电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

平行线性质判定练习题

来源:文库作者:开心麻花2025-09-231

平行线性质判定练习题(精选7篇)

平行线性质判定练习题 第1篇

平行线及其判定

1、基础知识

(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:。

(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.

(5)两条直线平行的条件(除平行线定义和平行公理推论外):

①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.

②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______. ③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:

2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)

3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(______,______)

4、作图:已知:三角形ABC及BC边的中点D,过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.

5、已知:如图,∠1=∠2,求证:AB∥CD.(尝试用三种方法)

6、已知:如图,CD⊥DA,DA⊥AB,∠1=∠2,试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.

(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:

证明:∵CD⊥DA,DA⊥AB,()∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,()从而∠CDA-∠1=______-______,(等式的性质)即∠3=______.∴DF______AE.(___________,___________)

7、已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC. 证明∵∠ABC=∠ADC,11ABCADC.2∴2()又∵BF、DE分别平分∠ABC与∠ADC,∴111ABC,2ADC.22()∵∠______=∠______.()∵∠1=∠3,()∴∠2=______.()∴______∥______.()

8、已知:如图,∠1=∠2,∠3+∠4=180°,试确定直线a与直线c的位置关系,并说明你的理由.(1)问题的结论:a______c.

(2)证明思路分析:欲证a______c,只要证______∥______.(3)证明过程:

证明:∵∠1=∠2,()∴a∥______,(_________,_________)① ∵∠3+∠4=180°

∴c∥______,(_________,_________)② 由①、②,因为a∥______,c∥______,∴a______c.(_________,_________)

9、将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°其中正确的个数是()(A)1(B)2(C)3(D)4

10、下列说法中,正确的是().(A)不相交的两条直线是平行线.

(B)过一点有且只有一条直线与已知直线平行.

(C)从直线外一点作这条直线的垂线段叫做点到这条直线的距离.

(D)在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.

11、如图5,将一张长方形纸片的一角斜折过去,顶点A落在A′处,BC为折痕,再将BE翻折过去与BA′重合,BD为折痕,那么两条折痕的夹角∠CBD= 度.

图6

12、图(6)是由五个同样的三角形组成的图案,三角形的三个角分别为36°、72°、72°,则图中共有___ 对平行线。

13、下列说法正确的是()(A)有且只有一条直线与已知直线垂直

(B)经过一点有且只有一条直线与已经直线垂直(C)连结两点的线段叫做这两点间的距离

(D)过点A作直线l的垂线段,则这条垂线段叫做点A到直线l的距离

14、同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c

平行线的性质 1.基础知识

(1)平行线具有如下性质

①性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______. ②性质2:两条平行线______,______相等.这个性质可简述为____________,______. ③性质3:____________,同旁内角______.这个性质可简述为____________,______.

(2)同时______两条平行线,并且夹在这两条平行线间的____________叫做这两条平行线的距离. 2.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______,理由是_____________________________________.(2)如果AB∥DC,那么∠3=______,理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______,理由是_______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______,理由是________________________.3.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,()∴∠2=______.(___________________)(2)∵DE∥AB,()∴∠3=______.(___________________)(3)∵DE∥AB(),∴∠1+______=180°.(____________________)4.已知:如图,∠1=∠2,∠3=110°,求∠4. 解题思路分析:欲求∠4,需先证明______//______.解:∵∠1=∠2,()∴______//______.(__________________)∴∠4=_____=_____°.(__________________)5.已知:如图,∠1+∠2=180°,求证:∠3=∠4. 证明思路分析:欲证∠3=∠4,只要证______//______.证明:∵∠1+∠2=180°,()∴______//______.(_________________)∴∠3=∠4.(_________,_________)6.已知:如图,∠A=∠C,求证:∠B=∠D.

证明思路分析:欲证∠B=∠D,只要证______//______.证明:∵∠A=∠C,()∴______//______.(_________,_________)∴∠B=∠D.(_________,_________)7.已知:如图,AB∥CD,∠1=∠B,求证:CD是∠BCE的平分线.

证明思路分析:欲证CD是∠BCE的平分线,只要证______//______.证明:∵AB∥CD,()∴∠2=______.(_________,_________)但∠1=∠B,()∴______=______.(等量代换)即CD是____ ________.8.已知:如图,AB∥CD,∠B=35°,∠1=75°,求∠A的度数. 解题思路分析:欲求∠A,只要求∠ACD的大小. 解:∵CD∥AB,∠B=35°,()∴∠2=∠______=______°(_________,_________)而∠1=75°,∴∠ACD=∠1+∠2=______。∵CD∥AB,()∴∠A+______=180°.(_________,_________)∴∠A=______=______.9.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数. 分析:可利用∠DCE作为中间量过渡. 解:∵AB∥CD,∠B=50°,()∴∠DCE=∠______=______°(_________,_________)又∵AD∥BC,()∴∠D=∠______=______°(_________,_________)想一想:如果以∠A作为中间量,如何求解? 解法2:∵AD∥BC,∠B=50°,()∴∠A+∠B=______.(_________,_________)即∠A=______-______=______°-______°=______.∵DC∥AB,()∴∠D+∠A=______.(_________,_________)即∠D=______-______=______°-______°=______.10.已知:如图,已知AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数. 解:过P点作PM∥AB交AC于点M. ∵AB∥CD,()∴∠BAC+∠______=180°()∵PM∥AB,∴∠1=∠______,()且PM∥______。(平行于同一直线的两直线也互相平行)∴∠3=∠______。(两直线平行,内错角相等)∵AP平分∠BAC,CP平分∠ACD,()111______,4______22()11BACACD9022()14∴∠APC=∠2+∠3=∠1+∠4=90°()总结:两直线平行时,同旁内角的角平分线______。

11.已知:如图,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.

12.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.

(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.

13.已知:如图,AB∥CD,试猜想∠A+∠AEC+∠C=?为什么?说明理由.

14.如下图,AB∥DE,那么∠BCD=().(A)∠2-∠1(B)∠1+∠2(C)180°+∠1-∠2(D)180°+∠2-2∠1 15.如图直线l1∥l2,AB⊥CD,∠1=34°,那么∠2的度数是______.

(15题)(16题)

16.如图,若AB∥CD,EF与AB、CD分别相交于点E、F,EP与∠EFD的平分线相交于点P,且∠EFD=60°,EP⊥FP,则∠BEP=______度.

17.王强从A处沿北偏东60°的方向到达B处,又从B处沿南偏西25°的方向到达C处,则王强两次行进路线的夹角为______度.

18.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.

19.如图,AB∥CD,FG⊥CD于N,∠EMB=,则∠EFG等于().(A)180°-(B)90°+(C)180°+(D)270°-

20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.

21.以下五个条件中,能得到互相垂直关系的有(). ①对顶角的平分线 ②邻补角的平分线 ③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(4)4个

22.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有().(A)6个(B)5个

(C)4个(D)3个

23.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有().

(1)∠C′EF=32°(2)∠AEC=148°

(3)∠BGE=64°(4)∠BFD=116°(A)1个(B)2个(C)3个(D)4个

24.如图,AB∥CD,BC∥ED,则∠B+∠D=______.

25.如图,DC∥EF∥AB,EH∥DB,则图中与∠AHE相等的角有__________________.26.如图,BA⊥FC于A点,过A点作DE∥BC,若∠EAF=125°,则∠B=______.(24题)

(25题)

(26题)27.已知:如图,AC∥BD,折线AMB夹在两条平行线间.

图1 图2(1)判断∠M,∠A,∠B的关系;

(2)请你尝试改变问题中的某些条件,探索相应的结论。建议:①折线中折线段数量增加到n条(n=3,4……)②可如图1,图2,或M点在平行线外侧.

28.已知:如图,∠B=∠C,AE∥BC,求证:AE平分∠CAD. 证明:

26.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.

27.已知:如图,∠FED=∠AHD,∠HAQ=15°,∠ACB=70°,∠CAQ=55.求证:BD∥GE∥AH.

28.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.

29.已知:如图,CD⊥AB于D,DE∥BC,∠1=∠2.求证:FG⊥AB.

30.已知:如图,AB∥CD,∠1=∠B,∠2=∠D.判断BE与DE的位置关系并说明理由.

31.已知:如图,△ABC.求证:∠A+∠B+∠C=180°.

平行线性质判定练习题 第2篇

2.已知:如图5, DE∥BC,CD是∠ACB的平分线,∠B=700,∠ACB=500.求∠BDC的度数.A

E D

B C图

53.如图,台球运动中,如果母球P击中边点A,经桌边反弹后击中相邻的另一桌边的点B,再次反弹.那么母球P经过的路线BC与PA一定平行.请说明理由.

4.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)

5.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE

6.如图:∠1=53,∠2=127,∠3=53,试说明直线AB与CD,BC与DE的位置关系。

7.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。

8.已知:如图,,且.求证:EC∥DF.9.如图10,∠1∶∠2∶∠3 = 2∶3∶4,∠AFE =60°,∠BDE =120°,写出图中平行的直线,并说明理由. AE F2

3B D C

图10

10.如图11,直线AB、CD被EF所截,∠1 =∠2,∠CNF =∠BME。求证:AB∥CD,MP∥NQ.

E

MB A 1PN C D 2Q F图11

11.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。

求证:GH∥MN。

12.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。

直线与平面平行的判定 第3篇

本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理.本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大.

二、教学目标

通过直观感知———观察———操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理.培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力.让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感.

三、教学重点与难点

重点是判定定理的引入与理解,难点是判定定理的应用及立体几何空间感、空间观念的形成与逻辑思维能力的培养.

四、教学过程设计

(一)知识准备、新课引入

提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并完成下表:(多媒体幻灯片演示)

我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为.

提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行你认为方便吗?谈谈你的看法,并指出是否有别的判定途径.

(二)判定定理的探求过程

1.直观感知

提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗?

生1:列举日光灯与天花板,站立的人与墙面.

生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示.

2.动手实践

教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置给人以平行的感觉,而当把直角腰放在桌面上并转动,观察另一边与桌面给人的印象就不平行.又如老师直立讲台,则大家会感觉到老师(视为线)与四周墙面平行,如老师向前或后倾斜则感觉老师(视为线)与左、右墙面平行,如老师向左、右倾斜,则感觉老师(视为线)与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示).

3.探究思考

(1)上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:(1)平面外一条线,(2)平面内一条直线,(3)这两条直线平行.

(2)如果平面外的直线a与平面内的一条直线b平行,那么直线a与平面平行吗?

4.归纳确认(多媒体幻灯片演示)

直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行.

简单概括:(内外)线线平行,线面平行.

符号表示:

温馨提示:

作用:判定或证明线面平行.

关键:在平面内找(或作)出一条直线与平面外的直线平行.

思想:空间问题转化为平面问题

(三)定理运用,问题探究(多媒体幻灯片演示)

1.作一作

设a,b是二异面直线,则过a,b外一点p且与a,b都平行的平面存在吗?若存在请画出平面,不存在说明理由?

先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程.

2.证一证

例(见课本60页例1):已知空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF//平面BCD.

变式一空间四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA中点,连接EF,FG,GH,HE,AC,BD请分别找出图中满足线面平行位置关系的所有情况.(共6组线面平行)

变式二在变式一的图中作PQ//EF,使P点在线段AE上,Q点在线段FC上,连接PH,QG,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形EFGH,PQGH分别是怎样的四边形,说明理由.

4.练一练

练习1:见课本6页练习1、2

练习2:将两个全等的正方形ABCD和ABEF拼在一起,设M,N分别为AC,BF中点,求证:MN//平面BCE.

变式:若将练习2中M,N改为AC,BF分点且AM=FN,试问结论仍成立吗?试证之.

(四)总结

先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

1.线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行.

2.定理的符号表示:

简述:(内外)线线平行则线面平行

3.定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等.

五、教学反思

平行线性质判定练习题 第4篇

【例1】 如图,四面体ABCD中,M、E、F分别为△BAC,△ACD及△ADB的重心.

求证:(1) 平面MEF∥平面BCD;

(2) 求S△MEF∶S△DBC.

分析 本题考查面面平行的判定以及面面平行的性质。

(1) 根据重心的性质易知应该连接AM,AE,AF,再根据相似比可知△MEF的三边分别与△DBC的三边平行,进而可得结论;

(2) 因为两个三角形所在的平面互相平行,因此,求两三角形面积之比,实质求这两个三角形对应边之比。

解 (1) 连接AM,AE及AF,分别延长使之交BC、CD、BD于G、H、P三点,由E、F、M分别为三角形的重心,

所以AMAG=AEAH=AFAP=23,所以连接GH、HP、PG,后有ME∥GH,EF∥PH,

可证ME∥平面BCD,EF∥平面BCD,

故平面EFM∥平面BCD.

(2) 由(1)知AMAG=AEAH=23,

即ME=23GH=13BD,

同理可证MF=13CD,EF=13BC,

所以△MEF∽△DBC,其相似比为1∶3,

所以S△MEF∶S△DBC=1∶9.

点拨 由于M、E、F分别是三个三角形的重心,从而联想到重心将三角形的三条中线三等分,

由于平行线分线段成比例,由此联想到直线ME∥GH,ME=23GH,进一步可以证明直线ME与平面BCD平行,从而使命题得证。

题型二 面面垂直问题

【例2】 (2011年江苏卷第16题)如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1) 直线EF∥平面PCD;

(2) 平面BEF⊥平面PAD.

分析 本题主要考查直线与平面、平面与平面的位置关系,

考察空间想象能力和推理论证能力。要证线面平行可在所

求平面内找一条与已知直线平行的直线。要证面面垂直可在其中一个平面内找一条另一平面的垂线。

证明 (1) 在△PAD中,因为E、F分别为AP,AD的中点,所以EF∥PD.

又因为EF平面PCD,PD平面PCD,所以直线EF∥平面PCD.

(2) 连接DB,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF平面BEF,所以平面BEF⊥平面PAD.

点拨 由于E、F分别是AP、AD的中点,从而可以证明EF∥PD,由此可以证明EF与平面PCD平行。由平面PAD⊥平面ABCD可以得到直线BF⊥平面PAD,进一步可以证明两个平面垂直。

题型三 面面平行与面面垂直的综合问题

【例3】 如右图,已知平面α∥平面β∥平面γ,且β位于α与γ之间.点A、D∈α,C、F∈γ,AC∩β=B,DF∩β=E.

(1) 求证:ABBC=DEEF;

(2) 设AF交β于M,AC∥\DF,α与β间距离为h′,α与γ间距离为h,当h′h的值是多少时,△BEM的面积最大?

分析 本题主要考查面面平行所涉及的综合求解问题,这类问题不仅在平行时存在,同时在垂直时也存在,对同学们综合知识的能力要求比较高。

证明(1) 连接BM、EM、BE.

∵β∥γ,平面ACF分别交β、γ于BM、CF,

∴BM∥CF.∴ABBC=AMMF,

同理,AMMF=DEEF.∴ABBC=DEEF.

(2) 由(1)知BM∥CF,

∴BMCF=ABAC=h′h.同理MEAD=h-h′h.

∴S△BEM=12CF•ADh′h1-h′hsin∠BME.

据题意知,AD与CF是异面直线,只是β在α与γ间变化位置.故CF、AD是常量,sin∠BME是AD与CF所成角的正弦值,也是常量,令h′∶h=x.只要考查函数y=x(1-x)的最值即可,显然当x=12,即h′h=12时,y=-x2+x有最大值.∴当h′h=12,即β在α、γ两平面的中间时,S△BEM最大.

点拨 要证明线段之比相等,一般可以转化为平行线问题,而求解面积的最值问题,一般可将面积表示为某一变量的函数,利用函数知识求解最值问题。

牛刀小试

1. 如图,在三棱锥PABC中,PA=3,AC=AB=4,PB=PC=BC=5,

D、E分别是BC、AC的中点,F为PC上的一点,且PF∶FC=3∶1.

(1) 求证:PA⊥BC;

(2) 试在PC上确定一点G,使平面ABG∥平面DEF;

(3) 求三棱锥PABC的体积.

2. 如图,在三棱锥VABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ0<θ<π2.

(1) 求证:平面VAB⊥平面VCD;

(2) 试确定角θ的值,使得直线BC与平面VAB所成的角为π6.

满盈者,不损何为?慎之!慎之!——朱舜水

【参考答案】

1. (1) 在△PAC中,∵PA=3,AC=4,PC=5,

∴PA2+AC2=PC2,

∴PA⊥AC,又AB=4,PB=5,PA=3,

∴在△PAB中,同理可得PA⊥AB,

∵AC∩AB=A,∴PA⊥平面ABC,

∵BC平面ABC,

∴PA⊥BC.

(2) 如图所示,取PC的中点G,连接AG,BG,

∵PF∶FC=3∶1,∴F为GC的中点.

又D、E分别为BC、AC的中点,

∴AG∥EF,BG∥FD,

又AG∩GB=G,EF∩FD=F,

∴面ABG∥面DEF,

即PC上的中点G为所求的点.

(3) VPABC=5394.

2. (1) ∵AC=BC=a,∴△ACB是等腰三角形,又D是AB的中点,∴CD⊥AB,

又VC⊥底面ABC.∴VC⊥AB.

于是AB⊥平面VCD.

又AB平面VAB,∴平面VAB⊥平面VCD.

(2) 过点C在平面VCD内作CH⊥VD于H,则由(1)知CH⊥平面VAB.

连接BH,于是∠CBH就是直线BC与平面VAB所成的角.依题意∠CBH=π6,所以在Rt△CHD中,CH=22asinθ;

在Rt△BHC中,CH=asinπ6=a2,∴sinθ=22.

∵0<θ<π2,∴θ=π4.

故当θ=π4时,直线BC与平面VAB所成的角为π6.

平行线的性质和判定证明练习题 第5篇

2.已知如图,AC⊥BC,CD⊥AB,FG⊥AB, ∠1=∠2,求证:

3.已知如图,∠1=∠2,∠C=∠F,求证∠A=∠D

DE⊥AC

4.已知如图, AD⊥BC, EF⊥BC,∠1=∠2,求证:DG∥BA

5.已知如图,AC∥DE,DC∥EF,CD平分∠BCA,求证:EF平分∠BED

平行线的性质和判定综合练习 第6篇

(答题时间:60分钟)

一、选择题

1.点到直线的距离是指

A.从直线外一点到这条直线的垂线

B.从直线外一点到这条直线的垂线段

C.从直线外一点到这条直线的垂线的长度

D.从直线外一点到这条直线的垂线段的长度

2.下图中,用数字表示的

1、

2、

3、4各角中,错误的判断是

A.若将AC作为第三条直线,则1和3是同位角

B.若将AC作为第三条直线,则2和4是内错角

C.若将BD作为第三条直线,则2和4是内错角

D.若将CD作为第三条直线,则3和4是同旁内角

3.如果角的两边有一边在同一条直线上,另一边互相平行,则这两个角

A.相等B.互补

C.相等且互补D.相等或互补

4.下列说法中正确的是

A.在所有连结两点的线中,直线最短

B.经过两点有一条直线,并且只有一条直线

C.内错角互补,则两直线平行

D.如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直

二、填空题

1.如图,直线AB、CD相交于点O,若∠1=28°,则∠2=_______。

2.已知直线AB∥CD,∠ABE60,∠CDE20,则∠BED度。



3.如图,已知AB∥CD,EF分别交AB、CD于点E、F,∠1=60°,则∠2=______度。

4.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=。

MN

P

AB

5.设a、b、c为平面上三条不同直线,(1)若a//b,b//c,则a与c的位置关系是_________;(2(若ab,bc,则a与c的位置关系是_________;(3)若a//b,bc,则a与c的位置关系是________。6.如图,填空:

⑴∵1A(已知)∴_____________()⑵∵2B(已知)∴_____________()⑶∵1D(已知)∴______________()

三、解答题:

1.已知:如图,AOC与BOD为对顶角,OE平分 AOC,OF平分 BOD。请说明:OE、OF互为反向延长线。

2.已知:如图AB // CD,AD // BC。请说明:A=C,B=

D

3.已知;如图AB∥ED请说明:∠B+∠BCD+∠D=360°。

初一数学通用版平行线的性质和判定综合练习参考答案

一、选择题

1.D2.B3.D4.B

二、填空题 1.28°2.803.60°4.30°5.平行平行垂直 6.AB∥DE内错角相等,两直线平行AB∥DE同位角相等,两直线平行AC∥DF内错角相等,两直线平行

三、解答题

1.分析:要证OE、OF互为反向延长线,只要证明OE、OF在同一条直线上,也就是证明 EOF为180°即可。

解:∵AOC与BOD为对顶角(已知)∴  AOC=BOD(对顶角相等)∵ OE平分AOC(已知)

∴ 1=AOC(角平分线定义)

21同理2=BOD

∴ 1=2(等量的一半相等)∵ AB为直线(已知)

∴ AOF+2=180°(平角定义)有AOF+1=180°(等量代换)即EOF=180°

∴OE、OF互为反向延长线。

说明:这是证明共线的常用方法。

2.分析:利用两直线平行同旁内角互补,由已知条件可推出A与B互补,C与B互补,于是A=C,同理可证B=

D

解:

∵AB//CD ∴C+B=180°(两直线平行同旁内角互补)∵AD //BC(已知)

∴A+B =180°(两直线平行同旁内角互补)∴A=C(同角的补角相等)

同理B=D

3.分析一:欲求三个角的和为360°须将三个角的和分解出两对平行线的同旁内角,现只有一对平行线(这是已知条件),再添加一条直线即可构造出两对平行线。关键是这条线在哪里作更合适。再看求证三个角的三个顶点的位置,得到方法一:

解:方法一:过C点作

CF//AB

∵AB//ED(已知)∴FC//ED(平行于同一直线的两直线平行)B+BCF=180°(两直线平行同旁内角互补)FCD +D =180°(两直线平行同旁内角互补)∴B+BCF+∠FCD+D=360°(等量加等量和相等)即B+BCD+D=360°

分析二:欲证三个角之和为360°,已知周角是360°,故须将这三个角转化为周角。方法二:过C点作

CF // AB

∴ABC =BCF(两直线平行内错角相等)∵ED//AB(已知)

∴ED//CF(平行于同一直线的两直线平行)∴EDC=DCF(两直线平行内错角相等)∵DCB+BCF +FCD=360°(周角定义)∴DCB +ABC+CDE=360°(等量代换)即BCD+B+D=360°

分析三:欲证三个角之和为360°,若转化为两个邻补角之和也是360°,这两个邻角要和三个角有紧密的联系才能解决问题。

方法三:延长AB、ED,过C点作

CF//AB

∴3=4(两直线平行内错角相等)∵AB // ED(已知)

∴ED // CF(平行于同一直线的两直线平行)∴1=2(两直线平行内错角相等)

∵1+EDC=180°(平角定义)4+ABC=180°(平角定义)

∴1+4+EDC+ABC=360°(等量加等量和相等)2+3+EDC+ABC=360°(等量代换)即DCB+D+B=360°

平行线性质判定练习题 第7篇

平行线的判定和性质专题练习

1.下列命题:

①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角; ③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等; ⑥经过直线外一点,有且只有一条直线与这条直线平行.其中假命题有()A.1个

B.2个

C.3个

D.4个

2.直线a、b、c是三条平行直线.已知a与b的距离为5cm,b与c的距离为2cm,则a与c的距离为()A.2cm

B.3cm

C.7cm

D.3cm或7cm

3、两直线被第三条直线所截,则()A.内错角相等

B.同位角相等

C.同旁内角互补

D.以上结论都不对

4.如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=BC,∠1=70°,CD⊥AB于D,那么∠2等于(A.20° B.30° C.32° D.25° 5.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°

B.∠α+∠β﹣∠γ=360° C.∠α﹣∠β+∠γ=180°

D.∠α+∠β﹣∠γ=180° 6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°

B.35°

C.36°

D.40°

第4题图

第5题图

第6题图

7.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是(A.140° B.40°

C.100°

D.180°

8.如图所示,要得到DE∥BC,需要条件()

A.CD⊥AB,GF⊥AB

B.∠DCE+∠DEC=180°

C.∠EDC=∠DCB D.∠BGF=∠DCB

AC

D DEA140°FB

BGC

第7题图

第8题图))

9.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图(1)~(4)):

PPPP(1)(2)(3)(4)

从图中可知,小敏画平行线的依据有:()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.()

A.①② B.②③

C.③④

D.①④

10.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是 A.第一次向右拐40°,第二次向左拐40°

B.第一次向右拐50°,第二次向左拐130°

C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130 11.如图,AB∥CD,AF交CD于点O,且OF平分∠EOD,如果∠A=38°,那么∠EOF=___________°。12.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3= °.13.如图,直线l1∥l2,∠α=∠β,∠1=35º,则∠2=

º.第11题图 第12 题图 第13题图

14.如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.15.如图,已知:∠B=∠D+∠E,试说明:AB∥CD. 16.如图,A、B、C三点在同一直线上,∠1=∠2,∠3=∠D,试判断BD与CF的位置关系,并说明理由.17.如图,直线AD与AB、CD相交于A、D两点,EC、BF与AB、CD交于点E、C、B、F,且∠1=∠2,∠B=∠C,试说明AB∥CD.18.如图所示,已知CE∥DF,说明∠ACE=∠A+∠ABF.

GACDE FB19.如图,直线AB,CD被直线BD,DF所截,AB∥CD,FB⊥DB,垂足为B,EG平分∠DEB,∠CDE=52°,∠F=26°.(1)求证:EG⊥BD;(2)求∠CDB的度数.20.,那么 AB∥CD.试解决下列问题:

如图①,已知∠1+∠2=180°(1)如图②,已知∠1+∠2+∠3=360°,为了证明 AB∥CD,根据三角形的内角和为 180°,可以

连接 AC 构造出三角形,加以解决.请写出推理过程.

(2)如图③,已知∠1+∠2+∠3+∠4=540°,那么 AB 与 CD平行吗?为什么?(3)通过以上两题,你得出了什么规律?试结合图④,谈谈你的发现.

21.已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点

平行线性质判定练习题

平行线性质判定练习题(精选7篇)平行线性质判定练习题 第1篇平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线....
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部