电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

ups电源常见故障分析

来源:火烈鸟作者:开心麻花2025-09-191

ups电源常见故障分析(精选9篇)

ups电源常见故障分析 第1篇

目前轨道交通通信信号电源系统中UPS的常见故障及选型改进方案

中航太克(厦门)电力技术股份有限公司 总工程师

何春

摘要: 目前轨道交通通信信号电源系统中UPS的故障率高居不下,尤其20KVA以下的小容量段。究其原因是:在UPS的选型及系统方案上存在严重缺陷,不仅没有为用户节省成本,反而在运营中埋下了安全隐患。由于1KVA-20KVA采用了商业型UPS单机系统,这类UPS的静态旁路和整流器的输入没有分开,在实际运行中,常因为UPS自身输入开关KI的跳闸,造成UPS电池放电完成后,没有旁路电源,致使系统负载掉电,严重影响轨道交通运行的安全性和可靠性。另外,还会因为逆变器过载跳旁路后,过载解除也不能自动恢复为逆变器供电,需要人为再次启动逆变器等。本文针对这些实际问题,提出了选型和改进方案。

关键词: 轨道交通工业型UPS电源,它只少应具有:Ⅰ、高等级的抗扰度,应用于严苛的电气环境。Ⅱ、整流器与静态旁路两路市电输入KI和KP,Ⅲ、逆变器因过载跳旁路后,过载解出能自动恢复为逆变器供电。

轨道交通行业UPS用电环境概述

当前轨道交通行业里,UPS电源系统承担了全线范围内控制中心、车站、车辆段等的通信系统与监控系统的供电,以及信息管理系统在控制中心和车辆段的数据机房的供电。也正因为UPS电源主要是给通信系统、综合监控系统、信息管理系统供电,人们大量采用商业型UPS,造成UPS的故障率居高不下,为轨道交通行业安全可靠地运行,带来了极大的安全隐患。就其原因是:对轨道交通行业的电气环境认识不足,只考虑了UPS的输入绿色要求,输出的过载能力。即输入功率因数≥ 0.95,输入电流谐波<5%,对电网没有污染。过载能力125% 10分钟,150% 1分钟。看似对电网及负载两端都有了要求。而唯独没有考虑到轨道交通行业里工业性的特征,即在轨道交通行业的电气环境中,UPS本身的适应性、可靠性。也可以说是UPS系统鲁棒性不足(鲁棒性就是系统的健壮性)。

如下图在机车进出站时,UPS输入端的电压波形实测图

从波形实测图可看出:在机车进出站时,由于大功率非线性用电设备的运行,向电网注入大量的谐波电流,导致电网电压波形畸变。根据我们的实测观察,在发生严重畸变时,电 压会出现正负半波不对称,三相电压不对称,频率也会发生变化等。

我们知道,商业型UPS的三相PWM整流器控制策略中,一般均假设三相电网电压不平衡度不超过2%,短时不超过4%,即电力系统公共连接点正常电压不平衡度允许值。这样一旦实际电网电压不平衡度太大时,将使三相PWM整流器直流侧电流产生6、12、18等6的整数倍的特征谐波和2、4、8、10等次数的非特征谐波,而直流电流谐波又导致产生三相PWM整流器直流电压谐波,直流电压谐波通过PWM作用反过来又会影响三相PWM整流器交流电流波形,使交流电流波形中含有奇次谐波。其中直流电压2次谐波和由其产生的交流电流3次谐波,因频率低、幅值高严重影响了三相PWM整流器的运行性能,严重时会烧坏整流器。

而工业型UPS为了在严苛的工作电气环境中的可靠性,一般三相PWM整流器控制策略,均假设三相电网电压不平衡度达40%,如电压空间矢量脉宽调制SVPWM的网侧瞬时功率控制策略,和工频三相IGBT整流技术,即全桥整流加有源滤波器,所以又叫混合式整流技术。混合式整流技术,可以在带载小于70%时,缺相工作运行。

在实测图中还可以看出电网电压波形严重畸变,这是轨道交通行业里最严重的问题。我们知道三相PWM整流器的硬件电路主要包括检测电路、锁相环电路、过流保护电路、光耦隔离电路和驱动电路。其中驱动电路,工作时是以输入电网电压正弦波形为调制波的。检测电路、锁相环电路都与电网电压正弦波形有关。检测电路要检测电网电压过零上升,锁相环电路为了实现三相的单位功率因数控制,需要找到和输入电网电压波形同步的基准量,从而获得电网电压的频率和相位。

在这里我们有必要谈谈UPS的输入特性,通常有:输入电压范围: ±20%,输入频率范围: 50Hz±10%的表述。所以,我们大都认为超出输入电压、频率范围时,UPS自身会判定为掉电,而转有电池逆变工作。这在常态的时候是对的,但在一些异常的瞬态畸变却未必,那怕你再调宽输入电压、频率范围,也不能解决问题。因为,我们在判定输入电压、频率超出范围时,通常是采用平均值法,就是说它在一个单位时间里有几个参考点要采集后才判定。举例说:我们不会把50HZ的正弦波形里的过零点,判定为掉电。这样就有个瞬态时间的问题。如果由于UPS的输入电压波形严重畸变,这时UPS的整流器会因为跟踪的正弦波形畸变率较高,IGBT驱动脉冲紊乱,驱动器功率不足或选择错误而导致故障,使整流IGBT元件烧毁。而这些问题,正是工业型UPS的抗扰性要求,已经得到很好的解决,已大量应用于电厂、电站、冶金、钢铁等电网电压波形严重畸变的行业。

一、目前轨道交通通信信号系统介绍及通信信号电源系统构成 A、轨道交通通信系统介绍

轨道交通通信系统的任务是建立一个视听链路网,提高现代化管理水平和传递语音、数据、图像及文字等各种信息。系统主要由传输系统、公务电话系统、专用电话系统、无线通信系统、广播系统、时钟系统、视频监控系统、乘客信息系统、电源及接地系统、通信综合网络管理系统等子系统组成。B、轨道交通信号系统介绍

城市轨道交通信号系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。

城市轨道交通信号系统通常由列车自动控制系统,简称ATC。ATC系统包括三个子系统:

1、列车自动监控系统,简称ATS,2、列车自动防护子系统,简称ATP,3、列车自动运行系统,简称ATO。

三个子系统通过信息交换网络构成闭环系统,实现地面控制与车上控制结合、现地控制与中央控制结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的列车自动控制系统。C、目前轨道交通通信信号电源系统,由于成本的原因,大都采用商业型UPS单机,构成图如下:

图1

目前轨道交通通信电源系统

图2 目前轨道交通信号电源系统

从图1和图2中可以分析出,轨道交通通信信号电源系统中,UPS现实影响轨道交通安全运行,使运营方、厂家常感头疼的故障原因:

1、在系统构成方面,两路市电经过ATS互投给稳压器(稳压器本身有旁路)输入,稳压器输出给UPS电源,UPS再输出给交流配电柜,也就是说,轨道交通通信电源系统的不间断是由UPS来完成的,可见UPS的重要性。不幸的是由于1KVA-20KVA采用了商业型UPS单机系统,这类UPS的静态旁路和整流器的输入没有分开,在实际运行中,常因为UPS自身输入开关KI的跳闸,造成UPS电池放电完成后,没有旁路电源,致使系统负载掉电,严重影响轨道交通运行的安全性和可靠性。

UPS输入开关KI的跳闸,有多方面的原因,大致分为:

1、开关本身存在质量问题。一些质量较差的开关,一旦使用时间长了,其脱口机构就会疲乏,时不时的会跳闸。

2、开关二次侧有短路现象。如:UPS整流器故障,UPS输入端子有短路现象,这种跳闸在实际运行中常出现。

3、过载原因的跳闸。即一切可能引起过流的原因。如谐波、浪涌、电压骤降、启动电流、虚接等等。

2、在系统的UPS选型方面,因为采用了商业型UPS,在实际运行中,不仅会由于UPS本身 设计的抗扰度不高而造成整流器故障频发,还会因为逆变器过载跳旁路后,过载解除也不能自动恢复为逆变器供电,需要人为再次启动逆变器,为轨道交通运行的安全带来了严重缺陷。从图

1、图2中,可以看到: UPS因过载(如通信信号电源,在输出到负载时,常用隔离变压器隔离输出,变压器有启动励磁电流,会造成逆变器过载),在转换到旁路运行时,如果过载解除也不能自动恢复为逆变器供电,那么此时任何一路市电掉电,都会造成负载的掉电。因为ATS的切换时间至少大于50ms。

所以,UPS主机应选用轨道交通专有的工业型UPS,它应具有:Ⅰ、高等级的抗扰度,应用于严苛的电气环境(抗扰度包括:1.辐射敏感度试验、2.工频磁场辐射敏感度试验、3.射频场感应的传导敏感度、4.电快速瞬态脉冲群抗扰度、5.浪涌抗扰度、6.电压跌落与中断抗扰度、7.电力线感应/接触、8.静电放电抗扰度)。Ⅱ、整流器与静态旁路两路市电输入KI和KP,Ⅲ、逆变器因过载跳旁路后,过载解除能自动恢复为逆变器供电。

二、轨道交通通信信号电源系统的工业型UPS选型和改进方案。

图3 改进后轨道交通通信电源系统

图4 改进后轨道交通信号电源系统

从图3和图4中可以看出,在轨道交通通信信号电源工业型UPS系统中,UPS的整流器与静态旁路,有两路市电输入KI和KP,杜绝了只有输入开关KI的风险。稳压器电源只给旁路供电,因为,工业型UPS的主输入,即整流器输入不需要稳压器来保护,且稳压器的响应时间通常在1秒左右,适合长时间的高电压或低电压调整,如果旁路备用电源电压时常不稳时,可用稳压器来调整,毕竟UPS跳旁路时,旁路备用电源是直接供给负载的。

另外,在这里要强调一下工业型UPS的问题,工业型UPS用一句话来总结,其实就是可 靠性比商业型UPS高。

UPS系统在规定的条件下,规定的时间内,完成规定功能的能力称为可靠性,。长期以来,人们只用产品的技术性能指标作为衡量UPS质量好坏的标志,这只反映了UPS产品质量好坏的一个次要方面,还不能反映UPS产品质量的主要方面。因为,如果UPS产品不可靠,即使其技术性能再卓越也得不到发挥。从某种意义上说,可靠性可以综合反映UPS产品的质量。

首先,产品依照标准的原则,顺序为:专用产品类标准→产品类标准→通用标准。也就是说:专用产品类标准为高等级,它的适应性和可靠性最高。就UPS这类电力电子产品而言,我们通常以应用领域来分类。如下图:

工业型UPS就显性而言有三要素即:Ⅰ、高等级的抗扰度,应用于严苛的电气环境(抗扰度包括:1.辐射敏感度试验、2.工频磁场辐射敏感度试验、3.射频场感应的传导敏感度、4.电快速瞬态脉冲群抗扰度、5.浪涌抗扰度、6.电压跌落与中断抗扰度、7.电力线感应/接触、8.静电放电抗扰度)。Ⅱ、可选配的高等级IP防护等级,应用于恶劣的空间环境。Ⅲ、工频变压器的电气隔离,可再生一个TN-S系统或IT系统,即零线灵活更好的服务于用户,也可减少系统风险。在这三要素中,唯有第一条是有标准可寻的。在IEC62040-2-2005,EMC电磁兼容标准中,把UPS分为C1、C2、C3、C4类,即居民区、商业区和轻工业区、工业区、特殊定制区。

在环境方面,商业级UPS通常应用于IDC机房内,对温度、湿度、粉尘、腐蚀性气体有严格的要求,不能用于严酷场合,而工业级UPS则通常应用于高温高湿多粉尘或盐雾的场合;在可靠性方面,商业级UPS设计寿命通常在5年左右,而工业级UPS则通过选用工业级甚至军用级器件、增大冗余度、强化工艺设计和提高安全性配置等技术使产品寿命达到甚至超过20年。另外,在电气环境、负载特性、机械强度、电气隔离、输入输出保护、通讯接口、旁路要求、附件选择、IP防护等级和钣金要求等方面,市场对工业级UPS的要求均远高于商业级UPS。以上所述,工业型UPS最大的特点就是安全可靠,安全可靠是工业型UPS压到一切的前提。

要铸就高可靠性的UPS,以下两点尤为重要:

1、成熟的产品设计开发。可靠性的精髓在于可靠性设计,只有做好可靠性设计才能提升产品质量。可靠性的提升主要集中在研发阶段、定型之前。就工业级UPS而言,要大量的工业电气环境资料及负载情况,来验证各种主电路的适应性、PCB板的布局合理性及样品、成品的EMC电磁兼容性。任何电磁兼容性问题都包含三个要素,即干扰源、敏感源和耦合路径,这三个要素中缺少一个,电磁兼容问题就不会存在。因此,在解决电磁兼容问题时,也要从这三个要素入手进行分析,查清这三个要素是什么,然后根据具体情况,采取适当的 措施消除其中的一个。这样产品的电磁干扰 EMI、电磁抗扰性EMS才能符合标准要求,在相应的电气环境中运行可靠。其次,UPS产品的使用环境日益严酷。从热带到寒带,从陆地到蓝海,从高空到宇宙空间,经受着不同的环境条件,除温度、湿度影响外,盐雾、冲击、振动等对UPS的影响,导致产品失效的可能性也会增大。因此,不仅是EMC抗扰度,单就外观上就可以看出工业型UPS的结构坚固性,从这个层面来说每一个行业都应该有相应行业的专用UPS。

2、成熟的产品制作工艺。我们知道同样的产品图纸,不同的生产厂出来的产品质量,即便是高度标准化生产的今天也显然会参差不齐。这就是成熟的制作工艺基础的问题,它需要长期经验的积累,就是说要有时间长度的工厂才具有此类特质。

任何一个元器件、任何一个焊点发生故障都将导致UPS系统发生故障。UPS系统属于典型的电力电子产品,一般认为,电力电子技术的诞生是以1957年第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。此前就已经有用于电力变换的电子技术,所以晶闸管出现前的时期可称为电力电子技术的史前或黎明时期。70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(Power-MOSFET)为代表的全控型器件全速发展(全控型器件的特点是通过对门极既栅极或基极的控制既可以使其开通又可以使其关断)。使电力电子技术的面貌焕然一新进入了新的发展阶段。80年代后期,以绝缘栅极双极型晶体管(IGBT 可看作MOSFET和BJT的复合)为代表的复合型器件集驱动功率小,开关速度快,通态压降小,载流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。

而作为电力电子技术在电源应用上的首要问题却是散热。这一点与大多数人认为的散热就是打几个孔,加几个风扇完全不同,相去甚远。因为,散热效果的好坏,直接关系到产品的系统稳定性,有国外电源专家甚至说,他们产品的稳定性高,就是散热片面积大,没有什么高精尖技术。国内外的电源产商在散热方面的人力物力投入也价值不菲。中航太克(厦门)电子有限公司的专利技术,密闭式高效散热风道和风扇冗余设计,整机四个独立风道,每个风道都有两个以上的风扇,转速智能化控制设计。是默默深耕工业电源领域十多年的重大专利技术,它提高了25%以上的散热效果。

ups电源常见故障分析 第2篇

本文列举了一些会造成UPS出现故障现象的因素以及简单处理方法:

在日常处理Smart-UPS报修申请的过程中,我们发现有许多UPS的故障现象是由于电池、市电、使用环境和使用方法等因素造成的,有相当一部分UPS本身并没有出现故障。如果能将这些因素找出来,判断出并非是由于UPS引起的故障现象,可以更快速的为客户解决问题。下面我们详细列出这些影响UPS运行的因素:

蓄电池。

据资料分析,在返修的UPS中,由于蓄电池故障而引起UPS不能正常工作的比例大约占三分之一。所以,我们要特别注意蓄电池是否出现故障。

由于电池问题引起的故障现象大约有下面几种:

1.UPS不能启动。

因为Smart-UPS是由直流启动的,所以当没有接电池、电池低电或电池有问题等情况下UPS就不能启动。下面还有几种类似的情况:

第一种情况:新安装的UPS不能启动。

如果UPS是SUA1000ICH这种机型,请检查UPS后面板的电池连接插头是否连接。如果是SU3000RMI3U这种机架式的UPS,请打开前面板检查电池是否连接。

由于新的电池在存放的过程中会有自放电的现象,所以电池处在低电状态UPS不能启动。这时候需要将UPS与电池和市电连接好,按UPS前面板的Test按钮,虽然UPS面板显示灯不会亮,但这时UPS会给电池充电。充电一段时间后,再按Test键UPS就可以启动工作了。

第二种情况:UPS逆变工作了一段时间后,UPS不能启动。

同样是因为电池低电,需要给电池充电。

第三种情况:电池用了2年左右,UPS不能启动。

根据大多数客户的使用情况来讲,电池在使用了两年以后一般会出现或多过少的容量下降问题,如果电池不能起到延时的作用就需要更换新的电池。

第四种情况:单节电池的电压都很正常,但UPS不能启动。

这时虽然单节电池电压正常,1.很可能是由于电池与电池之间的连接或电池与UPS之间的连接出现问题,比如:连接点不牢固或者是连接点有氧化现象,这时侯就需要祛除氧化物后重新连接。2.可能是UPS与电池连线的保险断了,如果是保险断了换一个保险即可。3.UPS与电池之间的连线很长、很细或中间有连接点,因此产生了很大的压降,导致UPS不能起动。

2.市电断电后UPS不能转到逆变状态下工作。

让UPS在市电状态下工作,将万用表设在电压档,表笔接在UPS背面安德森插头的里面,直接测量到达UPS的直流电压。此时,一个人观察万用表显示,另一个人拔掉UPS的输入线,观察断电瞬间万用表的显示,如果电压值瞬间下降很多,说明电池部分有问题,如果能够排除连接上的问题,而且电池也已经使用两年左右了,就需要考虑更换电池组。

3.UPS逆变时间短,达不到客户要求。

第一,Smart-UPS长延时机型必须在安装之初就设置电池参数,如果没有设置电池参数就会出现逆变时间短这样的问题。

第二,已经设置了电池参数,但UPS的逆变时间仍然很短。您可以在UPS低电报警的时候,测量电池电压,如果测量值显示电池的确处于低电状态,那就需要更换电池。如果测量值显示电池并不是处于低电状态,那就需要您作充放电校验。注意在充放电校验中,电池要保证充满,放电时需要带50%左右的负载。

第三,安装了PowerChute Plus软件,因为软件的默认设置为:市电中断后5分种计算机关闭,所以需要您修改软件中的参数.市电环境。

1.电网干扰。

如果电网内存在非常严重的干扰,比如电压下陷等电源干扰就有可能会造成UPS出现断电等故障现象。下面我们列举一些这样的市电干扰。您可以安装PowerChute Plus软件,通过软件的事件记录了解电网内是否存在电源干扰。如果在事件记录中看到很多的这样的记录,表明您的市电电网存在比较严重的干扰,这种干扰还会降低电池的使用寿命。如果条件允许,建议您更换一路市电输入或者改造电网。

PowerChute Plus事件记录可以记录的市电干扰:

UPS on battery: Deep momentary sag 深度电压下陷

UPS on battery: Large momentary spike 深度高电压脉冲

UPS on battery: Brownout 持续低电压

UPS on battery: High input Line voltage 高输入电压

UPS on battery: Small momentary spike 轻度高电压脉冲

UPS on battery: Small momentary sag 轻度电压下陷

2.UPS输入端安装了漏电保护器。

当UPS开机时会造成漏电保护器跳闸,如果您需要安装漏电保护器,那么就需要将漏电保护器接到UPS的输出线上。

3.UPS输入端的空气开关跳闸。

这种现象可能是因为UPS输入端的空气开关容量小造成的,因为UPS的启动电流比较大,所以要求其前端空气开关的容量要足够大。

4.UPS逆变状态与在线状态频繁转换。

第一,有可能是市电波动造成的。第二,如果您使用了发电机,那么就会发生这种情况。

操作方法:

1.Smart-UPS不能冷启动,但可以正常逆变工作。

这属于操作方法不对,正确的冷启动步骤为:按住Test键,大约4秒钟听到“嘀”声后立即松手,UPS即可冷启动。如果按的时间过长或过短,UPS都不能冷启动。建议您按照这个操作步骤多试几次。

2.UPS与计算机通讯不正常。

如果您没有使用APC原装的通讯线,就会发生这种问题。

4.SU5000UXI,SU5000INET,SU5000RMINET输入线的连接方法。

这三种机型在出厂时不带输入线缆,但有专用的输入线缆接线端子。输入线缆连接步骤:找出UPS输入线缆的接线端子(对于SU5000INET其输入线缆接线端子在UPS背部的右上角,对于SU5000RMINET在UPS背部的左上角),它隐藏于盖板内,盖板由一螺丝固定,需要用改锥松动此螺丝并取下盖板连接输入线。

5.Smart-UPS在线工作时风扇频繁启动。

这种情况是由于UPS机内温度比较高造成的,您可以安装PowerChute Plus观察UPS内部温度,一般是机内达到40摄氏度的时候风扇启动。这样的设计是为提高UPS的使用寿命和运行可靠性。

其它因素:

1.Smart-UPS时常有过载报警。

请检查是否有打印机连接到UPS上,不建议您将打印机接在UPS后面,因为打印机在作打印的时候工作电流会突然增大许多,可能会造成UPS过载而断电。同样不建议在UPS后面接电源插座,因为可能会发生由于电源插座瞬间短路而造成UPS过载。

2.Matrix5000, Matrix3000的液晶显示板显示:No Battery Communications

ups电源常见故障分析 第3篇

关键词:UPS,故障分析,处理

所谓的UPS, 即不间断电源, 是将蓄电池 (多为铅酸免维护蓄电池) 与主机相连接, 通过主机逆变器等模块电路将直流电转换成市电的系统设备。本文就UPS不间断电源供电故障与处理进行了分析, 详细研究了故障产生的原因以及提出了一些有效的处理方案, 以期能为类似的供电故障与处理提供参考。

1 UPS工作原理介绍

某某IDC机房供电采用2套UPS设备并联共用1套蓄电池的结构, 正常情况下, 2套UPS互为备用, 其中1套正常工作即可满足使用工况。UPS供电模式分为以下3种。

(1) 主电源供电模式。主电源供电模式为UPS正常工作模式, 在此模式下, 负载由电源l经整流充电器和逆变器供电, 整流充电器同时给蓄电池组浮充充电。

(2) 静态旁路供电模式。电源2回路称为静态旁路, 作为电源1的后备。在UPSI和UPSZ的逆变器电压输出故障时, 静态开关自动导通, 负载不间断切换为电源2回路供电模式。

(3) 蓄电池供电模式。此种模式为应急工作模式, 当电源1和电源2供电中断时, 供电流程转换为蓄电池组经逆变器给负载输出电力;当2套UPS同时为蓄电池组供电模式时, 将触发安装在负载开关1上的时间继电器, 蓄电池组持续向外供电半小时后, 时间继电器发出信号断开负载开关1, 以保证负载开关2下的通信系统等设备的电力供应, 以此实现负载优先级的设置。

2 故障现象及原因分析

该机房发生过2次因UPS系统供电电源中断而导致的停产事件。事件发生时, 该机房电网工作正常, 2套UPS均为蓄电池供电模式, 负载开关处于分闸位置。

该机房的UPS为艾默生Liebert NX-120KVA型产品。在主电源正常的情况下, 2套UPS同时转换为蓄电池供电模式, 表明2套UPS充电器同时发生了故障, 但事后检查充电器无异常, 重新启动2台充电器, 均可正常运行。为了彻底查清原因并解决问题, 技术人员和UPS厂家工程师对产品的性能和使用工况进行了一次全面的数据收集和调研, 进而确定故障的具体原因。下面介绍排查工作的具体步骤。

(1) 参数设置和记录跟踪

运用TLS软件与UPS系统进行在线通信, 对机组PLC模块内的基本参数设定值和在线测量数据进行检查, 无异常发现。在报警记录的检查中, 发现“电源2相位超限”报警频繁出现, 出现频率约为每小时10次, 报警状态持续时间约4~8s, 在此报警产生的时间内UPS自动切换到电源2带载的功能将被禁止。又由于此报警为自动复位式报警, 因此UPS系统会在此报警自动复位消失后恢复电源2的正常工作状态。

(2) 波形采集及分析

用FLUKE43B电网分析仪对电源1和电源2的输入波形。电源2的输出波形以及逆变器的输出波形进行取样分析, 波形分析结果无异常。

(3) 局域电网结构分析

UPS电源1和电源2的供电电源均为平台电网, 单台发电机工作时的电网最大输出有功功率为4000k W, 日常带载量约为1600k W。平台电网具有网小但工况复杂的特点, 电网内设备种类 (包括变压器。马达。变频器和海缆等) 相对较多, 设备的突加突卸现象较频繁。对电网进行分析后, 结合上面两步的分析结果, 初步认定相对大功率设备的频繁启动可能是UPS“电源2相位超限”报警频繁产生的原因。

(4) 故障原因确定与验证

在假定了报警原因为大功率设备频繁启动的前提下, 决定在大功率设备旁进行蹲点测试, 选取1台l07k W的空调制冷压缩机 (星三角启动) 进行实测。实测发现在压缩机每次启动时, UPS便产生“电源2相位超限”报警, 报警持续4~8s, 与电机启动时间相符。从而确定。电源2相位超限。报警产生原因:当平台大功率设备启动时, 电源2的输人输出电压产生畸变, 导致相位超限并报警。由此进一步推论, 如果在短时间内有多台大功率设备先后启动, 那么电源1的输人波形和电源2的输人输出波形将产生畸变, 且畸变率逐渐增高, 畸变持续时间增长;电源2的畸变导致“电源2相位超限”报警的自动复位时间加长;电源1的高畸变率会使整流充电器误判为输人电压异常, 而使整流充电器保护性停止工作;电源1和电源2的同时故障, 使负载只能切换到蓄电池带载模式, 电池放电结束, DCS系统失电。这样就出现了UPS故障导致平台停产时电网工作正常的工况, 且一年约一次的出现频率也与推论中的极端工况相符。

3 系统故障分析及解决办法

实际工况决定了故障不大可能从根本上杜绝, 因此决定将UPS报警信号接人中控DCS系统, 以便设备产生故障报警后, 在状态可控前提下, 通过中断报警工况来阻止事态进一步扩大。具体处理思路如图1所示。

4 技术改造方案选择及实施

4.1 方案选择

要实现上面所描述的预防控制功能, 需将UPS的报警信号接人中控DCS系统, UPS机组能提供的接入方案有2种。

(1) 方案1:通过UPS通信卡件端口接入中控。UPS系统, 并在DCS电脑上安装UPS厂家工程师软件以实现远程在线监控。该方案优点在于能读取UPS设备的所有信息及数据;缺点在于中控DCS系统和UPS分属不同厂家, 不能认证加装在DCS电脑上的UPS厂家工程师软件, 这对DCS系统的稳定性有影响, DCS系统配合难度较大, 风险不可控。

(2) 方案2:串联UPS机组报警输出卡件上的开关触点, 将各类报警综合为1对公共故障报警信号接入DCS系统。该方案接入DCS系统的为无源开关信号, DCS系统在工程设计中预留有开关信号接人功能的卡件, 因此硬件接入条件满足;软件方面需在DCS系统内添加报警记录和报警输出界面, 对此仅利用DCS系统自身的软件就可实现。这种施工方案简单且接人的信号不影响DCS系统的稳定性, 缺点在于不能读取UPS系统详细的信息和数据。

从实际需求和改造难度综合考虑后, 认为方案2改动工作操作难度小、风险可控、功能满足既定目标, 更具可行性。

4.2 方案实施

方案的确定, 使检修工作进人了最后的图纸设计和现场施工阶段, 软硬件的配置是决定改造方案的基本条件, 主要涉及以下几方面。

(1) UPS报警输出卡件上均为无源常开和常闭触点, 触点电气参数为220VAC/5A, DCS系统卡件电压为24VDC, 触点电气参数满足接人条件。

(2) 串人的公共报警信号包括低电量关机警告、电池负载、维护配置、通用报警、逆变器负载等, 功能上最大限度地涵盖了各类输出报警工况。

(3) “电池负载”报警输出点已被占用, 故需加装中间继电器进行扩展。

根据以上实际条件和需要实现的功能, 在原图纸中进行了改动设计, 接线如图2所示。虚线为本次改动的接线, 除U11~U14, U21~U24外, 其余均为添加的新线, R1和R2为新添加的中间继电器。

在改动设计中, 将5类报警信号串联为1对开关信号接入DCS系统。在UPS正常工作时, DCS接收到的为常闭开关信号;一旦有故障报警信号产生, 串联回路就断开, DCS接收到的常闭开关信号消失, 触发DCS系统产生报警信号。为保证接线改动影响UPS系统的稳定性和功能, 利用UPS自身的输出电源作为中间继电器的驱动电源, 整个报警回路则遵循失电安全型规则。改动中, 新加中间继电器2个, 涉及到接线18根, 其中新加接线10根, 原有接线改向8根。

改造完成后, 对各种报警信号进行现场实际模拟测试, 每次均能将报警信号及时传人中控DCS系统, 动作及时可靠。

5 结束语

综上所述, UPS对许多行业的安全生产起到重要的作用。UPS在实际的运行中, 存在着各种各样的故障问题, 影响到UPS系统的稳定性和可靠性。所以, 为了及时处理UPS在日常运行中出现的故障, 就要提高理论知识, 结合实际采取相应有效的措施处理故障, 从而确保UPS的正常运行。

参考文献

[1]郭建军, 周松养.UPS故障诊断及处理[J].中国有限电视, 2012 (05) .

通信电源设备的常见故障分析 第4篇

【关键词】通信电源设备;故障;分析

一、引言

通信离不开电源,通信电源是通信的保障,所以保证通信电源系统的安全运行,对保证通信系统的畅通乃至通信的安全有着积极的意义。通信电源系统是对通信局站各种通信设备及建筑负荷等提供用电的设备和系统的总称。主要由备用发电系统、高压供电系统、变压器系统、不间断电源系统、后备电源系统、直流系统、接地防雷系统以及动力环境监控系统等多个子系统组成。电源系统故障分为一般性故障和紧急故障。一般性故障指不会影响通信安全的故障,包括交流防雷器雷击损坏、系统内部通信中断、单个模块无输出、监控单元损坏等;紧急故障指影响通信安全的故障,包括交流输入与控制损坏而导致交流停电、直流采样和控制电路损坏而导致直流负载掉电等。如果不能及时有效地对故障进行处理,将导致通信系统的瘫痪,带来严重的损失,因此,必须对通信电源常见的故障与处理给予充分重视。

二、交流配电单元的故障

1、防雷器单元

防雷器是由四个片状防雷单元组成,其中三个防雷单元具有状态显示功能,可以显示防雷单元是否处于完好状态。防雷单元窗口颜色为绿色时,表示防雷单元处于完好状态;某个防雷单元窗口颜色为红色时,则表示该防雷单元已损坏,应尽快更换防雷模块。

如果防雷器没有损坏,而监控单元报防雷器告警,就需要检查防雷器的接触是否良好,可以将防雷模块拔下来重插。如果是菲尼克斯的防雷模块,则需要检查底座是不是良好。

2、交流输入缺相

当监控单元或后台报告交流输入缺相时,确定真缺相则无需理会;如果交流实际没有缺相,那么可能是交流变送器出现故障。可以用万用表测量变送器的端子是否有3V左右的直流电压,如果某一个没有,则说明交流变送器损坏,应急解决办法是将该端子的检测线并到其他两个端子的任意一个上;长久解决办法则须更换交流变送器。

更换交流变送器的方法:首先必须断开电源系统的交流电和关掉监控单元的电源,否则可能对人身造成伤害或烧坏交流变送器。更换时如果连接线上没有标识,那么在拆交流变送器之前需要要做好相应的标识,否则在安装时会造成不便。

注意事项:安装好交流变送器后,需要检查连线无误后,方可送上交流电,然后打开监控单元的电源。核实交流显示是否与实际测量电压相符。

3、交流接触器不吸合

对于采用交流接触器自动切换的电源系统,如果交流接触器不吸合,那么可能是下面几个情况引起的:①交流输入的A相缺相;②交流接触器线圈供电保险丝烧坏(此故障出现在早期的电源柜);③控制交流接触的辅助交流接触器损坏(早期电源上有辅助交流接触器);④交流接触器控制板(CEPU板)出现故障;⑤交流接触器线圈烧坏。

解决方法是用万用表进行检查,断开交流输入用万用表测量交流接触器的线圈,如果开路,那么说明交流接触器损坏,更换交流接触器即可。

交流接触器更换方法:首先必须将电源柜的交流电断开,更换前将各个连接线用标签做好标识;由于这两个交流接触器是机械互锁的,所以要注意安装好交流接触器之间的辅助触点和控制线;将交流接触器两端的交流导线连接牢靠,不能有松动。

三、直流配电单元故障处理

1、监控单元出现直流断路器断开报警

如果直流断路器确实已经断开,属于正常报警,无需处理;若断路器没有断开,而监控单元报警,则是由于检测线出现断开所致。处理方法是检查断路器的检测线,也可以用“替换法”来定位问题所在。

2、直流断路器故障

蓄电池下电保护用的直流断路器使用的是常闭触点,在不控制的情况断路器是闭合的。如果给了断路器的断开控制信号而断路器不断开,说明断路器已经故障,更换即可。

3、直流输出电流显示不正确

直流电流显示不正确分两种情况:①显示值与实测值比较偏大或偏小,原因是电流传感器的斜率选择不正确,在监控中将调整斜率调整合适即可;②电流显示出现异常情况,非常大或电流值显示不稳定。对于用分流器检测电流的设备来说是检测通道不通导致的:一种可能是分流器两边的检测线接触不良,可以关掉监控单元的电源,取下检测线用电烙铁将其焊接好即可;另外一种可能就是检测线接插件插针歪或接触不好,可以用镊子之类的工具将歪针校正或将接插件插好即可。

四、整流器故障处理

1、整流器无输出

整流器不工作,面板指示灯均不亮

首先检查整流器的交流输入开关是否合上,其次检查整流器的输入熔丝是否熔断;另一种情况是模块可能发生故障,此时需要更换故障模块。

整流器输入灯亮,输出灯不亮,故障灯亮

首先用万用表测量交流输入电压是否在正常范围内(160-280Vac),如果交流电压不正常,那么整流器处于保护状态;另一种情况是整流器出现了故障。

2、过热

整流器内部主散热器上温度超过85℃时,模块停止输出,此时监控单元有告警信息显示。模块过热可能是因为风扇受阻或严重老化、整流器内部电路工作不良引起,对前一种原因应更换风扇,后一种原因需对该电源模块进行维修。

3、风扇故障

风扇故障的特征是风扇在该转的时候不转。这时应检查风扇是否被堵塞,如果是,清除堵塞物;否则,则是风扇本身损坏或连接控制部分发生故障,需拆下模块进行维修。

4、过流保护

整流器具有过流保护功能。若输出短路,则模块回缩保护,输出电压低于20V时整流器关机,此时面板上的限流指示燈亮。故障排除后,模块自动恢复正常工作。

结束语

总之,电源作为通信系统的核心设备,是整个通信网络稳定运行的保障。因此,工作人员必须认真做好通信电源的维护工作,不断总结分析常见故障的原因和处理方法,做到有效预防、处理及时。要对大规模的通信网提供安全可靠的供电并保证通信不间断,同时在人员较少的清况下还要对种类繁杂、数量众多、分布广泛的电源设备进行日常维护和故障抢修,因此建立一套科学完善的通信电源维护机制和制度,实现维护工作效率最大化、科学化,使管理水平日益增高,以适应行业的更快速发展,就变得势在必行,这也是通信电源专业追求的目标。

UPS常见故障原因与解决方案 第5篇

李小姐 QQ:2881164806 UPS常见故障原因与解决方案

在日常处理Smart-UPS报修申请的过程中,我们发现有许多UPS的故障现象是由于电池、市电、使用环境和使用方法等因素造成的,有相当一部分UPS本身并没有出现故障。如果能将这些因素找出来,判断出并非是由于UPS引起的故障现象,可以更快速的为客户解决问题。下面我们详细列出这些影响UPS运行的因素:

一、市电环境

1.电网

如果电网内存在非常严重的*,比如电压下陷等电源*就有可能会造成UPS出现断电等故障现象。下面我们列举一些这样的市电*。您可以安装PowerChutePlus软件,通过软件的事件记录了解电网内是否存在电源*。如果在事件记录中看到很多的这样的记录,表明您的市电电网存在比较严重的*,这种*还会降低电池的使用寿命。如果条件允许,建议您更换一路市电输入或者改造电网。

2.UPS输入端安装了漏电保护器。

当UPS开机时会造成漏电保护器跳闸,如果您需要安装漏电保护器,那么就需要将漏电保护器接到UPS的输出线上。

3.UPS输入端的空气开关跳闸。

这种现象可能是因为UPS输入端的空气开关容量小造成的,因为UPS的启动电流比较大,所以要求其前端空气开关的容量要足够大。

4.UPS逆变状态与在线状态频繁转换。第一,有可能是市电波动造成的。

第二,如果您使用了发电机,那么就会发生这种情况。

※操作方法:

1.Smart-UPS不能冷启动,但可以正常逆变工作。

这属于操作方法不对,正确的冷启动步骤为:按住Test键,大约4秒钟听到“嘀”声后立即松手,UPS即可冷启动。如果按的时间过长或过短,UPS都不能冷启动。建议您按照这个操作步骤多试几次。

2.UPS与计算机通讯不正常。

如果您没有使用APC原装的通讯线,就会发生这种问题。3.SU5000UXI,SU5000INET,SU5000RMINET输入线的连接方法。

这三种机型在出厂时不带输入线缆,但有专用的输入线缆接线端子。输入线缆连接步骤:找出UPS输入线缆的接线端子(对于SU5000INET其输入线缆接线端子在UPS背部的右上角,对于SU5000RMINET在UPS背部的左上角),它隐藏于盖板内,盖板由一螺丝固定,需要用改锥松动此螺丝并取下盖板连接输入线。

4.Smart-UPS在线工作时风扇频繁启动。

这种情况是由于UPS机内温度比较高造成的,您可以安装PowerChutePlus观察UPS内

/ 3

北京中企智电科技有限公司

李小姐 QQ:2881164806 部温度,一般是机内达到40摄氏度的时候风扇启动。这样的设计是为提高UPS的使用寿命和运行可靠性。

二、蓄电池

据资料分析,在返修的UPS中,由于蓄电池故障而引起UPS不能正常工作的比例大约占三分之一。所以,我们要特别注意蓄电池是否出现故障。

由于电池问题引起的故障现象大约有下面几种: 1.UPS不能启动。

因为Smart-UPS是由直流启动的,所以当没有接电池、电池低电或电池有问题等情况下UPS就不能启动。下面还有几种类似的情况:

第一种情况:新安装的UPS不能启动。

如果UPS是SUA1000ICH这种机型,请检查UPS后面板的电池连接插头是否连接。如果是SU3000RMI3U这种机架式的UPS,请打开前面板检查电池是否连接。

由于新的电池在存放的过程中会有自放电的现象,所以电池处在低电状态UPS不能启动。这时候需要将UPS与电池和市电连接好,按UPS前面板的Test按钮,虽然UPS面板显示灯不会亮,但这时UPS会给电池充电。充电一段时间后,再按Test键UPS就可以启动工作了。

第二种情况:UPS逆变工作了一段时间后,UPS不能启动。同样是因为电池低电,需要给电池充电。第三种情况:电池用了2年左右,UPS不能启动。

根据大多数客户的使用情况来讲,电池在使用了两年以后一般会出现或多过少的容量下降问题,如果电池不能起到延时的作用就需要更换新的电池。

第四种情况:单节电池的电压都很正常,但UPS不能启动。

这时虽然单节电池电压正常,1.很可能是由于电池与电池之间的连接或电池与UPS之间的连接出现问题,比如:连接点不牢固或者是连接点有氧化现象,这时侯就需要祛除氧化物后重新连接。2.可能是UPS与电池连线的保险断了,如果是保险断了换一个保险即可。3.UPS与电池之间的连线很长、很细或中间有连接点,因此产生了很大的压降,导致UPS不能起动。

2.市电断电后UPS不能转到逆变状态下工作。

让UPS在市电状态下工作,将万用表设在电压档,表笔接在UPS背面安德森插头的里面,直接测量到达UPS的直流电压。此时,一个人观察万用表显示,另一个人拔掉UPS的输入线,观察断电瞬间万用表的显示,如果电压值瞬间下降很多,说明电池部分有问题,如果能够排除连接上的问题,而且电池也已经使用两年左右了,就需要考虑更换电池组。

3.UPS逆变时间短,达不到客户要求。

第一,Smart-UPS长延时机型必须在安装之初就设置电池参数,如果没有设置电池参数就会出现逆变时间短这样的问题。

/ 3

北京中企智电科技有限公司

李小姐 QQ:2881164806 第二,已经设置了电池参数,但UPS的逆变时间仍然很短。您可以在UPS低电报警的时候,测量电池电压,如果测量值显示电池的确处于低电状态,那就需要更换电池。如果测量值显示电池并不是处于低电状态,那就需要您作充放电校验。注意在充放电校验中,电池要保证充满,放电时需要带50%左右的负载。

第三,安装了PowerChutePlus软件,因为软件的默认设置为:市电中断后5分种计算机关闭,所以需要您修改软件中的参数.三、其它因素:

1.Smart-UPS时常有过载报警。

请检查是否有打印机连接到UPS上,不建议您将打印机接在UPS后面,因为打印机在作打印的时候工作电流会突然增大许多,可能会造成UPS过载而断电。同样不建议在UPS后面接电源插座,因为可能会发生由于电源插座瞬间短路而造成UPS过载。

2.Matrix5000,Matrix3000的液晶显示板显示:NoBatteryCommunications 这是因为没有配置SmartCell或SmartCellXR原装电池包的缘故。这条信息只是显示“没有电池通讯”,不会影响UPS的正常工作。

论通信电源常见故障与处理论文 第6篇

论文关键词:通信电源 故障 处理

论文摘要:笔者结合多年现场实际工作经验,对通信电源的常见故障进行了总结分析,并详细介绍了各类故障的通用处理方法,仅供同行业工作人员参考。

1、引言

电源是通信系统的关键设备之一,因其采用模块化设计,在发生局部的或单元的故障时一般不会扩散。电源系统故障分为一般性故障和紧急故障。一般性故障指不会影响通信安全的故障,包括交流防雷器雷击损坏、系统内部通信中断、单个模块无输出、监控单元损坏等;紧急故障指影响通信安全的故障,包括交流输入与控制损坏而导致交流停电、直流采样和控制电路损坏而导致直流负载掉电等。如果不能及时有效地对故障进行处理,将导致通信系统的瘫痪,带来严重的损失,因此,必须对通信电源常见的故障与处理给予充分重视。

2、交流配电单元的故障处理

2.1 防雷器单元

防雷器是由四个片状防雷单元组成,其中三个防雷单元具有状态显示功能,可以显示防雷单元是否处于完好状态。防雷单元窗口颜色为绿色时,表示防雷单元处于完好状态;某个防雷单元窗口颜色为红色时,则表示该防雷单元已损坏,应尽快更换防雷模块。

如果防雷器没有损坏,而监控单元报防雷器告警,就需要检查防雷器的接触是否良好,可以将防雷模块拔下来重插。如果是菲尼克斯的防雷模块,则需要检查底座是不是良好。

2.2 交流输入缺相

当监控单元或后台报交流输入缺相时,如果确定交流真的确相则无需理会;如果交流实际没有确相,而是检测问题,那么可能是交流变送器出现故障。可以用万用表测量变送器的端子是否有3V左右的直流电压,如果某一个没有,则说明交流变送器损坏,应急解决办法是将该端子的检测线并到其他两个端子的任意一个上;长久解决办法则须更换交流变送器。

更换交流变送器的方法:首先必须断开电源系统的交流电和关掉监控单元的电源,否则可能对人身造成伤害或烧坏交流变送器。更换时如果连接线上没有标识,那么在拆交流变送器之前需要要做好相应的标识,否则在安装时会造成不便。

注意事项:安装好交流变送器后,需要检查连线无误后,方可送上交流电,然后打开监控单元的电源。核实交流显示是否与实际测量电压相符。

2.3交流接触器不吸合

对于采用交流接触器自动切换的电源系统,如果交流接触器不吸合,那么可能是下面几个情况引起的:①交流输入的A相缺相;②交流接触器线圈供电保险丝烧坏(此故障出现在早期的电源柜);③控制交流接触的辅助交流接触器损坏(早期电源上有辅助交流接触器);④交流接触器控制板(CEPU板)出现故障;⑤交流接触器线圈烧坏。

解决方法:用万用表进行检查,断开交流输入用万用表测量交流接触器的线圈,如果开路,那么说明交流接触器损坏,更换交流接触器即可。

交流接触器更换方法:首先必须将电源柜的交流电断开,更换前将各个连接线用标签做好标识;由于这两个交流接触器是机械互锁的,所以要注意安装好交流接触器之间的辅助触点和控制线;将交流接触器两端的交流导线连接牢靠,不能有松动。

3、直流配电单元故障处理

3.1 监控单元出现直流断路器断开告警

从两个层面考虑:①属于正常告警,直流断路器确实已经断开,无需处理;②断路器没有断开,但是监控单元出现告警,出现这个故障是由于检测线出现断开所致。处理方法:检查断路器的`检测线,也可以用“替换法”来定位问题所在。

3.2 直流断路器故障

蓄电池下电保护用的直流断路器使用的是常闭触点,在不控制的情况断路器是闭合的。如果给了断路器的断开控制信号,但是断路器不断开,那么说明断路器已经出现了故障,更换即可。

3.3 直流输出电流显示不正确

直流电流显示不正确分两种情况:①显示值与实测值比较偏大或偏小,原因是电流传感器的斜率选择不正确,在监控中将调整斜率调整合适即可;②电流显示出现异常情况,非常大或电流值显示不稳定。对于用分流器检测电流的设备来说是检测通道不通导致的:一种可能是分流器两边的检测线接触不良,可以关掉监控单元的电源,取下检测线用电烙铁将其焊接好即可;另外一种可能就是检测线接插件插针歪或接触不好,可以用镊子之类的工具将歪针校正或将接插件插好即可。

4、整流器故障处理

4.1 整流器无输出

整流器不工作,面板指示灯均不亮

首先检查交流电输入是否已经供到了整流器(检查整流器的交流输入开关是否合上),其次检查整流器的输入熔丝是否熔断;另一种情况是模块可能发生故障,此时需要更换故障模块。

整流器输入灯亮,输出灯不亮,故障灯亮

首先用万用表测量交流输入电压是否在正常范围内(160-280Vac),如果交流电压不正常,那么整流器处于保护状态;另一种情况是整流器出现了故障。

4.2过热

整流器内部主散热器上温度超过85℃时,模块停止输出,此时监控单元有告警信息显示。模块过热可能是因为风扇受阻或严重老化、整流器内部电路工作不良引起,对前一种原因应更换风扇,后一种原因需对该电源模块进行维修。

4.3 风扇故障

风扇故障的特征是风扇在该转的时候不转。这时应检查风扇是否被堵塞,如果是,清除堵塞物;否则,则是风扇本身损坏或连接控制部分发生故障,需拆下模块进行维修。

4.4 过流保护

整流器具有过流保护功能。若输出短路,则模块回缩保护,输出电压低于20V时整流器关机,此时面板上的限流指示灯亮。故障排除后,模块自动恢复正常工作。

结语

总之,电源作为通信系统的核心设备,是整个通信网络稳定运行的保障。因此,工作人员必须认真做好通信电源的维护工作,不断总结分析常见故障的原因和处理方法,做到有效预防、处理及时。

参考文献:

[1]赵倩.《电力通信网中通信电源故障的分析与维护》.通信电源技术,

[2]张晓军.《注重通信电源运行管理保证通信质量和安全》.中国科技博览,2009

[3]崔志东,赵艳.《高频开关通信电源系统的组成及维护与故障处理》.通信电源技术,

[4]肖明.《广移动通信电源设备的运行和维护》.通信电源技术,

UPS故障分析报告 第7篇

事故经过:9月10日凌晨02:28分,进行保安MCC A段的倒电工作,拉开柴油机到#2机保安MCC A段备用电源进线1ZKK,检查#2机保安MCC A段失电后,合锅炉MCC A段到保安MCC A段进线开关B23,保安MCC A段带电正常,UPS系统运行正常,方式为主回路运行。

02:32分,开始进行保安MCC B段的倒电工作,拉开柴油机到#2机保安MCC B段备用电源进线2ZKK,检查#2机保安MCC B段失电后,合锅炉MCC B段到保安MCC B段进线开关B24,保安MCC B段带电正常,此时直流I段绝缘报警动作,直流II段绝缘和接地报警动作,UPS总故障报警。立即到就地直流配电室检查直流和UPS报警情况,直流配电室内有大量烟气,直流I、II段报警均动作,UPS旁路运行报警,UPS柜内有烟气产生。复位直流I、II段报警后报警消失,UPS旁路运行。

根据ups现场发现相电压测量板烧坏,其连接的电缆线的绝缘皮融化,明显是短路造成大电流通过。静态开关部分也烧坏严重,直流电容爆炸等引起原因可能是外接电源在转换常用电时出现高压,导致相电压测量板和静态开关的可控硅被击穿,使旁路电源与逆变器并联造成短路,对静态开关的控制回路造成严重的损害且反向向整流器冲击致使直流电压飙升过高,由于其电压大大超出了直流电容的额定电压,电容无法承受而爆炸。直流电容为易损元器件,使用时间长后会降低其储能能力且又受到严重的冲击,存储能力大大降低,为确保设备能长期正常运行,将直流母排的直流电容更换。调试设备做切换时发现逆变接触器无法吸合,测量接触器发现有一相触点损坏将其更换。

此次更换的备件如下:

PC926 相电压测量板

1块 PC954 接触器缓冲板

1块 PC690A 静态开关驱动板

1块 PC811 静态开关控制板

1块 绕线电阻

200w1RJ

2个 静态可控硅 MTC200A

1个 逆变快速保险

400A

2个 接触器

LG 85A

1个 直流电容

27000μF/300VDC 2个 以上备件均为明显有严重烧坏的痕迹

由于直流母排的电容受到高电压的严重冲击,存储能力大大降低,为确保设备能长期正常运行,将剩下的直流电容更换。直流大电容 8800μF/450VDC 4个 直流小电容 1μF/1000VDC 4个

ups电源常见故障分析 第8篇

关键词:UPS电源,工作原理,供电故障,解决方案

UPS电源又称为不间断电源, 主要由整流器、逆变器和蓄电池等电源装置组成, 具有输出电压、频率稳定、电压失真度小和运行稳定等优点, 能够为计算机网络、电子设备装置和通信系统等重要用户提供可靠的优质电源, 并且保证用户不致因停电而丢失数据影响工作。目前UPS电源供电系统广泛应用于各个领域, 在各运营系统中发挥着关键的作用。但目前, 应用过程中还发生存在不少故障现象, 直接影响了它的可靠性。因此, 如何解决UPS电源供电故障成为了技术人员急需解决的难题之一。

1 UPS工作原理介绍

某厂供电采用两套UPS设备并联共用一套蓄电池的结构。正常情况下, 两套UPS互为备用, 其中一套正常工作即可满足使用工况。UPS供电模式分为以下3种。

(1) 主电源供电模式。主电源供电模式为UPS正常工作模式, 在此模式下, 负载由电源l经整流充电器和逆变器供电, 整流充电器同时给蓄电池组浮充充电。

(2) 静态旁路供电模式。电源2回路称为静态旁路, 作为电源1的后备。在UPS1和UPS2的逆变器电压输出故障时, 静态开关自动导通, 负载不间断切换为电源2回路供电模式。

(3) 蓄电池供电模式。此种模式为应急工作模式, 当电源1和电源2供电中断时, 供电流程转换为蓄电池组经逆变器给负载输出电力;当两套UPS同时为蓄电池组供电模式时, 将触发安装在负载开关1上的时间继电器, 蓄电池组持续向外供电半小时后, 时间继电器发出信号断开负载开关1, 以保证负载开关2下的通信系统等设备的电力供应, 以此实现负载优先级的设置。

2 故障现象及原因分析

该厂发生过2次因UPS系统供电电源中断而导致的停产事件。事件发生时, 该厂电网工作正常, 两套UPS均为蓄电池供电模式, 负载开关1处于分闸位置, 负载开关2处于合闸位置。

在主电源正常的情况下, 两套UPS同时转换为蓄电池供电模式, 表明两套UPS充电器同时发生了故障, 但事后检查充电器无异常, 重新启动两台充电器, 均可正常运行。为了彻底查清原因并解决问题, 该厂技术人员和UPS厂家工程师对产品的性能和使用工况进行了一次全面的数据收集和调研, 进而确定故障的具体原因。下面介绍排查工作的具体步骤。

2.1 参数设置和记录跟踪

运用TLS软件与UPS系统进行在线通信, 对机组PLC模块内的基本参数设定值和在线测量数据进行检查, 无异常发现。在报警记录的检查中, 发现“电源2相位超限”报警频繁出现, 出现频率约为每小时10次, 报警状态持续时间约4~8s, 在此报警产生的时间内UPS自动切换到电源2带载的功能将被禁止。又由于此报警为自动复位式报警, 因此UPS系统会在此报警自动复位消失后恢复电源2的正常工作状态。

2.2 波形采集及分析

用FLUKE43B电网分析仪对电源1和电源2的输入波形。电源2的输出波形以及逆变器的输出波形进行取样分析, 波形分析结果无异常。

2.3 局域电网结构分析

UPS电源1和电源2的供电电源均为平台电网, 单台发电机工作时的电网最大输出有功功率为4000kw, 日常带载量约为1600kw。平台电网具有网小但工况复杂的特点, 电网内设备种类 (包括变压器、马达、变频器和海缆等) 相对较多, 设备的突加突卸现象较频繁。对电网进行分析后, 结合上面两步的分析结果, 初步认定相对大功率设备的频繁启动可能是UPS“电源2相位超限”报警频繁产生的原因。

2.4 故障原因确定与验证

在假定了报警原因为大功率设备频繁启动的前提下, 决定在大功率设备旁进行蹲点测试, 选取1台l07kw的空调制冷压缩机 (星三角启动) 进行实测。实测发现在压缩机每次启动时, UPS便产生“电源2相位超限”报警, 报警持续4~8s, 与电机启动时间相符。从而确定。电源2相位超限。报警产生原因:当平台大功率设备启动时, 电源2的输入输出电压产生畸变, 导致相位超限并报警。由此进一步推论, 如果在短时间内有多台大功率设备先后启动, 那么电源1的输入波形和电源2的输入输出波形将产生畸变, 且畸变率逐渐增高, 畸变持续时间增长;电源2的畸变导致“电源2相位超限”报警的自动复位时间加长;电源1的高畸变率会使整流充电器误判为输入电压异常, 而使整流充电器保护性停止工作;电源1和电源2的同时故障, 使负载只能切换到蓄电池带载模式, 电池放电结束, DCS系统失电。这样就出现了UPS故障导致供电中断时电网工作正常的工况, 且一年约一次的出现频率也与推论中的极端工况相符。

3 系统故障分析及解决办法

实际工况决定了故障不大可能从根本上杜绝, 因此决定将UPS报警信号接入中控DCS系统, 以便设备产生故障报警后, 在状态可控前提下, 通过中断报警工况来阻止事态进一步扩大。具体处理思路如图1所示。

4 技术改造方案选择及实施

4.1 方案选择

要实现上面所描述的预防控制功能, 需将UPS的报警信号接入中控DCS系统, UPS机组能提供的接入方案有两种。

(1) 方案一:通过UPS通信模块端口接入中控。UPS系统, 并在DCS电脑上安装UPS厂家工程师软件以实现远程在线监控。该方案具有能读取UPS设备的所有信息及数据的优点;其缺点是:中控DCS系统和UPS分属不同厂家, 不能认证加装在DCS电脑上的UPS厂家工程师软件, 这对DCS系统的稳定性有影响, DCS系统配合难度较大, 风险不可控。

(2) 方案二:串联UPS机组报警输出模块上的开关触点, 将各类报警综合为一对公共故障报警信号接入DCS系统。该方案接入DCS系统的为无源开关信号, DCS系统在工程设计中预留有开关信号接入功能的模块, 因此硬件接入条件满足;软件方面需在DCS系统内添加报警记录和报警输出界面, 对此仅利用DCS系统自身的软件就可实现。这种施工方案简单且接入的信号不影响DCS系统的稳定性, 缺点在于不能读取UPS系统详细的信息和数据。

从实际需求和改造难度综合考虑后, 认为方案二改动工作操作难度小、风险可控、功能满足既定目标, 更具可行性。

4.2方案实施

方案的确定, 使检修工作进入了最后的图纸设计和现场施工阶段, 软硬件的配置是决定改造方案的基本条件, 主要涉及以下几方面。

(1) UPS报警输出模块上均为无源常开和常闭触点, 触点电气参数为AC 220V/5A;DCS系统控制模块电压为DC 24V, 触点电气参数满足接入条件。

(2) 串入的公共报警信号包括低电量关机警告、电池负载、维护配置、通用报警、逆变器负载等, 功能上最大限度地涵盖了各类输出报警状态。

(3) “电池负载”报警输出点已被占用, 故需加装中间继电器进行扩展。

根据以上实际条件和需要实现的功能, 在原图纸中进行了改动设计, 接线如图2所示。虚线为本次改动的接线, 除U11~U14, U21~U24外, 其余均为添加的新线, R1和R2为新添加的中间继电器。

在改动设计中, 将5类报警信号串联为一对开关信号接入DCS系统。在UPS正常工作时, DCS接收到的为常闭开关信号;一旦有故障报警信号产生, 串联回路就断开, DCS接收到的常闭开关信号消失, 触发DCS系统产生报警信号。为保证接线改动不影响UPS系统的稳定性和功能, 利用UPS自身的输出电源作为中间继电器的驱动电源, 整个报警回路则遵循失电安全型规则。改动中, 新增中间继电器2个, 涉及到接线18根, 其中新增接线10根, 原有接线改动8根。

改造完成后, 对各种报警信号进行现场实际模拟测试, 每次均能将报警信号及时传入中控DCS系统, 动作及时可靠。

结语

UPS电源供电系统对于保证现代通信系统安全平稳运行是至关重要的。实践证明, 采用将UPS的报警信号接入中控以DCS系统的解决方案, 有效减少了UPS供电不正常而导致的供电中断事件, 提高了UPS电源供电系统的安全可靠性, 对UPS电源的推广具有重要意义。

参考文献

[1]张小霞.数据中心机房的UPS电源选型[J].电子世界, 2011 (23) .

ups电源常见故障分析 第9篇

关键词:供电电源 开关电源 UPS电源 故障分析

中图分类号:TM645.2文献标识码:A文章编号:1674-098X(2014)09(b)-0060-01

1 电子安防监控系统的常用供电模式

要想对电子监控系统中供电电源的常见故障做出正确判断,首先要了解其选用了哪种供电模式,下面就对供电电源概念和电子安防系统常用供电模式进行介绍分析。

(1)供电电源:把其他形式的能转换成电能的装置叫做供电电源。

(2)目前电子安防监控系统的常见供电模式,主要包括三种:①独立供电模式;②集中供电模式;③POE供电模式。此文主要针对目前应用最广泛的集中供电模式和独立供电模式,进行分析。

独立供电是指在每个摄像机前端安装独立的安防监控电源,此安防监控电源只为一个摄像机提供电力供应。其优点是:①检修简单,更换电源简易。②避免出现监控系统瘫痪现象。

集中供电是指通过集中供电箱,将220 V的高电压根据实际情况转换成所需的电力,通过线缆给摄像机供电,而无需在摄像机前端另外安装电源适配器。其优点是:①成本较低。②集中维护简单。③总体能耗低。

2 电子监控系统各用电设备供电模式及注意事项

2.1 系统整体供电

(1)由于安防监控的特殊性,从行业技术规范来讲,一般要求独立专线供电。也就是专门从总配电箱铺设一条220 V的电缆,供前端的摄像机、红外灯,以及后端的监控中心设施,如硬盘录像机、电视墙、矩阵控制器等使用。

注意事项:独立电缆的线径大小,电缆内必须考虑地线连接问题。

(2)除非施工条件、工程造价等条件限制,才考虑监控设备的分别就近取电方式。

注意事项:就近取电时应配专门配电箱或插座,做到可独立控制监控设备的电源。

2.2 监控机房用电安全

(1)如果监控系统工程庞大,设备较多,必须考虑机房UPS电源问题。

注意事项:设计UPS电源的输出功率时,必须考虑有30%的电流冗余量。

(2)机房内所有设备的接地问题,这是监控系统防雷防静电十分重要的环节。

注意事项:系统接地的连接方式,最好采用联合接地方式。系统接地宜采用一点接地方式,接地电阻不大于4 Ω,当系统采用联合接地时,接地电阻不大于1 Ω。

(3)监控系统电源的专用性,避免不必要的其他设备接入,特别是空调机、饮水机等。

注意事项:由于报警系统与监控联动性,可考虑并入机房电源。

2.3 机房内设备供电

由于数字化监控系统越来越庞杂,系统中会综合使用网络交换机、光端机、网络视频服务器等,这些设备的电源一般为12 V,因此,会加入直流适配器。但如果每一个设备一个独立的变压器,难免会产生散热不良和维修困难等问题。可考虑使用集中供电方式。

注意事项:建议采用机架式通信电源、机架式专用监控开关电源。

2.4 摄像机供电

(1)前端摄像机最好采用集中电源供电方式,但如果摄像机的分布较为分散,且最远的摄像机距离监控中心超过100 m,就要考虑独立电源供电方式,也就是将220 V送到摄像机的附近,再通过变压器供电。

注意事项:如果220 V电源与视频线、信号线并行传输,必须考虑屏蔽问题,如加穿镀锌铁管等。如摄像机在户外使用,要选择户外专用的独立安防监控电源,尤其要注重该独立安防监控电源的防护性能。

(2)无论独立还是集中供电,选择合适的电源线最为重要。保证每台摄像机的供电电压为12 V+-5%是关键。

(3)一般红外一体摄像机对电压较为敏感,不当的电压更会加剧摄像机红外灯的老化,而出现快速衰减的现象。因此,红外一体机的电压合适问题要格外注意。

(4)目前市场上有线性电源与开关电源两种,而品种与质量更是鱼目混杂。因此,千万不要贪图便宜而上当。

注意事项:一定要选用质量好的开关电源。

3 工业职业学院电子监控设备供电电源常见故障分析

我院采用的监控系统是第二代半数字式监控系统—— 数字硬盘录像系统。此监控系统建成运行后,因所用设备繁多,时常会出现这样或那样的问题,特别是由于有些设备采用了集中供电,如不能正确解决供电电源引发的设备故障,将会大大降低实时监控效果。下面结合日常维护实际,简单介绍下集中供电电源的常见故障及排除方法。

3.1 保险丝熔断

集中供电电源的工作是在高电压、大电流的状态下,直流滤波和变换振荡电路在高压状态下工作的时间太长对电压的变化比较大,而且电网电压的波动和浪涌都会引起集中供电电源内部的电流瞬间增大而导致保险丝熔断。维修时,一是要查看电路板上面的各个电子元器件有没有烧坏或者是电解液有没有溢出,二是闻一下看有没有什么异味,然后再用万用表来检查。首先测量集中供电电源输入端的电阻值,然后再检查整流二极管和限流电阻的阻值,还有测量集中供电电源的滤波电容是不是正常充放电,再检查周围的电子元器件有没有烧坏或者是击穿。

3.2 没有直流电压输出或者是电压输出不稳定

这个问题是因为集中供电电源中出现开路,短路还有过压,过流保护电路出现故障还有振荡电路没有工作,集中供电电源的负载太重而且高频整流滤波电路中的整流二极管被击穿,滤波电容漏电等故障。维修时,首先需要用万用表检测高频变压器的各个电子元器件是不是有损坏,然后再测试各个输出端的直流电压,如果输出为零的话就是集中供电电源的控制电路出现问题了。控制电路分为两部分:一部分是集成集中供电电源控制器;另一部分是过压保护电路。然后再用万用表检查高频滤波电路中的整流二极管和滤波电容有没有问题,以此类推,对每一个电子元器件逐项检查。

3.3 集中供电电源负载能力比较差

出现这个问题的话一般都是由于集中供电电源里面的各个电子元器件老化,稳压二极管发热漏电,整流二极管损坏等原因。维修时,用万用表逐项检查电子元器件,对损坏的进行更换。

以上就是集中供电电源的故障维修。对于供电电源作为电子产品,根据其自身特性,在使用一段时间后就需要进行维护,只有这样才可以延长集中供电电源使用寿命,减少故障率。

参考文献

[1]浅谈监控摄像机电源集中供电方案在实际应用中的取舍[J].电源技术,2007(8).

[2]電子监控系统中摄像机设备上的开关电源常见问题分析[J].电工技术杂志,2010(7).

[3]监控系统中的供电与传输[J].电子学报,2011(10).

ups电源常见故障分析

ups电源常见故障分析(精选9篇)ups电源常见故障分析 第1篇目前轨道交通通信信号电源系统中UPS的常见故障及选型改进方案中航太克(厦门)...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部