电脑桌面
添加盘古文库-分享文档发现价值到电脑桌面
安装后可以在桌面快捷访问

平行线的性质的教案范文

来源:盘古文库作者:莲生三十二2025-09-181

平行线的性质的教案范文第1篇

教学目标 知识与技能

(1)掌握平行线的三个性质

(2)会用平行线的性质进行有关的简单推理和计算,解决相关问题。 (3)体会两平行线之间距离的意义,会度量两条平行线之间的距离。 过程与方法

在探索平行线的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,进一步增强分析、概括、表达能力。 情感态度价值观

让学生在探究活动中探索、交流、成功与提升的喜悦,获得亲自参与研究的情感体验,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。

教学重点:平行线的性质及其应用。 教学难点:理解平行线的性质。 教学过程 复习导入:

利用直尺和三角板在练习本上画两条平行线被第三条直线所截的图形,辨认图中的同位角、内错角、同旁内角。

探究新知

活动一 探究平行线的性质

利用上图思考:你有什么方法可以来比较一对同位角(比如∠1和∠5)的大小? 学生分组讨论。

学生在上一章刚刚学过角的比较,所以可能会出现以下两种方法:

1、度量法:用量角器量出角的度数,进行比较。

2、叠合法:剪下∠1,把∠1和∠5叠合,进行比较。

请各小组选择自己认为合适的方法,比较∠1和∠5的大小。 学生动手比较。

待学生完成后,组间交流,得到结论:

∠1=∠5 思考:其它的几对同位角是不是也具有这种关系呢? 引导学生猜想其余三对同位角也是相等的。 在此基础上,进一步提问:

你用什么方法可以验证你的结论。

学生根据刚刚比较∠1和∠5得到的经验,会首先想到度量或者叠合。

提出问题:如果不再度量或叠合,用刚才得到的∠1=∠5这个条件能不能说明你的结论呢。 小组交流。

请各小组选派代表,分别陈述下面一组角相等的思路。 (1)∠2和∠6 (2)∠3和∠7 (3)∠4和∠8 现在你发现了什么规律,引导学生来归纳:

两条平行直线被第三条直线所截,同位角______. 提醒这是一个基本事实,不用证明。 思考:同位角一定相等,对吗? 学生小组交流,请各组选代表发言。 学生可能会出现不同的思路,让学生进行辨论,最后强调同位角相等的前提条件:两条直线平行!

猜想各对内错角,同旁内角的关系,归纳:

两条平行直线被第三条直线所截, 内错角_______。 两条平行直线被第三条直线所截,同旁内角_______。

你能利用“两条平行直线被第三条直线所截,同位角相等”这一性质来说明以上两个结论吗?

请学生陈述自己的推理过程。

刚才同学们得到平行线的三个性质:用符号语言来表述为:

性质1两条平行直线被第三条直线所截,同位角相等。

教师示范性质1,让学生完成性质

2、3. 性质2 两条平行直线被第三条直线所截, 内错角相等。

性质3 两条平行直线被第三条直线所截,同旁内角互补。

在具体问题中,可以用这种符号语言进行推理。

例1如图9-13,直线a∥b ,c∥d , ∠1=106°.求∠2 ,∠3的度数。

学生独立完成,教师规范步骤。

方法:平行线的性质是由直线的位置关系确定角的数量关系,

应用时必须正确识别图形特征及角的关系,并与前面学过的对顶角、 互余、互补等知识相结合 ,计算一些角的度数。

【拓展延伸】

本题难度较大,鼓励学生认真思考,大胆尝试,分组交流,让学有余力的学生发挥带头作用,让学习有些吃力的学生努力跟上。此问题的解决,对于达标测试中的第4题提供思路,作为一个跳板,让学生在第4题的练习中,进一步提高自己的思维水平。

活动二 探究两条平行线之间的距离

完成课本P36交流与发现,填空:

如果两条直线平行,那么其中一条直线上每个点到另一条

直线的距离都______,这个距离,叫做这两条平行线之间的距离。

课堂小结:

通过本节课的学习,你有哪些收获?

小组交流,选代表陈述自己的收获。

【随堂练习】

1、 如图,已知直线a∥b,直线c与a ,b分别交于点A,B,且∠1=120°,则∠2=( ) A. 60° B.120° C.30° D.150° 2.直线a ,b ,c是三条平行直线。已知a与b的距离为5㎝,b与c 的距离为2㎝,则a与c的距离为( ) A. 2㎝ B. 3㎝ C. 7㎝ D. 3㎝或7㎝

布置作业:习题9.3复习与巩固(必做)

平行线的性质的教案范文第2篇

郭店镇第一初级中学导学案

[键入文字]

[键入文字]

[键入文字]

平行线的性质的教案范文第3篇

郭店镇第一初级中学导学案

[键入文字]

[键入文字]

[键入文字]

平行线的性质的教案范文第4篇

一、目标分析

1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

二、教学重点、难点

重点:平行线的三个性质及运用。

难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

三、教学过程

1、创设情境引入

(1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。

【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.

2、探索新知 (1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。 (2)讲解平行线的性质一。

【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。 (4)总结平行线的性质

性质1:两直线平行,同位角相等. 性质2:两直线平行,内错角相等. 性质3:两直线平行,同旁内角互补. (5)平行线的性质和平行线的判定区别: 要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

3、知识运用

(1)解决引入时提出的问题

(2)利用所学的知识讲解例4和例5 (3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。 (4)练习P174175 第

1、

2、

3、4题

【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

4、回顾总结

(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?

(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?

【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

5、作业设计 P175 第5题

【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

四、说板书设计 平行线的性质

1.平行线的性质:

性质1: 例题: 练习: 性质2: 性质3:

2.平行线的性质与 判定的区别

【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。

五、自我评价

平行线的性质的教案范文第5篇

主备人:祁梅华 ●教学目标 (一)教学知识点 1.平行线的性质

2.运用这些性质进行简单的推理或计算. (二)能力训练要求

1.经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力. 2.经历探索平行线的特征的过程,掌握平行线的特征,并能解决一些问题. (三)情感与价值观要求

通过学生动手操作、观察,来发展他们的空间观念,培养其主动探索和合作的能力. ●教学重点

由两直线平行得到同位角相等、内错角相等、同旁内角互补. ●教学难点

平行线的特征与直线平行的条件的综合应用. ●教学方法 小组讨论法

学生在教师的指导下,进行以小组为单位讨论,最终得出平行线的特征. ●教具准备

制作电脑动画来说明平行线的特征. 投影片五张 ●教学过程

一、学

1.创设现实情景,引入新课

[师]前面两节课,我们共同探讨了直线平行的条件,哪位同学给大家叙述一下:直线平行的条件呢?

[生]同位角相等,两直线平行. 内错角相等,两直线平行. 同旁内角互补,两直线平行. [师]很好.大家来观察上面的三个直线平行的条件的共同点是什么呢? [生]都是由已知角相等或角互补,推出两直线平行. [师]同学们总结得很对,那反过来,如果有两条直线平行,那么同位角、内错角、同旁内角各有什么关系呢?

这节课我们来学习直线平行的特征.

二、自主探究

1、我们来做一做如图2-36,直线a与直线b平行.

图2-36 测量同位角∠1和∠5的大小,它们有什么关系?图中还有其他的同位角吗?它们的大小有什么关系?

换另一组平行线试试,你能得到相同的结论吗?

2、如图2-37中的∠1与∠2是同位角,∠1是65°,∠2是50°,它们不相等.

图2-37

3、在两条直线平行的情况下,同位角相等,那此时内错角关系怎样?同旁内角关系怎样?下面我们再来探索: 如图2-38,直线a与直线b平行.

图2-38 (1)图中有几对内错角?它们的大小有什么关系?为什么? (2)图中有几对同旁内角?它们的大小有什么关系?为什么? (3)换另一组平行线试一试,你能得到相同的结论吗? (讨论方法同前)

二、教

我们得到了平行线的特征. 两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补. 简记为:

两直线平行,同位角相等. 两直线平行,内错角相等. 两直线平行,同旁内角互补.

三、练

1、如图2-39,

图2-39 15a∥b 3635180

大家再想一想:你还能探索出平行线的哪些特征?

2、如图2-40,一束平行光线AB与DE射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4. (1)∠

1、∠3的大小有什么关系?∠2与∠4呢? (2)反射光线BC与EF也平行吗?

图2-41 解:如图2-42,与∠1相等的角有:∠3,∠5,∠7,∠9,∠11,∠13,∠15.

3、读一读:“测量地球的周长”

四、评

1、小结

本节课我们主要学习了平行线的特征及其应用,还了解了直线平行的条件与平行线的特征的区别. 平行线的特征:

两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补. 这些特征要掌握,还有一些特征同学们只需了解即可.如:两条平行线中的一条直线与第三条直线垂直,那么另一条直线也与第三条直线垂直.

2、当堂检测

1.如图2-41所示,AB∥CD,AC∥BD,分别找出与∠1相等或互补的角.

图2-42 Ⅴ.课后作业

必做题(一)课本习题2.4

1、

2、3. 选做题配套练习册

1、

2、3 板书设计

§2.3 平行线的性质

一、平行线的特征

同位角相等两直线平行内错角相等

同旁内角互补

如图:

平行线的性质的教案范文第6篇

下面,我从教材分析、教学目标分析、学法指导、教材和教学方法、教学程序、教案说明等对本节课的设计进行说明。

一、教材分析

教材的地位和作用

1 教材所处的地位和作用。

《平行四边形的性质》是九年制义务教育课本八年级数学第二学期第十九章第一节内容。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及图形的平移等几何知识的基础上学习的。平行四边形及其性质在实际生产和生活中有广泛的应用,它是本节的重点,又是全章的重点。学习它不仅是对已学平行线、三角形等知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用。

2 教材的编写及内容的处理。

教材从学生的年龄特征和知识的实际水平,让学生用“观察、操作、猜想、验证、归纳”的方法探索平行四边形的性质。这样符合学生的认知规律,同时也培养了学生主动探求知识的精神和思维的条理性。本节课主要讨论平行四边形的边和角的性质,而边和角的性质是平行四边形的基本特征,也是平行四边形其它性质的证明过程的依据,为以后在“论证几何”中学习平行四边形的判定提供了良好的认知基础。

二、教学目标分析

教学目标是教学的出发点和归宿。因此,我根据新课程标准的要求,以学生的认知、心理特点和本节课的内容来制定教学目标:

知识技能:

1、理解平行四边形的定义,能根据定义探究平行四边形的性质;

2、了解平行四边形在生活的应用实例,能根据平行四边形的性质解决简单的实际问题。 数学思考:

1、经历运用平行四边形描述现实世界的过程,发展学生的抽象思维和形象思维;

2、根据平行四边形的性质进行简单的计算和证明,观察、实验、归纳、证明,能运用数学语言合乎逻辑地进行讨论与质疑,培养学生的推理能力和演绎能力。

解决问题:

由平行四边形的定义,能从数学的角度去探究平行四边形的其他性质,并能运用平行四边形的性质进行有关的证明和计算,发展应用意识

情感态度:

1、在应用平行四边形的性质的过程中培养独立思考大习惯,在数学学习活动中获得成功的体验

2、通过平行四边形的性质的应用,进一步认识数学与生活的密切联系。

教材的重点、难点

平行四边形的性质是后继学习特殊的平行四边形及梯形的基础。因此,平行四边形的性质及其运用是本节课的重点。根据初中生的理解能力、思维特征及年龄特点,操作后的说理过程是一个难点;另外利用图形的特点来解决简单的推理与计算问题时,渗透用代数方法解决几何问题的数学思想方法也是本节课的又一难点。

三、学法指导

教给学生科学的学习方法,培养良好的学习习惯,主要指导学生的学习方法有:

1、观察猜想。以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质。

2、合作交流。采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。

3、抽象概括。指导学生学会观察分析,从具体实例中抽象出平行四边形的图形,概括出平行四边形的定义,培养学生的抽象思维。

4、总结归纳。通过例题探索、练习反馈、引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯。

四、教材处理和教学方法

由实际生活中的有关图案及小学阶段对平行四边形的认识,学生掌握平行四边形的的概念不存在太大的问题,而初中生的逻辑推理能力较弱,所以探索平行四边形的性质及其应用有一定的难度。因而教案设计贯彻“学生为主体,教师为主导”的教学原则,积极探索将数学思想方法渗透于知识、技能的发生与形成过程,即在平行四边形的性质产生的过程及应用中,教师不是把现成的结论直接告诉学生,而是引导学生通过观察、进行猜想,进一步验证猜想。当学生对角的关系通过说理得到解决,而获得成功的同时又面临着边的关系问题的新挑战,为了解决这一较为复杂的问题,引导学生通过实验操作、说理验证、归纳一系列的思维活动,让学生去主动地获取知识,理解数学的思维方式,体现课堂教学的实验性、探索性,通过再创造培养学生的创新精神和创造能力。

在课堂教学中,面向全体学生,积极创设问题情景,激发学生的学习兴趣。在问题引入、观察猜想、操作说理、知识应用、巩固练习等各个教学环节中,从基础入手,在加强学生对基础知识掌握的同时,注重知识的联系,渗透转化的学思想方法,提高学生运用所学知识来分析问题、解决问题的能力。

五、教学程序

A、创设情境,导入新课问题(1) 同学们,你们留意观察过阳光透过长方形窗口投在地面上的影子是什么形状吗? 通过学生的生活经验,学生可能回答出各种平行四边形,激发学生强烈的求知欲。激励学生主动参与,激发浓厚的学习兴趣,同时为发现新知识做准备。

问题(2) 爱动脑筋的小钢观察到平行四边形影子有一种对称的美,他说只要量出一个内角的度数,就能知道其余三个内角的度数;只需测出一组邻的边长,便能计算出它的周长,这是为什么呢?

让学生把思维兴奋点集中到要研究的平行四边形上来,为下面学习新知识创造了良好开端。

B、活动二:实践探究交流新知

一:拼图游戏.

问题1:你能利用手中两张全等的三角形纸板拼出四边形吗?

通过拼图游戏,为学生提供参与活动的时间和空间,调动学生的主观能动性,自然而然地形成平行四边形的概念,符合学生的认知规律.避免了以往概念教学的机械记忆,同时发展了学生的探究意识,培养了学生的形象思维能力。

学生会拼出几种不同的四边形,让学生理清四边形与平行四边形的从属关系。

问题2:观察拼出的这些四边形的对边有怎样的位置关系?说说你的理由。

利用平行线的判定得出四边形的对边关系,加深平行四边形定义双重性的理解; 学困生对边的关系有一定的难度,教师可以帮助

问题3:观察投影片,寻找平行四边形

从实例图片中,抽象出平行四边形,培养学生的抽象思维。在提炼图形的过程中,学生强化了对平行四边形定义的理解,让学生感受数学与我们生活的紧密联系。

将实物转化为数学模型有难度,多留时间让学生充分交流后回答。

问题4:根据定义画一个平行四边形。

学生画图,亲身感悟平行四边形。教师画图示范。结合图形介绍平行四边形对边、对角、对角线等元素及平行四边形的记法、读法。

通过动手画图操作使学生对平行四边形及其相关元素获得丰富的直观体验,为下面介绍平行四边形的对边、对角以及从这些基本元素入手探究图形性质打下坚实基础。

引导学生运用准确的语言学习平面几何,要学会三种语言描述,这就是文字语言、图形语言、符号语言。并且由一种语言能推出另外两种语言

画图要求使用尺规作图,游学生难以作出来,及时引导学生复习平行线的做法;平行四边形的几何语言规范性差,应做以重点强调,统一要求。

二、探究平行四边形的性质

这一环节是全课的重、难点所在,为了方便学生探索活动的顺利开展,同时渗透科学研究的一般方法,我将这部分内容按“观察度量猜想验证总结归纳”三个层次进行教学。 观察度量

利用学具,找出对边,目测长短,后用圆规测量以比较大小。

猜想验证

根据度量结果,很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法。

学生独立完成证明,以培养学生的推理能力。让学生感受数学结论的确定性和证明的必要性。 总结归纳

对平行四边形性质的归纳,是学生对平行四边形特征的再认识,是知识的一次升华。既培养了学生的概括能力,又突出了教学的重点。

C、范例点击,提高认识

1、解决课前提出的实际问题

某时刻小刚用量角器量出地面上平行四边形影子的一个内角是56°,就说知道了其余三个内角的度数;又用直尺量出一组邻边的长分别是30cm和32cm,便胸有成竹的说能够计算出这个平行四边形的周长。你知道小刚是如何计算的吗?这样计算的根据是什么?

2、例1:如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三条边的长各是多少? AD

BABC

3、例2:在平行四边形ABCD中,的平分线交CD于点E,ADC的平分线交AB于点F,试判断AF与CE是否相等,并说明理由。

DEC

AFB

4、试一试

(1)如图,在平行四边形ABCD中,若BAC60,ACB40,求D和BCD的度数。 AD

BC

(2)如图,平行四边形ABCD的周长为20cm,AE、AF是BC、CD边上的高,且AE2cm,

F BEC

学生审题是解题的关键,通过运用平行四边形的性质,学会解决简单的实际问题,让学生认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用,培养学生的应用意识。

D、反思小结,持续发展

本节课以提问的形式小结,让教师及时了解了学生的学习效果,同时充分体现了学生是学习的主体。

作业布置:

既考虑教育要面向全体学生,又照顾了优等生的持续发展,真正作到了“包底不封顶。”

六、教案说明

“平行四边形的性质”这个内容要两课时完成,本节课是第一课时,着重研究平行四边形的性质1和性质2。通过本节课学习使学生明确平行四边形的有关性质,并运用它们进行计算。教学难点是通过操作后的说理导出性质和用代数方法解几何问题的思想方法。

一、对平行四边形学生已有些感性认识,通过生活经验和折纸游戏进一步加深对平行四边形定义的理解,从而进入了本课的研究氛围中。之后又通过看、量、猜、证,亲自获得了对平行四边形性质的认识,把教的过程转化为学生的主动探索发现的过程,这样有助于学生搞清知识的来龙去脉,并培养学生养成一种良好的学习方法。在探索中不断寻求新的知识,充分体现教与学的双边活动是以教师为主导,学生为主体的一项活动。

二、学习了平行四边形的性质之后,通过性质的运用,来计算有关角的度数、边长及周长等,由易到难逐步展开,通过分析图形和条件使学生学会几何三种语言的相互转化,从而准确的建立方程或方程组,初步确立用代数方法解决几何问题的思想。的确这是一个难点,但又是进行数学后继学习的必要基础,在教学过程中,我尽量让学生自己分析思考,表露想法,在此基础上加以归纳,既发展了学生的思维,又符合学生的认知规律,有机地渗透了数学思想方法。

平行线的性质的教案范文

平行线的性质的教案范文第1篇教学目标 知识与技能(1)掌握平行线的三个性质(2)会用平行线的性质进行有关的简单推理和计算,解决相关问题。...
点击下载文档文档内容为doc格式

声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。

确认删除?
回到顶部