eda技术基础实验教案
eda技术基础实验教案(精选8篇)
eda技术基础实验教案 第1篇
电工电子中心2009年5月绘制
湖北师范学院电工电子实验教学省级示范中心电子版实验报告
什么什么设计(研究)
红色部分提交时请删除!!
题目:“什么内容”的设计或“什么内容”的研究,例如: 基于FPGA的数字抢答器设计 基于FPGA的等精度数字频率计设计 Verilog HDL同步时序电路研究 一种简易数字频率计设计
基于FPGA的DDS信号发生器的设计
更多参考“大学生电子实验室”论坛设计选题指南 一.任务解析
根据对设计选题的理解,明确要做什么,要达到什么要求(参数、指标)。二.方案论证
对所要完成的设计任务,参考相关资料,提出设计方案,拿不同方案进行对比分析,选择你能够实现的方案,并明确指出为什么要选择此方案,较其它方案有何优点。三.实验步骤
方案的具体实施,按实际实施过程认真做好原始记录,可以包括单元电路仿真分析,部分指标测试(实际效果)等等,描述演示效果要明确所用设备,说明实验箱,使用了什么仪器等。四.结果分析
对所测试结果(演示现象)做分析,得出结论(描述现象)。五.经验总结
对完成任务情况进行总结,是否达到预期的设计,效果如何,还有哪些可以改进的,改进建议,特别是错误分析。
如果是自己独立完成的,我相信一定会有很多心得体会可以总结的,挫折的苦恼,成功的喜悦。如果你完成了一个设计性实验,一点体会都没有,那么我相信你一定是走捷径完成了任务,而没有真正独立完成本设计任务!老师批改报告,往往把学生的心得体会看成一个亮点。心得体会一定要认真写,把自己做设计性实验的过程认真总结,让老师感受到你是一步一步完成该设计性实验选题的。
第2页,共2页
eda技术基础实验教案 第2篇
江苏省溧阳市职业技术学校
王怡华
[内容摘要]随着我国国民经济结构正进行战略性调整,高新技术产业发展日新月异,生产、经营、服务、管理一线的新知识、新技术、新工艺、新方法层出不穷,作为培养一线技术人员和高素质劳动者的职业教育,能否把这些“四新”内容及时传授给受教育者,关系到职业教育的结合发展。第三次全国教育工作会议以来,国家、省、市、县分别启动了骨干教师的培训,师资培养培训工作得到了前所未有的重视。笔者07年参加了浙江师范大学组织的全国中等职业教育骨干教师培训班并进行了为期两个月的学习,进一步加深了专业思想的认识,同时对本专业新技术有了进一步的认识,经过又近一年的学习,对EDA技术在电子技术课程教学中的实践有一定认识。
[关键字]电子技术 EDA技术 虚拟实验 探究式教学
一、问题的提出
电子技术是一门实践性很强的课程,现今职业学校机电、电子、通信、计算机以及相关专业均开设了该课程,同时配合理论教学还开设了实验课用以提高教学效果。电子技术实验,大部分学校采用各类实验箱(或面包版),实验过程学生要完成电路搭建、结果验证,对于一些小型电路,各类实验箱还能应付得了,但稍稍复杂一些的电路就难以对付了,往往由于芯片短缺、电路连接过于复杂、故障难以查找,加上实验箱长期使用导致接触不良等等,实际实验过程中,电路搭建成功率低,导致学生对实验的兴趣下降,影响实际教学效果。现在随着个人计算机提高和互联网的发展,功能强大的电子仿真软件EDA技术逐渐与广大专业教师见面,我们将它逐步地应用到教学之中,出现了全新的教学模式,在电子技术教学中应用EDA技术将是一个必然的趋势。
二、EDA技术基本功能介绍 1.EDA基本功能
EDA(Electronic Design Automation)是指以计算机为工作平台,融合应用电子技术、计算机技术、智能化技术新成果而研制成功的电子CAD通用软件包。主要能辅助进行三方面的设计工作,既IC设计、电子电路设计和PCB设计。EDA技术经过了三个阶段的发展。从70年代的(CAD)阶段和80年代的(CAE)阶段,到90年代的电子系统设计自动化(EDA)阶段。EDA技术代表了当今电子设计技术的最新发展方向。它不仅为电子技术设计人员提供了“自顶向下”的设计理念,同时也为教学提供了一个极为便捷的、科学的实验教学平台。电工电子类专业课程中的电工基础、模拟电子技术、数字电子技术都可以通过EDA仿真软件,进行电路图的绘制、设计、仿真试验和分析。应该说将EDA仿真软件应用到电工、电子类专业的教学中是一种教学手段的创新,也是提高教学质量的优选方法。
2.EDA技术在教学中应用的主要优越性(以Multisim为例):(1).能弥补设备种类和数量不足,充分扩展学生的思维空间,给他们更大的自由发挥的天地。使学生可以根据不同需要无限制地进行各种电路分析实验,验证实验,常规实验,设计实验。充分调动学生学习的主观能动性,培养创新能力
(2).可以大大节省人力、物力、时间,提高实验效率。以数字钟实验为例。在传统实验中,如果要把数字钟电路全部接,要用到集成电路24块,电阻、电容、三极管等近20个元件,在数字实验箱的面包板上插接几百根导线,耗时一天有余,如果出现插孔松动,接触不良等毛病,效果还不大理想。而用Multisim进行仿真,只要有台计算机就等于有了取之不尽,用之不竭的元器件,而且无须担心仪器与元器件的损坏。同样的实验几十分钟就可以完成。
(3).用Multisim进行仿真模拟实验,实验过程非常接近实际操作的效果,实验的真实感强。系统提供了近似真实的子元器件、工作环境和仿真仪器,使学生感到仿佛在真实的环境下做各种实验;各元器件选择范围广,参数修改方便,不象实际操作那样多次地把元件焊下而损坏器件和印刷电路板。使电路调试变得快捷方便。对《模拟电子技术》以及《数字电子技术》课程中的绝大部分电路都能应用,不仅能用于对单个电路特性和原理进行验证,也能就用于多级的组合电路。
(4).Multisim为我们提供了一个很好的多媒体操作平台,使我们能够在教学过程中随时提供实验、演示和电路分析。直观的形象显示有助于培养学生的观察能力和分析问题的能力,有助于教学重和难点的讲解,可激发学生的学习兴趣。教师可以在多媒体教室中深入浅出地分析各种电路的特性,讲解各种参数改变对路的影响。学生可以结合学习内容,进行接近于实际电路的调试分析,有利于对加深对书本理论的理解,不失为一种理论系实际的好方法。
三、EDA技术在电子技术教学中的应用
电子技术课程是电子类专业的支柱性课程,它要求学生熟悉各种电子器件,掌握电路图的识读、绘制以及电路工作原理,还要学会掌握和合理运用分析方法。EDA软件正是提供了各种支持,恰到好处地符合这样的教学要求。同样,电子线路课程又是一个紧密联系实践的课程,EDA软件的强大的仿真功能更是能把实践带入课堂,带入教学的每一个环节中去。基于Multisim的电子技术课堂教学,是在虚拟的电子环境(在计算机上的电子实验室)中,师生借助计算机自然地、高效地与电子元器件、电子仪器、分析工具等进行实时交互,相互影响,为开展探究式教学提供了必要的支持。
1.应用于课堂教学环节,开展探究式教学,是师生高效交流的平台。探究式教学能充分调动学生的积极性,挖掘学生的学习潜力,使学生变被动的接受为主动的探求,也充分体现了教师主导和学生主体,这是一种科学的、民主的教学方法。以前由于课堂上师生之间没有实时交互的平台,教师是单向地教,学生是被动地学,而Multisim的出现,恰到好处地为师生搭建了一个良好地交互平台。因为,首先,在Multisim创建的电子技术课堂教学情境中,电子元器件、仪器仪表、仿真分析方法同等地提供给教师和学生,使学生产生亲临电子电路实际环境之中的感觉,学生是从虚拟环境的内部向外观察,不再是旁观者,而变成了电路知识的探究者;其次,Multisim对电路参数的设置、电子分析和仿真、数据图形的处理以及结果的输出都只需简单的操作即可完成,这样就使师生的交互能在轻击几下鼠标之下完成。因而在课堂上师生间能通过简捷、轻松的方式完成充分的交流,学生的疑问、新奇的想法等都可以及时验证和尝试。真正为师生搭建了一个开放性的“所想即所得”的高效交流平台。在这个平台上,才能使探究式教学发现它的作用。
探究式教学一般遵循“问题情境——搭建模型——解决问题”三个步骤。创设问题情境是引发学生探究心理学习新知识的切入点。例如在单管共射放大电路的教学中,第一步,教师先创设问题情境,要把幅值为10mV ,频率为1KHz的正弦信号放大50倍,负载电阻是2KΩ。第二步,学生调用已有知识(三极管放大特性、三极管放大状态的外部条件、三极管输入、输出特性),在Multisim环境中,调用虚拟元器件和虚拟和仪器仪表,搭建电路模型,最后在教师的提问、启发、引导下,对电路不断地分析、测试、调整,完成放大电路,即解决了问题。这样,在大量的动脑、动手的实践中,学生学到了新知识(共射放大电路的基本结构、静态工作点、截止失真、饱和失真、频响特性等)。总之,EDA技术为探究式教学提供了优质的平台,也必将为学生的学习提供优质的保证。
2.应用于实验教学环节,开展虚拟实验,是实际硬件实验的有力补充和拓展。实验教学是电子线路教学的重要环节,通过实验能够巩固电子线路基础知识,培养学生的实践技能、动手能力和分析问题及解决问题的能力,启发学生的创新意识和创新思维潜力。Multisim这款优秀的EDA软件提供了上千种电子元器件和十数种仪器仪表,完全能够虚拟各种电子实验,区别于应用实体的实际硬件实验,它叫虚拟实验。
虚拟实验在实验教学中的应用主要表现在以下三个方面:
(1).学校缺少某项实验的实验设备时,虚拟实验可以代替硬件实验。有些学校由于缺少实验设备,部分硬件实验无法展开,就完全可以用虚拟实验代替。虚拟实验的一大特点就是不受实验设备、场地的条件限制,只要有计算机,有EDA软件(如Multisim),几乎所有的实验都难不住它。(它的元器件库无所不包,而且具有网上更新的功能,它的虚拟仪器也是应有尽有,而且直观性强)。
(2).同一实验课题,在开展硬件实验的同时,可以辅以虚拟实验。硬件实验和虚拟实验在教学效果上各有所长,硬件实验的主导地位是勿庸置疑的,它使学生直接面对真实对象,进行真实操作,获得直接经验,这是虚拟实验所无法作到的。而虚拟实验有更为优秀的分析技术,例如在很多仪器仪表中引入指针,使实验数据更易获得,实验现象更为明显,EDA软件中又具有经典的仿真分析方法,能轻而易举地实现瞬时现象的捕捉,也能把很长时间的现象展现于一秒,这也是实际仪器不能敌的。所以,同一个课题,开展实际硬件实验可使学生锻炼动手能力,获得直接经验。开展虚拟实验,有助于对实验现象的观察和实验数据的获得,最终有利于分析和实验结论的获得。
(3).开展具有创造性的开放式实验
以前在作实验前,教师处于对实验器材和学生安全的保护必先嘱咐学生不准动这,不准动那,使学生做起实验来束手束脚,学生的想象力和创造力得不到发挥。其实很多时候,学生对实验内容是有自己的独到的想法的。如果能够利用虚拟实验技术,拿出有意义的课题,进行开放式的实验,学生在实验中,可以发挥自己的创造力,对电路进行别出心裁的修改,对电路的分析和测试做不同的尝试,使学生完全成为实验电路的剖析者和探索者,又不必担心会损坏任何器件或仪器。这样既拓展了实验范围,又培养了学生的创新意识。
长久以来,电类实验课普遍采用传统的硬件验证的实验模式,随着EDA技术的发展,系统仿真技术日越完善,它将越来越多地应用于实验课程的教学,实验课程也必然采取硬件实验和软件仿真相结合的方式。
四、结束语
EDA技术是将计算机技术应用于电子电路设计过程的一门崭新技术,给电子产品设计与开发带来了革命性的变化。它在教学领域的应用也必将给电子专业课程的教学带来革命性的变化。无论从教学还是从实用的角度去考虑,它都是一个最体现以人为本、体现能力本位的新型的教学技术。无论从课堂教学还是从实验教学去应用,它都将更好地激发学生的创新意识和探索精神。当然,EDA技术的应用对专业教师的综合素质有较高的要求,既要较全面熟悉电子技术专业的知识,又要懂得使用计算机,并且不断地吸取先进的技术,灵活地运用在教学过程中,教师应懂得电子技术中某一个问题的多种表达方式,这样搭建电路容易与软件的建模方式匹配;教师还应对专业英语熟练,看懂软件的功能意图,而这正是职业学校教师“四新”目的之所在。
[参考文献]
1、《现代电子设计技术——基于MULTISUM7&ULTIBOARD2001》李良荣主编
机械工业出版社
2、《电子技术基础》
康华光主编
高等教育出版社
3、《电工电子技术EDA仿真实验》王廷才主编
机械工业出版社 作者简介:
王怡华
eda技术基础实验教案 第3篇
数字电子技术基础是一门发展迅速、实践性和应用性很强的技术基础课程, 已成为电类各专业不可缺少的一门必修技术基础课, 是学习“单片机技术”、“数字信号处理”等专业 (基础) 课必需的先修课程。传统的的教学内容和教学方法生硬抽象缺乏感性认识, 已经不能满足技术发展的需求。提高课堂教学效果, 改进教学手段势在必行。
随着计算机及微电子技术的发展, 数字技术领域中的新概念和新方法不断涌现, 计算机辅助教学已进课堂。EDA (Electronic De sign Automation电子设计自动化) 技术就是以计算机为工具, 它的开发工具QuartuslI具有强大的元器件库, 提供了丰富的电路元器件, 其原理图符号与教材接近, 教师及学生可根据教、学需要任意搭建实验模型。依靠E DA软件, 电路验证 (或电路设计) 可以脱离硬件直接通过软件仿真即可实现。
在长期的教学实践过程中, 引入EDA技术辅助数字电子技术基础课程教学, 实现了教学手段的创新。
2 应用EDA技术的仿真环境丰富课堂教学
EDA技术工具软件MAX+PLUSII或Qua rtuslI提供设计校验的仿真器, 其中包括功能仿真和时序仿真, 仿真器的灵活性很强。电路设计完成后, 需要验证电路设计的逻辑功能是否正确。这是一项简单的逻辑检查, 可采用功能仿真, 这对于初步的逻辑功能检测非常方便。功能检查完成, 可进行时序仿真。EDA技术工具软件的时序分析程序可以计算点到点的器件延时, 确定器件引脚上的建立时间和保持时间要求, 还可计算最高时钟频率。
在课堂教学过程中利用多媒体教学环境, 采用EDA技术工具软件进行实际操作演示, 可以起到事半功倍的效果。它作图快捷, 修改方便, 仿真结果直观具体, 提高课堂讲授效率, 将抽象的逻辑教学形象化和直观化, 取得了较好的教学效果。
二选一数据选择器真值表为:当s=0时y=a;当s=1时y=b, 选择器电路结构如图1所示, 通过MAX+PLUSII软件仿真, 仿真波形图如图2所示。
通过以上波形的分析, 学生可以很清楚地观察到数据选择过程:当s=0时, 电路输出a波形, 当s=1时, 电路输出b波形。通过仿真可以使学生感性地理解电路的特性, 对学习起到了很好的辅助作用。而演示这些实例, 在课堂上并不需要花费太多时间。课堂教学中, 很多内容都可以利用EDA技术工具软件直观地演示出来, 比如中规模集成电路的功能和使用、异步二进制计数器的工作、移位寄存器的移位操作等等, 可以将理论教学与实验验证同步进行, 加深了学生对理论的理解, 激发了学生的学习兴趣, 扩展了学生的思维空间, 教学效果良好。
3 应用EDA技术构建学生个人的数字电路仿真实验室
数字逻辑电路课程是一门实践性很强的专业基础课程, 实验作为学习该课程的一个重要环节, 对巩固课堂教学内容, 提高学生的动手能力都具有重要的作用。在教学过程中因为相应的实验课程滞后开设, 学生无法在学习过程中马上做实验, 导致学习热情下降, 对相关的基本理论知识理解不深, 特别是对一些具体的数字集成块的使用更感到抽象难懂。
EDA工具软件具有强大的元器件库, 提供了丰富的实验元器件, 使用户能根据教、学需要任意搭建实验模型。利用它, 学生完全可以在课下利用计算机随时进行电路仿真实验, 可以很快知道电路的工作情况, 从而增加学生的感性认识和学习兴趣。
学生的“仿真实验室”具有开放、灵活的特点, 体现了学生的个性, 更适合于“做中学”, 边学边实验。“家庭实验室”主要是为学生创造一个形成感性认识的近乎进行真实实验的效果, 学生通过软件仿真操作, 培养学生综合应用理论知识与分析解决问题的能力。同时, “仿真实验室”倡导思维的开放性, 能突破学生的思维定式, 有效地培养学生的创新精神。
4 应用EDA技术实现“硬件设计软件化”
随着集成电路技术迅速发展, 可编程逻辑器件 (PLD, Programmable Logic Device) 和硬件描述语言 (HDL, Hardware Descriptio n Language) 的出现, 对数字电路和系统的设计思想、设计方法产生了很大的影响, 其中一个重要的变化是设计者更加注重对描述方法的理解, 而不是把重点放在具体器件的结构上。把硬件描述语言作为数字电子技术基础的内容之一是现代数字电子技术发展的必然趋势, 学生可以借助HDL语言, 设计出符合要求的硬件系统。
VHDL语言作为标准化的硬件描述语言已广泛应用于设计电子电路模块, VHDL语言功能强大、设计方式多样, VHDL语言具有强大的硬件描述能力, 只需采用简单明确的程序就可以描述十分复杂的硬件电路, 具有多层次的电路设计描述功能。VHDL语言设计方法灵活多样, 既支持自顶向下的设计方式, 也支持自底向上的设计方法;既支持模块化设计方法, 也支持层次化设计方法。
四选一数据选择器真值表如表1所示。
四选一数据选择器的VHDL描述如下:
由上段程序可见VHDL语言的设计描述与器件无关, 采用VHDL语言描述硬件电路时, 设计人员并不需要首先考虑选择进行设计的器件。这样做的好处是可以使设计人员集中精力进行电路设计的优化, 而不需要考虑其他的问题。当硬件电路的设计描述完成以后, VHDL语言允许采用多种不同的器件结构来实现。
5 结语
在数字电子技术基础教学过程中引入E DA技术辅助教学, 将抽象难以理解的理论直观化, 学生在理论学习中得到实践, 在实践中巩固理论学习。实现了教学手段的创新, 激发了学生对课程学习的热情, 提高了学习的兴趣, 增强了学生对知识的综合运用能力和创新能力。
参考文献
[1]张杰.基于CPLD/FPGA的数字电路课程设计的研究.山东教育学院学报[J].2006, (6) :136-138.
[2]王玫, 王桂珍, 田丽鸿.基于EDA改革数电课程设计培养学生创新能力[J].电气电子教学学报, 2006, 28 (4) :15-21.
[3]吴恒玉, 唐民丽, 王平均.现代“电子技术基础”课程教学改革的研究与实践[J].电气电子教学学报, 2007, 29 (3) :26-29.
[4]郭宗光, 齐凤河.电子技术课程教学改革的研究与实践[J].大庆师范学院学报, 2008, 28 (05) :148-150.
[5]曹维, 徐东风.“数字电路与逻辑设计”实验教学改革探索与实践[J].计算机教育, 2009, (15) :23-25.
[6]邢晓敏, 王建元, 李贻涛.数字逻辑类课程的教学改革[J].电气电子教学学报, 2009, 31 (01) :20-21.
[7]任爱锋, 孙万蓉, 石光明.EDA实验与数字电路相结合的教学模式的实践[J].实验技术与管理, 2009, 26 (04) :200-202, 208.
《EDA技术基础》有效教学研究 第4篇
关键词:EDA技术 有效教学 教学模式
0.引言
EDA(ElectronicDesignAutomation)技术即电子设计自动化是以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果而形成的一门新技术,是一种能够设计和仿真电子电路或系统的软件工具。
《EDA技术基础》课程是电子、自动化、机电一体化等专业的一门专业课,在高校机电类专业教育中发挥着不容忽视的作用,EDA技术已经成为电子行业领域开发和进行科学研究所需要的基本技能。通过对EDA技术课程教学改革,可以提高学生电子设计的综合能力,培养学生主动获取知識,灵活运用知识的能力,促进信息技术与学科课程的整合,逐步实现教学内容的呈现方式、学生的学习方式、教师的教学方式和师生互动方式的变革。为加快现行教学内容和教学方法的改革,笔者结合教学实践,对《EDA技术基础》的有效教学做些有益的探讨。
1.激发学生的主动性,提高教学的有效性
我院的《EDA技术基础》这门课是在大三上学期开的,在此之前已经学习过了《C语言》和《PLC》等相似的课程,学生已经有了一定的编程基础,教师可以抓住这一有利条件做文章,让学生克服恐惧心理,使得学生还没有开始入门这门课,就对这门课的学习方法,理论框架有了大概的了解,这样学生就觉得学这门课相对比较简单,从而增强了学生的主动性。
现在的学生的学习目的功利性很强,不能马上就用上的知识或课程是很难调动他们的兴趣,因此还可以在平时时不时的灌输EDA技术的重要性,讲述这门课的应用领域有哪些,通过大量的切近生活的实例让学生进一步了EDA技术,比如交通灯控制、数码译码显示、数字钟表、虚拟仪表、接口与通信模块乃至处理器等等,学生们听到这门课程的应用领域和前景后,觉得这门课是非常实用的,从而让学生产生浓厚的学习兴趣和探索专业知识新领域的欲望。
2.课堂教学实施模式多元化
《EDA技术基础》是一门操作性非常强的课程,当然它不是简单看着老师依葫芦画瓢就可以了,还需要掌握一定的理论知识和编程方法,目前,这类课程普遍存在着教学效率不高,学生学后感觉不知所云的问题,究其原因主要是教学手段陈旧,和现代编程类专业课的教学要求不匹配,以至于学生学习积极性不高,难以接受,导致学习效果不理想,教学有效性不强。因此迫切的需要改变传统的教学模式,有效利用机房的多媒体教学设备和教学试验箱,在教学过程中根据教学内容和教学目标的需要,灵活运用案例教学、任务驱动、学训结合、工学结合等教学手法[2],落实以学生为主体、以能力为本位的教育理念,是目前高职教育者们普遍探索的热点问题,结合本课程,笔者主要谈两种教学方法。
(1)改革教学理念,适当穿插“先学后教”教学法
先学后教是江苏泰兴洋思中学独创的课堂教学模式,是对传统的“先教后学、课后作业”教学模式的颠覆性改革,该模式的主要思想是先让学生自学,让学生对教授的内容有个深入的了解,待会学生听老师讲的时候对所学的知识就有了深入的认识了,较传统方法有一定优势,但是这种教学模式是建立在学生自觉,求知欲强的基础上的,对于学习方法,学习态度相对欠缺的高职学生不是特别理想,但是鉴于《EDA技术基础》这门课却可以适当穿插,因为VHDL语言和C语言有一定相似性,所以在学习第四章VHDL设计初步[3]时可以适当穿插这个方法,比如学习第一节2选1多路选择器的VHDL描述,可以让学生先自学,然后点同学回答这个程序和C语言的异同点,相同点是都需要定义数据端口,但EDA需要确定该端口是输入端口还是输出端口,还有C语言中主程序的开始是大括号,而EDA主程序的开始是用BEGIN;IF_THEN_ELSE语句和C语言几乎是一模一样的,虽然少了个关键词THEN,但总体思想,算法框架是一样的,如果采用传统的方法,学生只是简单听老师讲,可能不会注意到这些异同点,或者对这些异同点印象不深,采用先学后教的方法后,学生对VHDL语言的特点就有了深刻的认识,就能很快掌握VHDL语言的规律。
(2)幻灯片教学、数字电路复习与现场编程相结合
《EDA技术基础》中很多应用程序比较复杂,这些程序是以数字电路为背景的,而数字电路是大二上学期开设的,过了一年大部分学生已经淡忘了,如果这些数字电路的工作过程都不知道,编程就无从谈起了,因此在编写应用程序以前要适当介绍相关的数字电路的内容,然后再来编程,编程前还是按照幻灯片将各条语句讲解一遍,这时学生虽然知道了各条语句的含义,但是让学生自己写肯定就无所适从了,这时候要从幻灯片切换到编程软件界面,教师不看教材,根据电路的要求,教师自己在软件界面上一句一句将程序写出来,并讲解为什么要这样写,这样学生就能清楚的知道该段程序的算法框架和编程思路了,然后让学生自己编写,最后编译,如果编译通过,学生这个内容就肯定掌握了。
(3)对比教学
《EDA技术基础》和PLC、C语言等课程在端口定义,编程算法等方面有很多不同之处,可以将这些课程的相关方面进行对比,增强印象,比如PLC不需要定义端口,而EDA和C语言需要定义端口等等。不仅几门课程之间可以进行对比,而且就EDA这门课程也可以就一些容易混淆的概念进行对比教学,比如EDA中有个一重要的概念是,并行执行和顺序执行,这是EDA的一个重要特点[3],也是教学中的一个难点,单独讲解学生比较难理解,如果举个例子对比讲解,就容易理解多了。下面举一个例子进行分析。
程序1:Architecture one of mux21 is
nlc202309011959
Begin
Y<=a;
Y<=b;
End;
程序2:Architecture one of mux21 is
Begin
Process(a,b)
Begin
Y<=a;
Y<=b;
End;End;
虽然同样是赋值,但是第一个编译就通不过,第二个程序加了一个进程就可以通过了,这是为什么呢,这是因为进程外的程序是并行的,也就是说Y<=a和Y<=b是同时发生的,这时问题来了,Y到底是接受a还是b呢,矛盾,因此编译通不过,而程序2的赋值发生在进程里,而进程里的程序是顺序执行的,因此Y<=a被Y<=b覆盖掉了,虽然Y<=a无效,但是赋值是明确的,不存在矛盾,因此编译可以通过。通过这个例子,学生就能很好的理解并行运行和順序运行的区别了。
3.实验采用分层教学模式
《EDA技术基础》除了40课时的理论课外,还有两周的实训,每一届,特别是高职肯定有相当一部分学生没有教材上的知识掌握的不是特别牢固,如果大家都做一样难度的实验,有部分同学就跟不上了,按照以往的规律这时候这部分同学不是跟其他同学讲话就是看手机,特别是手机网络盛行的今天,这还是好的,有的同学可能还会仪器弄坏,怎么办,笔者举得实验分层是个很好的模式。笔者在平时将实验分为两个大类,一类是用EDA工具完成数字电路实验中的部分内容,如红绿灯控制、数码译码显示、全加器全减器等,这类实验学生在数字电路中都比较熟悉了,现在只是将其用软件实现,难度不大;一类是自动化控制、逻辑分析仪、虚拟仪表等[4],这类实验技术指标大幅度提高,能体现EDA技术的优势,给实验兴趣浓厚和学有余力的学生提供更多的实验空间,充分调动发挥学生的创造力和聪明才智。
4.结束语
我院2011年在应用电子专业开设了《EDA技术基础》课程,笔者担任了该课程的教学,在教学中利用灵活多变的教学方法,通过理论教学和实践教学,把专业技术和操作技能传授给学生,为提高该课程教学的有效性,本文从四个方面对EDA技术的教学进行了探讨,但要进一步提高教学的有效性,还有很多问题需要深入的揣摩,在今后的教学实践中,还需要继续钻研课程理论,探索符合该课程的教学规律,从而全面提高教学的有效性。
参考文献:
[1]王淑芳.大学有效教学研究[J].高等工程教育研究,2006(4):14-16.
[2]丁玲.EDA应用课程教学改革分析[J].辽宁工业大学学报,2012,14(1):128-130.
[3]潘松,黄继业.EDA技术实用教程(第三版)[M].北京:科学出版社,2006.
[4]韩进.VHDL在数字集成电路设计中的应用[J].山东科技大学学报,2003(4):74-77.
eda技术基础实验教案 第5篇
IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】
EDA 技术及应用
实验报告
所在学院:
专
业:
班
级:
学
号:
姓
名:
指导老师:
日
期:
实验一
八位全加器
姓
名:
学
号:
班 级:
指导老师:
日
期:
一、实验目的
1. 了解四位全加器的工作原理
2. 熟悉元件例化原理
3. 掌握基本组合逻辑电路的 FPGA 实现
4. 熟练应用 Quartus II 进行 FPGA 开发
二、实验内容
本实验要完成的任务是设计一个四位二进制加法器。具体的实验过程就是利用EDA/SOPC 实验箱上的拨档开关的 K1~K4 作为一个 X 输入,K5~K8 作为另一个 Y 码输入,用 LED 模块的 LED1_5~LED1_8 来作为结果 S 输出,用 LED1_1 来作为结果的进位输出,LED 亮表示输出 1 灭表示输出 0。用元件例化的方法编写八位的全加器。
三、管脚绑定的具体说明。
A7~58,A6~57,A5~56,A4~55,A3~54,A2~53,A1~50,A0~49
B7~66,B6~65,B5~64,B4~63,B3~62,B2~61,B1~60,B0~59
SUM7~98,SUM6~99,SUM5~100,SUM4~101
SUM3~102,SUM2~103,SUM1~104,SUM0~105
COUT~106
四、实验中遇到的问题及解决方法。
由于是第一次实验,对仿真软件很不熟悉。本实验用到了元件例化,要将四位全加器的.VHD 文件复制到八位全加器的文件夹里。最开始的时候不知道这一点,所以八位全加器在运行是出错。通过老师的帮助知道了应该如何正确的操作,完成了实验。
五、实验心得。
第一次上机实验让我学会了如何使用 Quartus II 仿真软件,这个软件和以前用到的软件都不一样,它在计算机上完成管脚的绑定,然后通过下载线下载到芯片上就可以实现需要的功能。通过这次实验,也让我对元件例化有了更好的了解。基本掌握了全加器的工作原理,对 VHDL 编程语言有了更深入的理解。
实验二
姓
名:
学
号:
班 级:
指导老师:
日
期:
一、实验目的
1.了解数字秒表的工作原理
2.进一步熟悉用 VHDL 语言编写驱动七段码管显示的代码
3.掌握 VHDL 编写中的一些小技巧
二、实验内容:
本实验的任务就是设计一个秒表,系统时钟选择时钟模块的 1MHz,由于计时时钟信号为100Hz ,因此需要对系统时钟进行 10000 分频才能得到,因为七段码管需要扫描显示,本实验选择 1MHz。另外为了控制方便,需要一个复位开关,使能计时按键,分别使用拨档开关 K1,K2,拨动 K1 系统复位,所有寄存器全部清零。拨动 K2 秒表启动计时;如果再次拨动 K2,秒表停止计时,除非拨动 K1,系统才能复位,显示全部为 00-00-00。
三、管脚绑定
CLK~28,K1~58, K2~57,~K3~56
A~21 , B~23,C~24,D~37,E~38,F~39,G~41,DP~42,SEL0~43,SEL1~44,SEL2~45
四、实验中遇到的问题及解决方法
这次实验设计的是数字秒表,要求显示的是 hh-mm-ss。当把程序全部无误输入后,绑定管脚后下载到芯片得出的结果却是反的,表示秒的跑到了最左边呈现的是 ss-mm-hh,与预期的结果正好相反。经过自己的思考加上同学的指点发现是程序中七段码管扫描读取数值那段程序的顺序出现了问题,修改了之后就能像预期那样实现时分秒了。
五、实验心得
本次实验做的是秒表,主要使我知道了七段码管显示的代码表示,让我重新复习了数电所学过的七段码管的每一个数码管对应的数字位。本次实验让我对分频有了很好的了解,对 VHDL 编写有了一些自己的认识,也从中学习了不少编写 VHDL 程序的小技巧,尤其是对七段码管显示部分有了深入的理解。
实验三
姓
名:
学
号:
班 级:
指导老师:
日
期:
一、实验目的
1.在掌握可控脉冲发生器的基础上了解正负脉宽数调制信号发生的原理
2.熟练的运用示波器观察试验箱上的探测点波形
3.掌握时序电路设计的基本思想
二、实验内容:
本实验的任务是设计一个正负脉宽数控调制信号发生器。要求能够输出正负脉宽数控的脉冲波,正脉冲调制的脉冲波和负脉冲调制的脉冲波。试验中的时钟信号选择模块的 1MHz信号。用拨档开关 K1~K8 作为正脉冲脉宽的输入,用 S1~S8 作为负脉冲脉宽的输入,可在 Quartus II 中查看仿真图,或查看时序仿真图。
三、管脚绑定
CLK~28,POUT~98
A0~58,A1~57,A2~56,A3~55,A4~54,A5~53,A6~50,A7~49
B0~66,B1~65,B2~64,B3~63,B4~62,B5~61,B6~60,B7~59
四、实验中遇到的问题及解决方法
本次实验没有用到试验箱,而是直接在 Quartus 上查看时序仿真图来实现的,遇到了一些新的没有用过的功能。在使用过程中经常出错,在保存时序仿真是没有注意到后缀为.vwf,实验中漏洞百出,经过细心的同学帮我检查才得以成功。
五、实验心得
本次实验是正负脉宽数控调制信号发生器,使用的是直接在 Quartus 上进行时序仿真,这次实验使我学会了查看时序仿真图,知道了如何将输入由二进制改为其他进制如十进制。对 Quartus 这个软件有了更深刻的认识。
实验四
姓
名:
学
号:
班 级:
指导老师:
日
期:
一、实验目的
1.了解频率计的工作原理
2.体会 FGPA 在数字系统设计方面的灵活性
3.掌握 VHDL 在测量模块方面的技巧
二、实验内容
本实验要完成的任务就是设计一个频率计,系统时钟选择试验箱时钟模块的 1KHz 时钟,闸门时间为 1s,在闸门为高电平期间,对输入的频率计进行计数,当闸门变低的时候,记录当前的频率值,并将频率计数器清零,频率的显示每过两秒刷新一次。频率计的输入从实验箱的观察模块的探针输入。
三、管脚绑定
CLK~28,FIN~152
A~21,B~23,C~24,D~37,E~38,F~39,G~41,DP~42,SEL0~43,SEL1~44,SEL2~45
四、实验中遇到的问题及解决方法
频率计的输入模块从实验箱的观察模块的探针输入,由于不知道这一点,在连接完管脚下载好程序以后,试验箱上的七段码管并没有显示示数,以为是程序和管脚的问题,最后才知道要通过一条导线将输入炼连入电路中。
五、实验心得
本次实验做的是频率计的设计,首先通过这次实验让我了解了频率计的工作原理,复习了之前用到过的对系统时钟进行分频,这次的实验与之前相比难度较小,从程序到管脚绑定都相对比较容易,操作性强,让我体会到了 FPGA 在数字系统设计方面的灵活性。
实验五
姓
名:
学
号:
班 级:
指导老师:
日
期:
一、实验目的1.了解交通灯的亮灭规律
2.了解交通灯控制器的工作原理
3.熟悉 VHDL 语言编程,了解实际设计中的优化方案
二、实验内容:
本实验要完成任务就是设计一个简单的交通灯控制器,交通灯显示用实验箱的交通灯模块和七段码管中的任意两个来显示。系统时钟选择时钟模块的 1KHz 时钟,黄灯闪烁要求为2Hz,七段码管的时间显示为 1Hz 脉冲,即每一秒递减一次,在显示时间小于三秒是,通车方向的黄灯以 2Hz 的频率闪烁。系统中用 S1 进行复位。
三、管脚绑定
CLK~28,RST~58,R1~20,Y1~19,G1~18,R2~17,Y2~16,G2~15,A~21,B~23,C~24,D~37,E~38,F~39,G~41,DP~42,SEL0~43,SEL1~44,SEL~45
四、实验中遇到的问题及解决方法
因为有了之前四次实验的经验,这次实验做的比较顺利,就是有一点没有注意,那就是将属性改为 passive,没有改的时候下载过程中就会出现错误,在我及时的发现并改正后,交通灯就顺利的开始工作了。
五、实验心得
eda技术基础实验教案 第6篇
摘要:在电子信息类的专业当中,数字电子技术的上实验教学是非常重要的。随着社会的发展和电子信息技术的逐渐进步,传统的实验教学方法已经不再适用了,我们需要引进更加新进的技术来对其进行改革。EDA技术的引进可以说是数字电子技术实验的一个进步,也可以说是教学改革的一个趋势。本文将对EDA技术在数字电子技术实验中的应用进行简单的分析和研究,并对EDA技术进行一些介绍,从而说明该技术的重要性。
关键词:EDA技术;数字电子技术教学;实验应用
数字电子技术在近些年得到了快速的发展,而该技术已经应用在了我们的日常生活中。在电子信息的学习过程中,数字电子技术实验是不可或缺的一部分,它的理论性和实践性都非常强,因此进行该试验要具备足够的专业知识以及一定的动手操作能力。随着计算机和电子技术的迅速发展,我们对于该方面的教学理念和模式也需要与时俱进,较为落后和过于传统的教学模式会严重影响到我们对于相关人才的培养,所以我们需要将EDA技术应用到数字电子实验当中。
一、EDA技术的概述
EDA又称为电子设计自动化。该技术的发展时间虽然只有短短的三十几年,但是它涉及的范围是非常广泛的。EDA技术是将具有较大规模的能够编程的控制器作为载体,将硬件的语言描述作为一种表达,运用计算机、相关的软件和编程器来进行电子和硬件系统设计的技术。它所拥有的功能是十分强大的,能够进行逻辑的布线规划、设计、简化、分割、优化、分析等工作。EDA技术是伴随着计算和电子信息等技术的发展而产生的,在后两者迅速发展而变得愈发复杂时,EAD技术的使用在极大程度上为电子电路设计提供了帮助,它在设计的每一个阶段都发挥着十分重要的作用,可以说该技术在电子信息技术的发展上起到了很大的推动作用。
二、基于EDA技术的数字电子技术实验构架
现阶段,我国很多相关的公司已经成功的建立起虚拟实验台,并且可以使用它做完整的数字电子技术实验。EDA技术的应用将数字电子技术的实验内容变得更加丰富,这样就可以做一些难度较高或者是实际操作难度大的电子实验。
(1)虚拟的数字电子技术实验构架。在搭建数字电子技术实验平台的过程当中,会使用到多种EDA的开发工具。而建立实验平台由主要分成了两个部分:第一部分就是在实验中加入了仿真模块,此功能是将EDA技术作为基础来提供学习的一个平台;第二部分是指实验在虚拟环境中进行,这样可以有效对信息进行功能以及管理上的评估。这两个部分之间存在着一定的联系,数据信息要做到互通和交换,这样才能建立起一个完整的EDA数字电子技术实验平台。
(2)各模块框架。仿真功能是该实验平台的一个非常重要的功能,而它又被分成了四个部分,分别是收集项目的信息数据、基础教育、进行虚拟实验、结果的分析。在进行实验的过程中需要在虚拟实验台中了解一些具体的要求,然后做好充足的准备并选择所能应用到的EDA开发工具,从而将获取的实验任务完成。在结束后要将实验数据、图表、仿真曲线、程序代码进行汇总,上传到服务器,以便日后查阅。
在进行基础学习时要把握好四个要素:①熟悉掌握软件编程语言;②了解并熟练使用EDA工具;③认真了解并熟记实验仪器的操作方法;④具有足够的专业知识。在实验中我们经常会使用到的EDA工具包括QuartusⅡ、Protel和Matlab等。而软件编程语言工具会经常使用汇编语言和VHDL语言。实验器具以常用数字芯片为主。除此之外,在网上可以通过相应的渠道可以找到实验案例并将其下载出来,案例中会对实验的设计思路和技术要点等方面进行详细的说明,会更有利于学习者的学习。
同样,信息功能和管理评估模块也是由四个部分所组成的:①提供实验信息;②审批阶段;③对实验进度进行实时掌控;④对信息数据的管理。负责该模块的管理者需要把实验内容在平台进行公布,让实验者了解实验内容。在实验完成后还要把一些相关数据和结果存储到数据库中。
三、在数字电子技术实验中引入EDA技术的优势
(1)提高实验可靠性。EDA技术在实验中的应用可以达到一个扬长避短的效果,对于实验的效率和结果的准确度上有很大程度上的提高,而且可以直观的显示出某些电路设计中存在的问题和错误。在实际中,因为每一个门电路中会存在延时现象,由此就会产生冒险竞争,这就会导致正常信号进入到不正常的尖峰脉冲当中,但是由于采样精度较低的缘故,该现象是很难被观察到的。而EDA技术的应用就可以将该现象显示出,然后再确定出解决问题的办法。
(2)加强实验者的动手操作能力。数字电子技术实验平台所需要的开发周期是比较短的,并且具有调试简单和容易更改电路的特点,这些都可以让实验人员很容易的了解设计要领。这样既可以调动人们的实验兴趣,还可以更容易的将理论知识运用到实践当中。
(3)实验开放性较好。EDA的仿真技术可以摆脱器材上的限制,很多工作都可以在计算机上进行,而实验的设计工作同样可以不在实验室中进行,在完成之后将其进行保存即可。而测试芯片具有实际的运行特性,可以将实验的灵活度进行提高。
(4)提高实验效率。数字电子技术实验的过程是十分复杂的,需要设计和产生的数据量是很大的,如果在中途出现错误就可能导致实验失败或者是将过程变得更加繁琐。EDA技术的应用将实验的操作过程进行了简化,更容易进行调整,在相同的时间内还可以进行多个实验方案从而进行比较,实验的效率也得到了很大的提高。
(5)弥补客观条件的短缺。进行数字电子技术实验需要一套完整的相关设备,但是这些设备装置的价格是十分昂贵的,由于经费不足的问题会导致实验无法进行。EDA的仿真技术可以让实验在计算机中进行,从而避免因客观条件限制而无法进行试验的情况,并且进行仿真实验还可以不用担心损坏仪器所产生的损失。
EDA技术的加入对于数字电子技术实验来说是非常重要的,它既降低了实验进行的难度,又提高了知识理论在实践中的应用,也可以说它为数字电子技术的发展起到了推动的作用。本文对EDA技术在数字电子技术实验中的应用进行简单的分析和研究,并介绍了该技术所拥有的一些优势,希望它能在数字电子技术实验中得到推广。
参考文献:
eda技术基础实验教案 第7篇
扬柳林
陈军灵
(广西大学电气工程学院,广西,南宁,530004)
摘要:文章对MultiSim仿真软件进行了介绍,探讨了其在电工电子技术实验教学中的应用,利用该虚拟电子实验台辅助实验教学,可以克服传统实验中的一些不足,使实验教学更加方便、灵活、直观,能取得更好的教学效果。关键词:电子设计自动化(EDA);虚拟电子实验台;MultiSim;仿真 中图分类号:G642.423 0 引言
在科学技术日新月异的背景下,随着教育改革的深入,如何实现教育技术现代化、教学 手段现代化已经成为我国教育改革所面临的一个重要课题。目前,在电工电子技术实验教学方面,国内多数高校仍主要采用实物元器件进行硬件连线测试,大多数采用面包板或者各种现成的实验箱。这种传统的实验方式由于受实验室条件的限制,在给学生开设一些扩展型、设计型以及综合型实验时将会遇到困难,特别是新器件,新设备价格昂贵,一般院校的电子学实验室更是无法承受。
随着电子设计自动化(EDA)技术的发展,开创了利用“虚拟仪器”、“虚拟器件”在计算机上进行电子电路设计和实验的新方法。目前,在这类仿真软件中,“虚拟电子实验台”——MultiSim较为优秀,其应用逐步得到推广。这种新型的虚拟电子实验技术,在创建实验电路时,元器件和测试仪器均可以直接从屏幕图形中选取,而且软件中的测试仪器的图形与实物外形基本相似。利用MultiSim仿真软件进行电工电子技术实验教学,不仅可以弥补实验仪器、元器件短缺以及规格不符合要求等因素,还能利用软件中提供的各种分析方法,帮助学生更快、更好地掌握教学内容,加深对概念、原理的理解,并能熟悉常用的电工电子仪器的测量方法,进一步培养学生的综合能力和创新能力。虚拟电子实验台MultiSim简介
Multisim是加拿大Interactive Image Technologies公司出品的电路模拟软件,V5以前的 版本称为Electronics Workbench,从V6开始改为Multisim。在教育界比较流行的Multisim 2001版属于V6版本,目前Multisim的最新版本是V8。Multisim从V5到V6的功能有很大的扩充,特别是增加了VHDL和Verilog HDL模块,使它成为真正的“数模VHDL Verilog”的混合电路模拟软件。
Multisim的主要功能和特点:
Multisim具有直观、方便的操作界面,创建电路、选用元器件和虚拟测试仪器等均 可直接从屏幕图形中选取,而且提供的虚拟测试仪器非常齐全,其外观与实物外形基本相似,操作这些虚拟设备如同操作真实的设备一样。
Multisim极大地扩充了元件数据库,特别是大量新增的与现实元件对应的元件模 型,增强了仿真电路的实用性,同时还可以新建或扩充已经有的元件库,建库所需的原器件参数可以从生产厂商的产品使用手册中查到。
Multisim具有较为完善的电路分析功能,可以完成电路的瞬态分析和稳定分析、时 域和频域分析、器件的线性和非线性分析、电路的噪声分析和失真分析、离散傅里叶分析、电路零极点分析、交直流灵敏度分析等电路分析方法。此外,还可以对被仿真电路中的元件设置各种故障,以便观察到故障情况下的电路工作状态。用MultiSim进行虚拟实验的方法 2.1 构造和测试电路分为以下几个步骤:
⑴ 根据实验内容从元件库选择元件放到工作区;
⑵ 将工作区中的元件按照电路布局进行放置,用导线将元件连接起来,并设置好元件参数和模型;
⑶ 在电路中需要观测的节点放置、连接电压、电流表计和示波器、信号发生器等观测仪器;
⑷ 根据测试要求设定仪器参数,进行电路仿真、观测。2.2 电路仿真运行
电路创建完毕,点击“运行”开关后,就可以从示波器等测试仪器上读得电路中被测数据。整个仿真运行过程可分成以下几个步骤:
⑴ 数据输入:将已创建的电路图结构、元器件数据读入,选择分析方法;
⑵ 参数设置:检查输入数据的结构和性质,以及电路中的阐述内容,对参数进行设置;
⑶ 电路分析:对输入信号进行分析,形成电路的数据值解,并将所得数据送至输出级;
⑷ 数据输出:从测试仪器如示波器或万用表等上获得仿真运行的结果。也可以从“分析”栏中的“分析显示图”看到测量、分析的波形图。MultiSim在电工电子实验教学中的应用举例
3.1 RLC串联电路的响应与状态轨迹观测(电工电路仿真实验)
二阶RLC串联电路在电工电路中较为常见,但用传统的方法讲授、观测该电路的响应 过程是比较抽象、复杂的,而使用Multisim对其过渡过程进行仿真分析,就可以很方便地研究其过阻尼、临界阻尼和欠阻尼三种状态下的响应曲线和状态轨迹。
如图1所示,在Multisim工作区搭建实验电路,并设置好相关参数。图中函数发生器 输出方波信号,f600Hz。用示波器观测电容两端电压,通过键盘上的“a”键,可以实时改变可调电阻R1值,从而得到三种不同状态的响应曲线,如图2所示。
图1
(a)临界阻尼
图2
(b)欠阻尼
二阶RLC串联电路三种状态的响应曲线
(c)过阻尼
为了观测该电路的状态轨迹,需按图3搭建实验电路。图中,函数发生器输出方波信号,f600Hz;示波器置于双踪工作方式,将电容两端电压送入示波器的A端子,电感电流送入示波器的B端子,则从屏幕上就可以显示出其状态轨迹,原理与显示李萨育图形一样。为获得电感电流,加接了取样电阻R3,将电流量转变为成正比的电压量。由于电阻R3的引进,电容电压值比实际值偏大,但由于电容的阻抗ZCR3,所以电阻R3带来的影响可以忽略不计。改变可调电阻R2值,便可观察振荡与非振荡情况下的状态轨迹,如图4所示。
图3
(c)过阻尼
(b)欠阻尼(a)临界阻尼
图4
二阶RLC串联电路三种状态的状态轨迹
3.2 晶体管输出特性曲线测试(电子电路仿真实验)晶体管输出特性曲线是描述晶体管各极电流与各极电压关系的曲线,对于了解晶体管性能和晶体管电路分析是非常有用的。传统的晶体管输出特性曲线测试实验,比较繁琐,现利用MultiSim强大的仿真分析、数据后期处理功能,则可以方便、快捷地测绘出晶体管输出特性曲线。
如图5所示,在MultiSim工作区中创建测试电路。点击Simulate菜单中的Analyses下的DC Sweep Analyses功能,出现图6所示对话框,按图中参数进行设置,并将vv1# branch作为output variables。设置完毕,点击对话框上的Simulate,得到图
8所示晶体管输出特性曲线。但该曲线与习
图晶体管测试电路图
惯表示方法不同,纵坐标数据为负数,因此,再利用Multisim的后处理功能(Postprocess),将测试曲线进行简单的数学运算,即输出数据取反,便可得到习惯表示法。具体参数设置如图7对话框所示。重画后的晶体管输出特性曲线如图9所示。
图6
DC Sweep Analyses对话框设置
图7
Postprocess对话框设置
图9
晶体管输出特性曲线 图8
晶体管测试曲线 结论
从以上列举的仿真试验中,可以看出,用MultiSim进行电工电子虚拟实验非常方便,现象直观,结果精确。这对电工电子技术实验教学是一种很好的辅助手段。并且,还为学生进行综合性、创造性实验提供了一个广阔空间。随着MultiSim应用的推广和深入,其必将在电子工程、信息工程、电气工程、自动控制等领域的辅助教学中发挥重要作用。
参考文献:
[1] Interactive Image Technology Ltd,Multisim V7 User Guide [M],Canada,2003.
[2] 郑步生,吴渭,Multisim2001电路设计及仿真入门与应用[M],北京:电子工业出版社,2002.
[3] 康光华,电子技术基础(模拟部分),北京:高等教育出版社.
Multisim是加拿大图像交互技术公司(Interactive Image Technoligics简称IIT公司)推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。
工程师们可以使用Multisim交互式地搭建电路原理图,并对电路行为进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。multisim 9概述
Multisim 被美国NI公司收购以后,其性能得到了极大的提升。最大的改变就是:Multisim 9与LABVIEB 8的完美结合:
新特点:(1)可以根据自己的需求制造出真正属于自己的仪器;
(2)所有的虚拟信号都可以通过计算机输出到实际的硬件电路上;
(3)所有硬件电路产生的结果都可以输回到计算机中进行处理和分析。
Multisim 9组成:
1. ―――构建仿真电路
2. ―――仿真电路环境
3. multi mcu------单片机仿真
4. ――FPGA、PLD,CPLD等仿真
5. ――FPGA、PLD,CPLD等仿真
6. ―― 通信系统分析与设计的模块
7. ―― PCB设计模块:直观、层板32层、快速自动布线、强制向量和密度直方图
8. -(自动布线模块)
仿真的内容:
1. 器件建模及仿真;
2. 电路的构建及仿真;
3. 系统的组成及仿真;
4. 仪表仪器原理及制造仿真。
器件建模及仿真:可以建模及仿真的器件:
模拟器件(二极管,三极管,功率管等);
数字器件(74系列,COMS系列,PLD,CPLD等);
FPGA器件。
电路的构建及仿真:单元电路、功能电路、单片机硬件电路的构建及相应软件调试的仿真。
系统的组成及仿真:Commsim 是一个理想的通信系统的教学软件。它很适用于如„信号与系统‟、„通信‟、„网络‟等课程,难度适合从一般介绍到高级。使学生学的更快并且掌握的更多。
Commsim含有200多个通用通信和数学模块,包含工业中的大部分编码器,调制器,滤波器,信号源,信道等,Commsim 中的模块和通常通信技术中的很一致,这可以确保你的学生学会当今所有最重要的通信技术。
要观察仿真的结果,你可以有多种选择:时域,频域,XY图,对数坐标,比特误码率,眼图和功率谱。
仪表仪器的原理及制造仿真:可以任意制造出属于自己的虚拟仪器、仪表,并在计算机仿真环境和实际环境中进行使用。
PCB的设计及制作:产品级版图的设计及制作。
美国NI公司提出的理念:
“把实验室装进PC机中”
“软件就是仪器
[编辑本段]multisim 10概述
●通过直观的电路图捕捉环境, 轻松设计电路
●通过交互式SPICE仿真, 迅速了解电路行为
●借助高级电路分析, 理解基本设计特征
●通过一个工具链, 无缝地集成电路设计和虚拟测试
●通过改进、整合设计流程, 减少建模错误并缩短上市时间
NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim,您可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。借助专业的高级SPICE分析和虚拟仪器,您能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。
电子通信类其它常用的仿真软件:
System view---数字通信系统的仿真
Proteus――单片机及ARM仿真
LabVIEW――虚拟仪器原理及仿真
Multisim 2001 使用简介
Multisim是Interactive Image Technologies(Electronics Workbench)公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。为适应不同的应用场合,Multisim推出了许多版本,用户可以根据自己的需要加以选择。在本书中将以教育版为演示软件,结合教学的实际需要,简要地介绍该软件的概况和使用方法,并给出几个应用实例。
第一节 Multisim概貌
软件以图形界面为主,采用菜单、工具栏和热键相结合的方式,具有一般Windows应用软件的界面风格,用户可以根据自己的习惯和熟悉程度自如使用。
一、Multisim的主窗口界面。
启动Multisim 2001后,将出现如图1所示的界面。
界面由多个区域构成:菜单栏,各种工具栏,电路输入窗口,状态条,列表框等。通过对各部分的操作可以实现电路图的输入、编辑,并根据需要对电路进行相应的观测和分析。用户可以通过菜单或工具栏改变主窗口的视图内容。
二、菜单栏
菜单栏位于界面的上方,通过菜单可以对Multisim的所有功能进行操作。
不难看出菜单中有一些与大多数Windows平台上的应用软件一致的功能选项,如File,Edit,View,Options,Help。此外,还有一些EDA软件专用的选项,如Place,Simulation,Transfer以及Tool等。
1.File File菜单中包含了对文件和项目的基本操作以及打印等命令。命令 功能
New
建立新文件
Open
打开文件
Close
关闭当前文件
Save
保存
Save As
另存为
New Project
建立新项目
Open Project
打开项目
Save Project
保存当前项目
Close Project
关闭项目
Version Control
版本管理
Print Circuit
打印电路
Print Report
打印报表
Print Instrument
打印仪表
Recent Files
最近编辑过的文件
Recent Project
最近编辑过的项目
Exit
退出Multisim
2.Edit Edit命令提供了类似于图形编辑软件的基本编辑功能,用于对电路图进行编辑。命令 功能
Undo
撤消编辑
Cut
剪切
Copy
复制
Paste
粘贴
Delete
删除
Select All
全选
Flip Horizontal
将所选的元件左右翻转
Flip Vertical
将所选的元件上下翻转
ClockWise
将所选的元件顺时针90度旋转
ClockWiseCW
将所选的元件逆时针90度旋转
Component Properties 元器件属性 3.View 通过View菜单可以决定使用软件时的视图,对一些工具栏和窗口进行控制。命令 功能
Toolbars
显示工具栏
Component Bars
显示元器件栏
Status Bars
显示状态栏
Show Simulation Error Log/Audit Trail
显示仿真错误记录信息窗口
Show XSpice Command Line Interface
显示Xspice命令窗口
Show Grapher
显示波形窗口
Show Simulate Switch
显示仿真开关
Show Grid
显示栅格
Show Page Bounds
显示页边界
Show Title Block and Border
显示标题栏和图框
Zoom In
放大显示
Zoom Out
缩小显示
Find 查找
4.Place 通过Place命令输入电路图。命令 功能
Place Component
放置元器件
Place Junction
放置连接点
Place Bus
放置总线
Place Input/Output
放置输入/出接口
Place Hierarchical Block
放置层次模块
Place Text
放置文字
Place Text Description Box
打开电路图描述窗口,编辑电路图描述文字
Replace Component
重新选择元器件替代当前选中的元器件
Place as Subcircuit
放置子电路
Replace by Subcircuit 重新选择子电路替代当前选中的子电路 5.Simulate 通过Simulate菜单执行仿真分析命令。命令 功能
Run
执行仿真
Pause
暂停仿真
Default Instrument Settings
设置仪表的预置值
Digital Simulation Settings
设定数字仿真参数
Instruments
选用仪表(也可通过工具栏选择)
Analyses
选用各项分析功能
Postprocess
启用后处理
VHDL Simulation
进行VHDL仿真
Auto Fault Option
自动设置故障选项
Global Component Tolerances 设置所有器件的误差 6.Transfer菜单
Transfer菜单提供的命令可以完成Multisim对其它EDA软件需要的文件格式的输出。命令 功能
Transfer to Ultiboard
将所设计的电路图转换为Ultiboard(Multisim中的电路板设计软件)的文件格式
Transfer to other PCB Layout
将所设计的电路图以其他电路板设计软件所支持的文件格式
Backannotate From Ultiboard
将在Ultiboard中所作的修改标记到正在编辑的电路中
Export Simulation Results to MathCAD
将仿真结果输出到MathCAD
Export Simulation Results to Excel
将仿真结果输出到Excel
Export Netlist 输出电路网表文件 7.Tools Tools菜单主要针对元器件的编辑与管理的命令。命令 功能
Create Components
新建元器件
Edit Components
编辑元器件
Copy Components
复制元器件
Delete Component
删除元器件
Database Management
启动元器件数据库管理器,进行数据库的编辑管理工作
Update Component 更新元器件 8.Options 通过Option菜单可以对软件的运行环境进行定制和设置。命令 功能
Preference
设置操作环境
Modify Title Block
编辑标题栏
Simplified Version
设置简化版本
Global Restrictions
设定软件整体环境参数
Circuit Restrictions 设定编辑电路的环境参数 9.Help Help菜单提供了对Multisim的在线帮助和辅助说明。命令 功能
Multisim Help
Multisim的在线帮助
Multisim Reference
Multisim的参考文献
Release Note
Multisim的发行申明
About Multisim
Multisim的版本说明
三、工具栏
Multisim 2001提供了多种工具栏,并以层次化的模式加以管理,用户可以通过View菜单中的选项方便地将顶层的工具栏打开或关闭,再通过顶层工具栏中的按钮来管理和控制下层的工具栏。通过工具栏,用户可以方便直接地使用软件的各项功能。
顶层的工具栏有:Standard工具栏、Design工具栏、Zoom工具栏,Simulation工具栏。
1.Standard工具栏包含了常见的文件操作和编辑操作,如下图所示:
2.Design工具栏作为设计工具栏是Multisim的核心工具栏,通过对该工作栏按钮的操作可以完成对电路从设计到分析的全部工作,其中的按钮可以直接开关下层的工具栏:Component中的Multisim Master工具栏,Instrument工具栏。
(1)作为元器件(Component)工具栏中的一项,可以在Design工具栏中通过按钮来开关Multisim Master工具栏。该工具栏有14个按钮,每个每一个按钮都对应一类元器件,其分类方式和Multisim元器件数据库中的分类相对应,通过按钮上图标就可大致清楚该类元器件的类型。具体的内容可以从Multisim的在线文档中获取。
这个工具栏作为元器件的顶层工具栏,每一个按钮又可以开关下层的工具栏,下层工具栏是对该类元器件更细致的分类工具栏。以第一个按钮 为例。通过这个按钮可以开关电源和信号源类的Sources工具栏如下图所示:
(2)Instruments工具栏集中了Multisim为用户提供的所有虚拟仪器仪表,用户可以通过按钮选择自己需要的仪器对电路进行观测。
3.用户可以通过Zoom工具栏方便地调整所编辑电路的视图大小。
4.Simulation工具栏可以控制电路仿真的开始、结束和暂停。
第二节 Multisim对元器件的管理
EDA软件所能提供的元器件的多少以及元器件模型的准确性都直接决定了该EDA软件的质量和易用性。Multisim为用户提供了丰富的元器件,并以开放的形式管理元器件,使得用户能够自己添加所需要的元器件。
Multisim以库的形式管理元器件,通过菜单Tools/ Database Management打开Database Management(数据库管理)窗口(如下图所示),对元器件库进行管理。
在Database Management窗口中的Daltabase列表中有两个数据库:Multisim Master和User。其中Multisim Master库中存放的是软件为用户提供的元器件,User是为用户自建元器件准备的数据库。用户对Multisim Master数据库中的元器件和表示方式没有编辑权。当选中Multisim Master时,窗口中对库的编辑按钮全部失效而变成灰色,如下图所示。但用户可以通过这个对话窗口中的Button in Toolbar显示框,查找库中不同类别器件在工具栏中的表示方法。
据此用户可以通过选择User数据库,进而对自建元器件进行编辑管理。
在Multisim Master中有实际元器件和虚拟元器件,它们之间根本差别在于:一种是与实际元器件的型号、参数值以及封装都相对应的元器件,在设计中选用此类器件,不仅可以使设计仿真与实际情况有良好的对应性,还可以直接将设计导出到Ultiboard中进行PCB的设计。另一种器件的参数值是该类器件的典型值,不与实际器件对应,用户可以根据需要改变器件模型的参数值,只能用于仿真,这类器件称为虚拟器件。它们在工具栏和对话窗口中的表示方法也不同。在元器件工具栏中,虽然代表虚拟器件的按钮的图标与该类实际器件的图标形状相同,但虚拟器件的按钮有底色,而实际器件没有,如下图所示。
从图中可以看到,相同类型的实际元器件和虚拟元器件的按钮并排排列,并非所有的是元器件都设有虚拟类的器件。
在元器件类型列标中,虚拟元器件类的后缀标有Virtual,如下图所示:
第三节 输入并编辑电路
输入电路图是分析和设计工作的第一步,用户从元器件库中选择需要的元器件放置在电路图中并连接起来,为分析和仿真做准备。
一、设置Multisim的通用环境变量
为了适应不同的需求和用户习惯,用户可以用菜单Option/Preferences打开Preferences对话窗口,如下图所示。
通过该窗口的6个标签选项,用户可以就编辑界面颜色、电路尺寸、缩放比例、自动存储时间等内容作相应的设置。
以标签Workspace为例,当选中该标签时,Preferences对话框如下图所示:
在这个对话窗口中有3个分项:
1.Show:可以设置是否显示网格,页边界以及标题框。
2.Sheet size:设置电路图页面大小。
3.Zoom level:设置缩放比例。
其余的标签选项在此不再详述。
二、取用元器件
取用元器件的方法有两种:从工具栏取用或从菜单取用。下面将以74LS00为例说明两种方法。
1.从工具栏取用:Design工具栏®Multisim Master工具栏®TTL工具栏®74LS按钮
从TTL工具栏中选择74LS按钮打开这类器件的Component Browser窗口,如下图所示。其中包含的字段有Database name(元器件数据库),Component Family(元器件类型列表),Component Name List(元器件名细表),Manufacture Names(生产厂家),Model Level-ID(模型层次)等内容。
2.从菜单取用:通过Place/ Place Component命令打开Component Browser窗口。该窗口与上图一样。
3.选中相应的元器件
在Component Family Name中选择74LS系列,在Component Name List中选择74LS00。单击OK按钮就可以选中74LS00,出现如下备选窗口。7400是四/二输入与非门,在窗口种的Section A/B/C/D分别代表其中的一个与非门,用鼠标选中其中的一个放置在电路图编辑窗口中,如左图所示。器件在电路图中显示的图形符号,用户可以在上面的Component Browser中的Symbol选项框中预览到。当器件放置到电路编辑窗口中后,用户就可以进行移动、复制、粘贴等编辑工作了,在此不再详述。
三、将元器件连接成电路
在将电路需要的元器件放置在电路编辑窗口后,用鼠标就可以方便地将器件连接起来。方法是:用鼠标单击连线的起点并拖动鼠标至连线的终点。在Multisim中连线的起点和终点不能悬空。
第四节 虚拟仪器及其使用
对电路进行仿真运行,通过对运行结果的分析,判断设计是否正确合理,是EDA软件的一项主要功能。为此,Multisim为用户提供了类型丰富的虚拟仪器,可以从Design工具栏®Instruments工具栏,或用菜单命令(Simulation/ instrument)选用这11种仪表,如下图所示。在选用后,各种虚拟仪表都以面板的方式显示在电路中。
下面将11种虚拟仪器的名称及表示方法总结如下表:
菜单上的表示方法
对应按钮
仪器名称
电路中的仪器符号
Multimeter
万用表
Function Generator
波形发生器
Wattermeter
瓦特表
Oscilloscape
示波器
Bode Plotter
波特图图示仪
Word Generator
字元发生器
Logic Analyzer
逻辑分析仪
Logic Converter
逻辑转换仪
Distortion Analyzer
失真度分析仪
Spectrum Analyzer
频谱仪
Network Analyzer
网络分析仪
注1:该软件中用 ‟ 代替 — 表示反变量,例如。
注2:该软件没有异或符号,处理方式是将异或运算写成。
在电路中选用了相应的虚拟仪器后,将需要观测的电路点与虚拟仪器面板上的观测口相连(如下图),可以用虚拟示波器同时观测电路中两点的波形。
双击虚拟仪器就会出现仪器面板,面板为用户提供观测窗口和参数设定按钮。以上图为例,双击图中的示波器,就会出现示波器的面板。通过Simulation工具栏启动电路仿真,示波器面板的窗口中就会出现被观测点的波形,如下图所示。
第五节 电路实例
这节将以3个电路实例说明Multisim在电路设计和分析中的使用方法。Multisim的基础是正向仿真,为用户提供了一个软件平台,允许用户在进行硬件实现以前,对电路进行观测和分析。
例1.构造同步16进制计数器,并用7段数码管进行观测(文件名:counter.msm)。通过运行仿真验证电路功能。在这个电路的基础上将计数器改为10进制,并通过仿真验证修改结果是否正确(注:显示0~9)。
首先选用T触发器和带译码的7段数码管和与门一起构成4位16进制计数器如下图。在电路中选用1Hz矩形波发生器,通过仿真观测运行的情况。
使用异步置零法,在图中加入反馈电路,当触发器的状态变为1010时通过Reset端对触发器进行清零。电路设计结果如下图。通过仿真可以观测到电路已经成为10进制计数器(文件名:counterb.msm)。
例2.分析已经给出的阶梯波发生器。电路如下图(文件名:Stepwave.msm)。通过运行仿真观测电路的功能,通过改变信号源的参数来改变阶梯波的频率,同时用示波器进行观测。
从图中可以看到,电路大致分为两个部分,上部分为4个T触发器和相应门电路构成的16进制计数器,下部分为D/A转换器。电路的信号源为矩形波发生器,通过示波器观测到的波形如下图。
[编辑本段]Multisim10安装
1.下载软件可以到官方下载完全试用版
2.ftp://ftp.ni.com/evaluation/EWB/NI_Circuit_Design_Suite_10_0.exe 3.输入安装序列号,完成安装。4.导入许可文件,完成软件安装 a。安装Multisim。
eda技术基础实验教案 第8篇
近年来, 全国各高校都开设了EDA技术的教学和实践课程。对高职电子专业的学生而言, 数字电子技术课程设计是学生在学习数字电子技术理论课程后进行的一次综合性训练, 其目的是培养学生综合运用所学理论知识的能力、独立设计电子产品的能力及对电子产品实际安装调试的能力。学生从原理图设计开始, 一直做到样机调试成功, 经历整个电子产品的设计、开发过程, 所以, 将传统课程设计与EDA技术训练相结合, 使学生对该技术在电子设计中所起的作用建立整体的认识, 能对学生综合能力的培养有所帮助。
课程设计的总体思路
课程设计过程
数字电路课程设计的过程主要分为两个阶段:一是应用Multisim仿真设计电路。在学生根据设计课题拟定初步方案后, 要求他们先在电路仿真与分析软件Multisim平台上对所设计的电路进行仿真, 观察电路功能是否满足设计要求, 主要元器件参数对分析电路指标的影响, 在Multisim平台上调试电路使之达到技术指标, 为实践做准备。二是应用Protel设计印刷电路板。在Multisim仿真后, 要求学生应用Protel设计软件设计出PCB印刷电路板图。PCB版图必须布局合理, 符合电气布线规则。总体过程可用流程图 (见图1) 表示。
课程设计时间安排
课程设计安排两周时间。第一周, 安排学生自行查阅资料, 进行基本电路设计, 计算相关电路参数。对于学生设计所用的元件, 出于成本的考虑, 在设计过程中要求学生尽可能地采用实验室的器件, 教师应尽量增加器件的种类供学生挑选, 其他的特殊器件均由学生在给定的经费额度内自行采购。学生完成电路的理论设计以后, 画出理论设计的电路图, 给出有关设计依据, 并由Multism 9.0软件仿真通过后交指导教师审核, 再利用Protel DXP软件进行印刷板设计, 由于是自行加工制作, 所以工艺上要求设计成单面板。这样, 一方面, 培养了学生工程设计的成本控制意识;另一方面, 也给学生熟悉市场的机会。第二周, 学生在完成以上工作后, 进入实验室制作电路板, 对腐蚀后的电路板进行打孔, 最后完成元器件的焊接、电路调试等工作。最后安排两天的时间进行课程设计报告的编写和答辩。
课程设计评分
课程设计评分分为设计报告和设计功能实现两部分。评分指标如下: (1) 设计报告30分; (2) 作品功能70分, 分成以下几个评分点:印刷版布线10分;焊接技术10分;电路功能50分 (实现功能20分, 其余基本功能每完成一部分给10分) 。发挥部分考虑到能完成的学生不多, 只把此部分功能的实现作为额外计分的因素。以上的评分指标明确了评分的要点, 从而引导学生在设计过程中不仅要注意理论设计, 而且要注意追求科学合理的电路工艺和良好的电路性能指标, 促使学生在电子技术基本技能和电路设计能力方面得到全面和系统的训练, 以达到提高学生综合能力的目的。
课程设计的教学实践
以下是我院应用电子技术专业一次“六路智力竞赛抢答器”课程设计的全过程。
设计要求:
可同时供6名选手进行比赛, 各用一个抢答按钮, 按钮的编号分别与选手的编号相对应;给节目主持人设置一个控制开关S, 用来控制系统清零和抢答开始;抢答器具有数据锁存和显示功能, 抢答开始以后, 若有选手按动抢答按钮, 编号便立即锁存, 并在LED数码管上显示选手的编号, 同时, 扬声器发出音响提示。此时, 输入回路封锁, 禁止其他选手抢答。优先抢答的选手编号一直保持到主持人将系统清零时为止。
发挥部分:
参赛选手在设定的时间内抢答有效, 显示器上显示选手的编号和抢答的时间, 并保持到主持人将系统清零时为止。根据设计意图可以确定设计框图 (如图2所示) 。
1.在多媒体机房中, 根据设计要求利用Multism 9.0设计电路原理图, 并通过Multism 9.0自带的仿真仪器对所设计电路进行仿真分析, 逐步改进电路, 直至达到设计要求。在这里抢答部分采用的是一个74ls148编码器对选手抢答信号编码, 并通过74ls175D功能数据锁存器锁存, 最后经4511译码后驱动7段LED共阴数码管显示。同时74ls30形成锁存脉冲控制D功能数据锁存器锁存信号;音响报警部分由555振荡器完成。 (如图3所示)
2.利用在Multism 9.0中生成的网络表, 导入到Protel Dxp软件中设计PCB电路板 (如图4所示) 。在生成网络表时, 要注意自制元件封装与原理图中的名称一致, 在此自制了按钮和数显的封装, 方法是拿实物在万能板上进行尺寸比对, 由于万能板的两个孔距为标准的100mil, 所以, 无需特殊的测量工具就可完成元件的封装测量。我们设计的走线线宽为20mil, 焊盘的直径为60mil。事实证明, 该尺寸是手工制板的最低数据, 若低于该数据, 在腐蚀的时候很容易断裂。当然, 在满足安全间距的条件下, 可以尽可能地加大线宽和焊盘直径。由于设计的是单面板, 不可避免会出现无法布通的线路 (红线) , 可以在最后装配的时候在元件面用跳线来连接。
3.在电子制作实验室中, 学生将打印出来的电路板图通过电路板制作设备制作成实际电路板 (如图5所示) 。打孔完毕后, 再用流动的自来水清洗, 然后刷上酒精松香溶液并用吹风机吹干, 对于一些腐蚀过度断裂的线路, 可采用拖锡的方法补好。
4.在电子制作实验室中, 学生学习各种元器件的选择、常用工具与仪器仪表的使用以及练习焊接技术, 最后完成整机组装, 并通电测试是否达到设计标准 (如图6所示) 。
5.在课程设计实验室中, 学生组装调试所设计的电路, 使用自己所学的方法分析和排除电路故障, 并撰写课程设计报告。
课程设计的教学效果和启示
通过几年课程设计的实践, 对抢答器、数字温度计、数字钟、交通灯控制器等设计课题, 采用EDA软件指导学生进行电子技术课程设计, 取得了较好的教学效果。课程设计过程培养了学生的竞争意识、创新意识, 提高了学生的计算机应用水平, 学生在学习方法、遵守纪律、团结协作、创新能力、独立分析问题与解决问题的能力、写作和语言表达能力、吃苦耐劳和踏实严谨的作风、言行举止和文明礼貌等方面都受到很好的锻炼和培养。同时, 我们也从中获得了一些启示。
教学内容要先进、新颖、实用
课题内容应涉及理论课中学到的各种规模集成器件, 这样可以调动学生的学习热情, 提高学生的学习兴趣, 发挥学生的主观能动性和积极性, 而且可以促进教师不断学习, 更新知识结构, 真正做到教学相长。
设计过程的优化
数字电子技术课程设计是一个循序渐进的过程。在这一过程中, 每一个阶段的成功与否, 对下一阶段乃至整个课程设计是否达到预期效果都起着非常重要的作用。在整个设计过程中, 教师主要应侧重于三个方面:方案设计、安装调试、撰写报告。这样, 可使整个设计过程起点高、要求严、效果好。同时, 要遵循“教师主导, 学生主体, 训练为主”的教学思路, 以便在整体上形成最佳的教学组合。
自主学习能力的培养
数字电路课程设计从查阅资料、提出初步方案到完善方案, 从原理图的仿真、实施以及设计的完成到写出设计报告, 整个过程都要求学生自己动手。教师可定期组织学生进行讨论, 指导学生在自主学习过程中发现问题、解决问题, 进一步培养学生分析、解决问题的能力, 培养学生的团结协作精神, 充分激发学生的学习主动性。
重视课程设计报告的撰写
培养学生科技论文写作能力, 重视课程设计后期的总结工作, 不仅可以培养学生良好的科学态度和素质, 同时, 还能使学生在总结中获得知识和经验, 培养学生科技论文撰写能力。课程设计报告的撰写包括如下的内容:设计任务、设计方案的论证与比较、具体电路的设计、元器件的选择和调试、设计工作总结等, 基本上是按毕业设计的要求完成的。设计报告总结的过程就是一个对知识深入理解和提高的过程, 可以使学生对工程设计的方法更加明确、对知识的理解更加深刻。
让答辩过程成为再学习、再提高的过程答辩时, 每个学生都要先概述自己的设计过程, 重点讲述设计过程中遇到的问题以及分析问题和解决问题的方法。然后教师提问, 学生回答。最后教师结合各组的设计情况进行点评、讲解, 同时发起讨论, 引导学生对不同的设计方案进行比较, 训练学生的综合分析问题的能力, 每个学生都可以提问、参与讨论, 提出自己的看法。通过答辩、讲评, 学生可以体会别人的设计思路, 开阔眼界, 也能从别人的设计中吸取经验教训。这样, 答辩过程就成了再学习、再提高的过程。
经过这几年的探索与实践, 笔者深刻体会到在课程设计中引入EDA技术, 设置适合的教学内容是十分必要的, 对理论教学和传统实验教学都是有益的补充。有的学生在总结时写道:“通过两周的课程设计, 不仅考查了我们对组合和时序逻辑电路的掌握情况, 同时, 也锻炼了我们使用仪器和计算机辅助设计的技能, 使学过的知识得到了复习与巩固。更重要的是把原来所学的理论知识与实际生活联系在了一起, 使学习变成了一种乐趣, 使知识形象具体地被掌握!”
通过课程设计的锻炼, 学生可以增强综合分析问题和解决问题的能力, 激发了学习兴趣和潜在能力。所以, 在教学中应当注意做到少讲多练, 使理论教学与实践紧密结合, 在实践过程中, 让学生了解和体会EDA技术在电子技术设计领域的重要作用。
参考文献
[1]徐丽香.数字电子技术[M].北京:电子工业出版社, 2006.
[2]崔建明.电工电子EDA仿真技术[M].北京:高等教育出版社, 2004.
eda技术基础实验教案
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


