为电力系统从调度中心到变电站、变电站内、配电自动化无缝连接的通信标准,还可望成为通用网络通信平台的工业控制通信标准。

与传统的通信协议体系相比,在技术上IEC61850有如下突出特点:1使用面向对象建模技术;2使用分布、分层体系;3使用抽象通信服务接口、特殊通信服务映射SCSM技术;4使用MMS技术;5具有互操作性;6具有面向未来的、开放的体系结构。

变电站自动化系统在我国的应用已经取得了非常显著的效果,对提高电网的安全经济运行水平起到了重要的作用。目前随着新技术的不断发展,数字化变电站正在兴起。与传统变电站相比,数字化变电站具有以下优势:减少二次接线,提升测量精度,提高信号传输的可靠性,避免电缆带来的电磁兼容、传输过电压和两点接地等问题,解决设备间的互操作问题,变电站的各种功能可共享统一的信息平台,避免设备重复,自动化运行和管理水平进一步提高。数字化变电站是变电站自动化技术的发展方向。系统结构

变电站综合自动化系统应该从变电站的整体情况出发,同意考虑保护、监测、控制、远动、VQC和五防功能,在变电站自动化系统的管理上,采取分层管理的模式,即各保护功能单元由保护管理机直接管理。一台保护管理机可以管理多个单元模块,它们间可以采用双绞线用RS-485接口连接,也可以通过现场总线连接。而模拟量和开关量的输入/输出单元,由数采控制机负责管理。正常运行时,保护管理机监视各保护单元的工作情况,如果某一保护动作信息或保护单元本身工作不正常,立即报告监控机,再送往调度中心。调度中心或监控机也可通过保护管理机下达修改保护定值等命令。数采控制机则将各数采单元所采集的数据和开关状态送监控机,并由监控机送往调度中心。数采控制机接受由调度中心或监控机下达的命令。总之,保护管理机和数采控制机可明显地减轻控制机的负担,协助控制机承担对单元层的管理。

1.系统各部分功能

变电站综合自动化系统是应用较为成熟的、先进的分布式系统结构,按间隔配置测控单元。将保护功能和测控功能按对象进行设计,集保护/测控功能于一体,保护、测控既相互独立,又相互融合,保护、测控借助于计算机网络与变电站层计算机监控系统交换数据,减少大量二次接线,增加功能,节省了投资,提高了系统可靠性。

即变电站综合自动化监控系统采用分层分布式结构,系统分为三层:间隔层、单元层、监控管理层,其中单元层和管理层均属于站控层。系统各层之间是相互独立,主站层故障时,通过前端通信层控制间隔层,监控管理层和前端通信主站层全部故障时不会影响间隔层继电保护系统的政策运行。

2.间隔层单元功能

在变电站综合自动化系统中,主要根据一次设备间隔来划分间隔层的装置。在低压系统中,间隔层单元采用的是集测控保护于一体的微机型测控保护装置;而在高压系统中,保护和测控功能是独立设置,即分别采用测控监视单元与保护单元对系统进行监控与保护。

1)模拟量采集与输出

在变电站综合自动化系统中,间隔层单元采集的模拟量主要为交流电压、交流电流、有功功率以及无功功率等,一般通过间隔或元件的电流互感器、电压互感器的二次回路采样,以实现对间隔或元件的交流模拟量的测量。个别直流模拟量或温度量,一般通过传感器或变送器变为标准信号或传送给间隔层单元,或选择独立的直流系统监控装置。

2)状态量采集

变电站中的状态量信息主要包括传统概念的遥信信息和自动化系统设备运行状态信息等。在变电站综合自动化系统中,不仅要采集表征电网当前拓扑的开关位置等遥信信息,还要将反映测量、保护、监控等系统工作状态的信息进行采集、监视。间隔层中断路器、隔离开团和接地开关等一次设备的位置状态信号,在高压系统中一般采用双位置信号方式输入,在低压系统中,除了断路器的位置信号外,隔离开关和接地开关位置信号可以用单位置触点来采集。所谓双位置信号方式,是指利用间隔层装置中的两个状态输入点来采集一次设备的辅助接点的状态。双位置信号方式较为单位置信号方式可以大大提高状态信号的正确性,防止错误判断的发生。即用2位比特而不是1位比特来表征一个开关的开合状态,这时00,01,10,11的4种组合中只有2种正确的位置状态,而其余2种是不确定状态,不用0,1两种状态表示开合增加了码元的抗干扰性,从而提高了状态信号传输处理过程中的可靠性。

此外,在间隔层中海有断路器手车位置、电机储能、高压开关的异常告警信号、变压器瓦斯告警信号、保护状态和自动装置的动作信号、交直流屏的告警信号等一般都是单位置信号。

3)保护控制功能

在变电站综合自动化系统中,间隔层的设备要独立实现对被控对象的保护功能,在系统发生故障时能迅速起动并发出正确的控制命令。如切断断路器等。同时,间隔层在控制方面,还要实现对断路器、隔离开关、接地开关、变压器分接头调节、消弧线圈接头调节及保护复归、保护压板投退等的控制。其中对于断路器、变压器接头调节等是用双命令控制,而对于保护复归、保护投退、接地试跳等是通过单命令控制实现。双命令控制对象,是指被控对象一个完整控制过程(合闸、分闸过程)需要两个命令才能实现。而单命令控制则是指被控对象的控制过程只要一个命令就能完成。

4)通信功能

在变电站综合自动化系统中,间隔层单元要为实现与主控单元的通信设立与主控单元通信的接口,为了调试工作的方便进行设立用于参数上装、下装和信息读取的调试接口,为了系统时钟一致而设立对时接口,外此还有与其他间隔层单元通信的通信接口等。这些接口一般是设在间隔单元的前面板或后面板上,分为一般有工业以太网接口、RS232/485/422串行接口、现场总线接口等。在本系统中,间隔层与主控单元之间的连接方式是总线型,因此通信采用WorldFIP总线接口。而且为了提高控制系统可靠性,主控单元采用双机冗余结构。

5)防误联锁功能

为了提高变电站运行的安全可靠性,要求间隔层单元具有防误联锁功能。这种防误联锁功能主要表现在两个方面:一是本间隔内各元件之间的防误联锁功能,二是间隔之间的防误联锁功能。对于间隔层装置来讲,主要是通过其中的可编程逻辑控制功能来实现防误联锁功能。根据间隔中一次元件的防误联锁条件,间隔层单元一方面通过获取本间隔的断路器、隔离开关、接地开关等信号,实现

本间隔自身隔离开关、接地开关、断路器各元件之间的防误联锁要求,另一方面通过网络得到所需的其他间隔的防误联锁信息,利用本间隔中间隔单元的可编程逻辑控制功能来实现间隔之间防误联锁的要求。

6)人机界面功能

为了方便调试和实现参数显示、查询、修改在间隔层单元的前面板上还应用有LCD显示屏和按键。用于实现对间隔单的运行参数,如电流、电压、功率等进行显示,对通信参数如装置地址、通信规约、波特率等进行设置,对间隔内元件参数和继电保护整定值进行显示和修改,对遥信状态进行显示和查询,对异常现象进行显示报警等功能。

(1)人机联系的桥梁,包括CRT显示器、鼠标和键盘。变电站采用微机监控系统后,无论是有人值班还是无人值班,最大的特点之一是操作人员或调度人员只要面对CRT显示器的屏幕通过鼠标或键盘,就可以对全站的运行情况和运行参数一目了然,可对全站的断路器和隔离开关等进行分、合操作,彻底改变了传统的依靠指针式仪表和依靠模拟屏或操作屏等手段的监视、操作方式。

(2)CRT屏幕显示的内容。作为变电站人机联系的主要桥梁和手段的CRT显示器,不仅可以取代常规的仪器、仪表,而且可以实现许多常规仪表无法完成的功能。它可以显示的内容,归纳起来有以下几个方面:

①显示采集和计算的实时运行参数。②显示实时主接线图。③顺序记录显示。④值班历史记录。

⑤保护定值和自控装置的设定值显示。⑥故障记录,设备运行状况显示等。

(3)输入数据。变电站投入运行后,随着运行方式的变化,保护定值、越限值等需要修改,甚至由于负荷的增长,需要更换原有的设备,例如更换TA变化。因此在人机联系中,必须有输入数据、调整运行参数的功能。

3.变电站层单元功能

变电站层的有关自动化设备一般安装于控制室,而间隔层的设备最好安装于靠近现场设备,以减少控制电缆长度。变电层主要用于完成变电站内的间隔层的各种测控单元或测控保护单元以及各种职能电子装置与站控层的后台系统之间 的信息交换,起着通信控制器的作用。

1)实现和管理与间隔层的各种测控、保护和智能电子装置之间的通信。

2)实现和管理与变电站自动化系统中的后台系统和远方调度控制中心之间的通信。3)通过GPS实现对时功能,统一系统时间。4)实现对系统中各装置和设备的痛惜状态的监测。

变电站层通过控制设备实现运行监视空能,所谓运行监视,主要是指对变电站的运行工况和设备状态进行自动监视,即对变电站各种状态量变位情况的监视和各种模拟量的数值监视。

通过状态量变位监视,可监视变电站各种断路器、隔离开关、接地开关、变压器分接头的位置和动作情况、继电保护和自动装置的动作情况以及它们的动作顺序等。

模拟量的监视分为正常的测量和超过限定值的报警、事故模拟量变化的追忆等。当变电站有非正常状态发生和设备异常时 监控系统能及时在当地或远方发出事故音响或语音报警,并在 CRT 显示器上自动推出报警画面,为运行人员提供分析处理事故的信息,同时可将事故信息进行打印记录和存储。越限报警的各个参数,有一个允许运行时间限额,为此除越限报警外还应向上级调度(控制)人员提供当前极限远行时间,即允许运行时间减去越限运行的累计时间。异常状态报警的是:非正常操作时,断路器变位信号、保护故障动作信号、监控和保护设备异常状态信号以及数据采集的状态量中其他报警和异常信号。

报警方式主要有:自动推出画面、报警、音响提示(语音或可变频率音响)、闪光报警 信息操作提示,如控制操作超时等。

4.变电站电压无功控制的基本原理

变电站电压无功控制是保证电压质量和无功平衡、提高供电网可靠性和经济性的重要措施之一。

随着电网规模的不断扩大和超高压远距离输电系统的发展,一方面系统消耗的无功功率日益增多。另一方面无功补偿容量相对不足,导致一些配电网低谷时电压过高,而在高峰时期电压水平过低的状况,严重威胁着电网安全运行和用户 的正常生产生活。

从发电机和高压输电线供给的无功功率往往满足不了负荷的需要,因为从建设电网考虑,主要是以电网投资和运行费用最小为目标对无功电源的位置和容量进行优化,实现无功电源的合理规划与配置,即减少发、供电设备的设计容量,减少投资,以就地无功补偿减少无功功率在电网中的流动。在电网建成后,以无

功功率交换最少为目标对电网运行方式进行优化控制,所以在电网中要设置一些无功补偿装置来补充无功功率。以保证用户对无功功率的需要。

变电站电压无功控制的基本原理就是通过对变电站的电压、无功等运行数据的测最、分析,根据电网实际运行状态,动态地控制变压器分接头位置和电容/电抗器的投切,实现电压和无功的闭环控制,使得电压维持在合格范围内,提高电压合格率,无功动态补偿,降低无功损耗,最终实现提高经济效益的最终目标。

计算机监控系统进行电压无功控制的主要步骤如下:

第一步:采集电力系统实时运行参数,包括有功、无功、电流、电压,以及各种开关、设备的运行状态,如果系统运行未发生异常情况。则进行下列步骤。

第二步:进行电压调节分析。对于电压调节,其主要的判断依据是人为整定的正常电压的范围(限值),超出这个范围.即认为电压越限不合格:

电压越上限,可能原因有以下两种:1)容性无功多,低压侧无功补偿过多,系统输送无功过少,变压器电压损耗过小;2)分接头低,系统与负荷之间的电器距离太近。

电压下限,可能原因有以下两种:1)容性无功少,低压侧无功补偿过少,系统输送无功过多,变压器电压损耗过大;2)分接头,系统与负荷之间的电气距离太远。

第三步:进行无功补偿判断,其主要的判断依据同样是人为整定的无功范围(限值),超出这个整定值范围,意味着系统无功过多或过少:

无功越上限,说明系统送的无功过多,可能原因有以下两种:1)容性无功少,低压侧无功补偿过少;2)分接头高,系统向低压侧无功输送无功过多。无功越下限。说明系统送的无功过少.可能原因有以下两种:1)容性无功多,低压侧无功补偿过多;2)分接头低,系统向低压侧无功输送无功过少。

第四步:进行策略选择。在前两步分析判断基础,按照事先确定的策略模型,选择一个最优方案进行实施。并重新进入第一步骤。

计算机监控系统的自动控制,既可以降低人员的劳动强度,又可以更实时、更科学地控制电压及达到无功平衡。

速将备用电源或备用设备或其他正常工作的电源自动投入工作,使原来工作电源被断开的用户能迅速恢复供电的一种自动控制装置。备用电源自动投入是保证电力系统连续可靠供电的重要措施,是变电站综合自动化系统的基本功能之一。

备用电源自动投入装置的基本特点:

(1)工作电源确实断开后,备用电源才投入。工作电源失压后,无论其他

进线断路器是否跳开,即使已测定其他进线电流为零,但还是要先断开该断路器,并确定是已跳开后,才能投入备用电源。这时为了防止设备电源投入到故障元件上。例如工作电源故障保护柜动。但在其他地方被后备保护切除,备用自动投入装置动作后合于故障的工作电源。

(2)备用电源自动投入切除工作电源断路器必须经过延时。经延时切除工作电源进线断路器是为了躲过工作母线引出线故障造成的母线电压下降。延时时限应大于最长的外部故障切除时间。在有的情况下,可不经延时直接跳开工作电源进线断路器。加速合上备用电源。例如工作母线进线侧的断路器跳开,进线侧无重合闸功能时;手动合上备用电源时也不经过延时直接跳开工作电源进线断路器。

(3)手动跳开工作电源时,备用自动投入装置不需要动作。工作电源进线断路器的合后触点(指微机保护的操作回路输出的KKJ合后触点)作为备用自

动投入装置的输入开关量,在就地或遥控跳断路器时,其合后KKJ触点断开,备用自动投入装置自动化退出。

(4)有闭锁备用自动投入装置的功能。每套备用自动投入装置均设置有闭锁备用电源自动投入的逻辑回路,以防止备用电源投入到故障的元件上,造成事故扩大的严重后果。

(5)备用电源不满足有压条件,备用电源自动投入装置不动作。

(6)工作母线失压时还需要检查工作电源无流,启动备自动投入,以防止TV二次侧三相断线造成误投。

(7)备用电源自动投入装置只允许动作一次。微机型备用电源自动投入装置可以通过逻辑判断来实现只动作一次的要求,但为了便于理解,在阐述备用电源自动投入装置逻辑程序时广泛用电容器“充电”条件满足;延时启动的时间应理解为“充电”时间到后就完成了全部准备工作;当备用电源自动投入装置动作后或任何一个闭锁及推出备用电源自动投入电源条件存在时,立即瞬时完成“放电”。“放电”就是模拟闭锁备用电源自动投入装置,放电后就不会发生备用电源自动投入装置第二次动作。这种“充放电”的逻辑模拟与微机自动重合闸的逻辑程序相类似。

5.继电保护功能

变电站综合自动化系统中的微机继电保护主要包括输电线路保护、电力变压器保护、母线保护、电容器保护、小电流接地系统自动选线、自动重合闸。由于继电保护的特殊重要性,综合自动化系统绝不能降低继电保护的可靠性。因此要求:

1)系统的继电保护按被保护的电力设备单元(间隔)分别独立设置,直接由相关的电流互感器和电压互感器输入电气量,然后由触点输出,直接操作相应断路器的跳闸线圈。2)保护装置设有通信接口,供接入站内通信网,在保护动作后向变电站层的微机设备提供报告等,但继电保护功能完全不依赖通信网。

3)为避免不必要的硬件重复,以提高整个系统的可靠性和降低造价,特别是对35KV及以下设备,可以配给保护装置其他一些功能,但应以不因此降低保护装置可靠性为前提。

4)除保护装置外,其他一些重要控制设备,例如备用电源自动投入装置、控制 电容器投切和变压器分接头有载切换的无功电压控制装置等,也不依赖通信网,而设备专用的装置放在相应间隔屏上。

继电保护是变电站综合自动系统的关键环节 其最重要的功能就是要有独立的、完整的继电保护功能,在此基础上还必须具备下列附加功能:

(1)继电保护的通信功能及信息量。综合自动化系统中的继电保护对监控系统而言是相对独立的,因此,继电保护应具有与监控系统通信的功能。继电保护能主动上传保护动作时间、动作性质、动作值及动作名称,并按控制命令上传当前的保护定值和修改定值的返校信息。

(2)具有与系统统一时钟对时的功能。时间的精确和统一在电网运行中显得十分重要,尤其是当继电保护动作时,只有借助精确统一时间才能根据各套继电保护动作的先后顺序正确分析电网发生事故的原因。因此,1991 年 7 月原能源部在颁布《电力调度系统计算机网络规划大纲>》中,已明确建议在同一电网内采用统一的对时方式,以便准确记录发生故障和保护动作时间。

(3)存储各种保护整定值功能。

(4)当地显示与远处观察和授权修改保护整定值。对保护整定值的检查与修改要直观、方便、可靠。除了在各保护单元上要能显示和修改保护定值外,考虑到无人值班的要求,通过当地的监控系统和远方调度端,应能观察和修改保护定值。同时,为了加强对定值的管理,避免差错,修改定值要有校对密码措施,以及记录最后一个修改定值的密码。(5)设置保护管理机或通信控制机,负责对各保护单元的管理。保护管理机(或通信控制机)在自动化系统中起承上启下的作用。把保护子系统与监控系统联系起来,向下负责管理和监控保护子系统中各单元的工作状态,并下达由调度或监控系统发来的保护类型配置或整定值修改信息;如发现每一保护单元故障或工作异常,或有保护动作信息,应立刻上传给控制系统或上传至远方调度端。

(6)故障自诊断、自闭锁和自恢复功能。每个保护单元应有完善的故障自诊断功能,发现内部有故障,能自动报警,并能指明故障部位,以利于查找故障和缩短维修时间,对于关键部位故障,例如 A/D 转换器故障或存储器故障,则应自动闭锁保护出口。如果是软件受干扰,造成程序“出轨”的软故障,应有自启动功能,以提高保护装置的可靠性。

(7)自动重合闸功能。其功能和设置在输电线路保护内。110KV 及以下线

路一般采用三相一次重合闸,其同期检定方式重合闸延时时间应能整定。同期检定方式可选择不检定方式、检无压方式、检同期方式等。

结论

通过使用多种综自产品和多次现场服务,参考各种文献资料,对微机综合自动化系统的通讯略抒己见。随着自动化水平的提高,计算机技术、通讯技术等先进手段的应用已经成为电力发展的趋势。为了适应时代的发展,及时掌握电网和变电站的运行情况,提高变电站安全稳定运行的可靠性,以及采用先进的无人值班管理模式,减少人为误操作,对我们提出了高标准的要求。变电站自动化系统在我国的应用已经取得了非常显著的效果,对提高电网的安全经济运行水平起到了重要的作用。目前随着新技术的不断发展,数字化变电站正在兴起。与传统变电站相比,数字化变电站具有以下优势:减少二次接线,提升测量精度,提高信号传输的可靠性,避免电缆带来的电磁兼容、传输过电压和两点接地等问题,解决设备间的互操作问题,变电站的各种功能可共享统一的信息平台,避免设备重复,自动化运行和管理水平进一步提高。数字化变电站是变电站自动化技术的发展方向。

参考文献:

变电站综合自动化系统探析

变电站综合自动化系统探析(精选6篇)变电站综合自动化系统探析 第1篇变电站综合自动化系统浅析1、引言随着科学技术的不断发展,电力系统...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部