高考牛顿第二定律专题
高考牛顿第二定律专题(精选6篇)
高考牛顿第二定律专题 第1篇
江苏省2011届高三物理一轮教案
牛顿第二定律
教学目标:
1.理解牛顿第二定律,能够运用牛顿第二定律解决力学问题 2.理解力与运动的关系,会进行相关的判断
3.掌握应用牛顿第二定律分析问题的基本方法和基本技能 教学重点:理解牛顿第二定律 教学难点: 力与运动的关系
教学方法:讲练结合,计算机辅助教学 教学过程:
一、牛 顿 第 二 定 律 1.定律的表述
物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F=ma(其中的F和m、a必须相对应)
点评:特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。
若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。
2.对定律的理解:
(1)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。合外力变化时加速度也随之变化。合外力为零时,加速度也为零。
(2)矢量性:牛顿第二定律公式是矢量式。公式aF只表示加速度与合外力的大小关m系.矢量式的含义在于加速度的方向与合外力的方向始终一致.(3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言。即 F与a均是对同一个研究对象而言。
(4)相对性:牛顿第二定律只适用于惯性参照系。
(5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子。
3.牛顿第二定律确立了力和运动的关系
牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
4.应用牛顿第二定律解题的步骤
(1)明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为mi,对应的加速度为ai,则有:
F合=m1a1+m2a2+m3a3+„„+mnan
对这个结论可以这样理解:
先分别以质点组中的每个物体为研究对象用牛顿第二定律:
∑F1=m1a1,∑F2=m2a2,„„∑Fn=mnan,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。
(2)对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。
(3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。(4)当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那么问题都能迎刃而解。
二、应用举例
1.力与运动关系的定性分析
【例1】 如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是
A.小球刚接触弹簧瞬间速度最大
B.从小球接触弹簧起加速度变为竖直向上
C.从小球接触弹簧到到达最低点,小球的速度先增大后减小 D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大
解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。选CD。
【例2】如图所示.弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点.如果物体受到的阻力恒定,则
A.物体从A到O先加速后减速
B.物体从A到O加速运动,从O到B减速运动 C.物体运动到O点时所受合力为零 D.物体从A到O的过程加速度逐渐减小
解析:物体从A到O的运动过程,弹力方向向右.初始阶段弹力大于阻力,合力方向向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,此阶段物体的加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.所以初始阶段物体向右做加速度逐渐减小的加速运动.
当物体向右运动至AO间某点(设为O′)时,弹力减小到等于阻力,物体所受合力为零,加速度为零,速度达到最大.
此后,随着物体继续向右移动,弹力继续减小,阻力大于弹力,合力方向变为向左.至O点时弹力减为零,此后弹力向左且逐渐增大.所以物体从O′点后的合力方向均向左且合力逐渐增大,由牛顿第二定律可知,此阶段物体的加速度向左且逐渐增大.由于加速度与速度反向,物体做加速度逐渐增大的减速运动.
正确选项为A、C. 点评:
(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大,加速度为零.这显然是没对物理过程认真分析,靠定势思维得出的结论.要学会分析动态变化过程,分析时要先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断.
(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对速度和加速度间关系的理解.譬如,本题中物体在初始阶段,尽管加速度在逐渐减小,但由于它与速度同向,所以速度仍继续增大.
2.牛顿第二定律的瞬时性
【例3】如图(1)所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态。现将L2线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的某种解法:
解:设L1线上拉力为T1,L2线上拉力为T2,重力为mg,物体在三力作用下处于平衡。T1cosmg,T1sinT2,解得T2 =mgtanθ,剪断线的瞬间,T2突然消失,物体却在T2反方向获得加速度,因为mgtanθ=ma所以加速度a=gtanθ,方向在T2反方向。你认为这个结果正确吗?说明理由。
(2)若将图(1)中的细线L1改为长度相同,质量不计的轻弹簧,如图(2)所示,其它条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由。
解析:(1)这个结果是错误的。当L2被剪断的瞬间,因T2突然消失,而引起L1上的张力发生突变,使物体的受力情况改变,瞬时加速度沿垂直L1斜向下方,为a=gsinθ。
(2)这个结果是正确的。当L2被剪断时,T2突然消失,而弹簧还来不及形变(变化要有一个过程,不能突变),因而弹簧的弹力T1不变,它与重力的合力与T2是一对平衡力,等值反向,所以L2剪断时的瞬时加速度为a=gtanθ,方向在T2的反方向上。
点评:牛顿第二定律F合=ma反映了物体的加速度a跟它所受合外力的瞬时对应关系.物体受到外力作用,同时产生了相应的加速度,外力恒定不变,物体的加速度也恒定不变;外力随着时间改变时,加速度也随着时间改变;某一时刻,外力停止作用,其加速度也同时消失.
3.正交分解法
【例4】如图所示,质量为4 kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成30°角斜向上的拉力F作用时沿水平面做匀加速运动,求物体的加速度是多大?(g取10 m/s2)
向分解,则两坐标轴上的合力分别为
解析:以物体为研究对象,其受力情况如图所示,建立平面直角坐标系把F沿两坐标轴方FxFcosFFyFNFsinG,物体沿水平方向加速运动,设加速度为a,则x轴方向上的加速度ax=a,y轴方向上物体没有运动,故ay=0,由牛顿第二定律得Fxmaxma,Fymay0
所以FcosFma,FNFsinG0 又有滑动摩擦力FFN
以上三式代入数据可解得物体的加速度a=0.58 m/s2
点评:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直角坐标系,利用正交分解法来解.
4.合成法与分解法
【例5】如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,球和车厢相对静止,球的质量为1kg.(g=10m/s2,sin37°=0.6,cos37°=0.8)
(1)求车厢运动的加速度并说明车厢的运动情况.(2)求悬线对球的拉力.
解析:
(1)球和车厢相对静止,它们的运动情况相同,由于对球的受力情况知道的较多,故应
以球为研究对象.球受两个力作用:重力mg和线的拉力FT,由球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向.做出平行四边形如图所示.球所受的合外力为
F合=mgtan37°
由牛顿第二定律F合=ma可求得球的加速度为
aF合mgtan377.5m/s2
加速度方向水平向右.
车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动.(2)由图可得,线对球的拉力大小为
FTmg110N=12.5 N cos370.8点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果.
【例6】如图所示,m =4kg的小球挂在小车后壁上,细线与竖直方向成37°角。求:(1)小车以a=g向右加速;
(2)小车以a=g向右减速时,细线对小球的拉力F1和后壁对小球的压力F2各多大?
解析:
(1)向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。合外力向右,F2向右,因此G和F1的合力一定水平向左,所以 F1的大小可以用平行四边形定则求出:F1=50N,可见向右加速时F1的大小与a无关;F2可在水平方向上用牛顿第二定律列方程:F2-0.75G =ma计算得F2=70N。可以看出F2将随a的增大而增大。(这种情况下用平行四边形定则比用正交分解法简单。)
(2)必须注意到:向右减速时,F2有可能减为零,这时小球将离开后壁而“飞”起来。这时细线跟竖直方向的夹角会改变,因此F1的方向会改变。所以必须先求出这个临界值。当
3时G和F1的合力刚好等于ma,所以a的临界值为ag。当a=g时小球必将离开后壁。不
难看出,这时F1=2mg=56N,F2=0 【例7】如图所示,在箱内倾角为α的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块。求:(1)箱以加速度a匀加速上升,(2)箱以加速度a向左匀加速运动时,线对木块的拉力F1和斜面对箱的压力F2各多大?
解:(1)a向上时,由于箱受的合外力竖直向上,重力竖直向下,所以F1、F2的合力F必然竖直向上。可先求F,再由F1=Fsinα和F2=Fcosα求解,得到: F1=m(g+a)sinα,F2=m(g+a)cosα
显然这种方法比正交分解法简单。
(2)a向左时,箱受的三个力都不和加速度在一条直线上,必须用正交分解法。可选择沿斜面方向和垂直于斜面方向进行正交分解,(同时正交分解a),然后分别沿x、y轴列方程求F1、F2:
F1=m(gsinα-acosα),F2=m(gcosα+asinα)
经比较可知,这样正交分解比按照水平、竖直方向正交分解列方程和解方程都简单。点评:还应该注意到F1的表达式F1=m(gsinα-acosα)显示其有可能得负值,这意味着绳对木块的力是推力,这是不可能的。这里又有一个临界值的问题:当向左的加速度a≤gtanα时F1=m(gsinα-acosα)沿绳向斜上方;当a>gtanα时木块和斜面不再保持相对静止,而是相对于斜面向上滑动,绳子松弛,拉力为零。
5.在动力学问题中的综合应用
【例7】 如图所示,质量m=4kg的物体与地面间的动摩擦因数为μ=0.5,在与水平成θ=37°角的恒力F作用下,从静止起向右前进t1=2.0s后撤去F,又经过t2=4.0s物体刚好停下。求:F的大小、最大速度vm、总位移s。
解析:由运动学知识可知:前后两段匀变速直线运动的加速度a与时间t成反比,而第二段中μmg=ma2,加速度a2=μg=5m/s2,所以第一段中的加速度一定是a1=10m/s2。再由方程
Fcos(mgFsin)ma1可求得:F=54.5N 第一段的末速度和第二段的初速度相等都是最大速度,可以按第二段求得:vm=a2t2=20m/s 又由于两段的平均速度和全过程的平均速度相等,所以有svm(t1t2)60m 2点评:需要引起注意的是:在撤去拉力F前后,物体受的摩擦力发生了改变。
可见,在动力学问题中应用牛顿第二定律,正确的受力分析和运动分析是解题的关键,求解加速度是解决问题的纽带,要牢牢地把握住这一解题的基本方法和基本思路。我本在下一专题将详细研究这一问题。
高考牛顿第二定律专题 第2篇
高考热点:牛顿第二定律的典型应用 ——连接体问题、超重与失重
牛顿第二定律的地位不用多说了,一定是高考必考内容,可能出现在一道选择题或第一道计算题中.那么,会以何种方式来考查牛顿第二定律的应用呢?最大的可能一定是连接体问题和超重失重现象!
所谓的“连接体”问题,就是在一道题中出现两个或两个以上相关联的物体,研究它们的运动与力的关系.实际上在物体的平衡问题中我们已经遇到了不少,只是平衡问题中的物体是没有加速度的,而在“连接体”问题中,有的物体具有加速度,所以求解的时候必须用到牛顿第二定律.可见,牛顿第二定律是用来解决“非平衡问题”的!而处理“非平衡问题”的程序与解决平衡问题时的程序并无太大的区别:确定研究对象→受力分析(整体或隔离,或整体隔离结合使用)→力的合成或分解(常用正交分解法)→列方程求解(平衡问题列平衡方程,“非平衡问题”列动力学方程,即牛顿第二定律方程)
先整体分析加速度,后隔离分析各物体之间的相互作用力是解决连接体问题的最常用思维模式,你掌握了吗?千万要记住:整体法只能分析“整体”外面其它物体对“整体”的作用力,不能分析“整体”内部各物体间的相互作用力;如果要分析“整体”内部的相互作用力,一定要用隔离法!强调这一点,只是想告诉大家,任何情况下,一定要明确研究对象!这是进行正确受力分析的根本!解题范例:
例题1如图3—3,在倾角为a的固定光滑、斜面上,有一用绳子拴着的长木板,木板上站着一只猫.已知木板的质量是猫的质量的2倍.当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变,则此时木板沿斜面下滑的加速度为()A.gsinα/2 B.gsinα C.3gsinα/2 D.2gsinα 解析:⑴当绳子突然断开,猫保持其相对斜面的位置不变,即相对地面位置不变,猫可视为静止状态,木板沿斜面下滑,取猫和木板整体为研究对象,如图3—31进行受力分析,由牛顿第二定律得3mgsinα=2ma,a=32gsinα,所以C选项正确.
此解法运用了牛顿第二定律在整体法中的表达形式: 学习改变命运 思考成就未来!
当系统内各物体加速度不同时,可以整体分析系统的合外力(不能分析系统内力,即系统内部各物体之间的相互作用力),隔离分析系统内各物体的加速度,然后按照上面牛顿第二定律的表达式列方程求解!这是一个解决动力学问题的绝妙方法,好好的体会和掌握它吧!
⑵此题也可以用常规方法求解,分别隔离猫和板进行受力分析,如图所示,猫相对于地面位置不变,其加速度为0,所以猫的合外力为0,有:f=mgsinα,N=mgcosα;
板沿斜面向下滑动,由牛顿第二定律,有f′+2mgsinα=2ma, 又f′=f=mgsinα,所以a=32gsinα
例题2 跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图3—7所示.已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=lOm/s.当人以440 N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为()A.a=1.0m/s,F=260N B.a=1.0m/s,F=330N C.a=3.0m/s,F=110N D.a=3.0m/s,F=50N 解析:将人与吊板整体考虑,受力分析如图所示,据牛顿第二定律:2T-(m人+m板)g=(m人+m板)a,代人数据得a=1.0 m/s2,选项C、D被排除.用隔离法研究人向上运动,设吊板对人的支持力为N,则T+N- m人g=m人a,得N=330N;据牛顿第三定律,人对吊板的压力N′=N=330N,选项B正确.
领悟:这是“先整体后隔离”思维模式的典型例子,整体分析的时候不考虑人和板之间的相互作用力,根据轻绳模型的特点:绳内张力处处相等,可知两段绳索对“整体”的拉力相等;求人对板的压力时,必须用隔离法“隔离”人或“隔离”板进行分析.例题3 如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m的小球,小球上下振动时框架始终没有跳起,当框架对地面压力为零的瞬间,小球的加速大小为()
2A.g B.(M-m)g/m 学习改变命运 思考成就未来!
C.Mg/m D.(M+m)g/m 解析:此题是瞬间加速度的计算问题,关键是做好在这个“瞬间”研究对象受力情况的分析,然后运用牛顿第二定律列式求解.分别隔离小球和框架进行受力分析,如图所示,此“瞬间”框架对地面的压力为0,根据牛顿第三定律,地面对框架的支持力为0,故框架除了受到重力外,还应该受到弹簧提供的支持力!于是弹簧对小球的弹力应该是竖直向下的,如图所示,根据物体的平衡条件和牛顿第二定律,有N=Mg,N′+mg=ma,所以a=(M+m)g/m.领悟:受力分析的成败就是解决动力学问题的成败,所以受力分析一定要过关,要能够在任何情况下(“情况”指:静止或匀速,匀变速直线运动,匀速圆周运动,简谐运动等运动状态,即研究对象总是处于我们熟悉的运动模型中,于是掌握各种运动模型中物体受力特点是做好受力分析的必要条件!例如:匀速圆周运动需要向心力,简谐运动需要回复力.)把一个物体(即研究对象)的受力情况分析清楚!
例题4 1.如图3-l,一个盛水的容器底都有一小孔.静止时用手指堵住小孔不让它漏水,假设容器在下述几种运动过程中始终保持平衡,且忽略空气阻力,则()A.容器自由下落时,小孔向下漏水
B.将容器竖直向上抛出,容器向上运动时,小孔向下漏水;容器向下运动时,小孔不向下漏水
C.将容器水平抛出,容器在运动中小孔向下漏水 D.将容器斜向上抛出,容器在运动中小孔不向下漏水
解析:容器抛出后,容器及其中的水均做加速度为g的匀变速运动,容器中的水处于失重状态,水对容器的压强为零,无论如何抛出,水都不会流出.故D项正确.
领悟:本题考查对超重失重现象的理解,关键在于判断物体在竖直方向上是否具有加速度,然后根据“同失反超”确定失重还是超重!无论以何种方式抛出,容器和水抛出后都只受到重力的作用,都有竖直向下的加速度,都处于完全失重状态.超重、失重现象的解释,实际上就是牛顿第二定律的应用!关键:做好受力分析!例题5 一中学生为即将发射的“神州七号”载人飞船设计了一个可测定竖直方向加速度的装置,其原理可简化如图,连接在竖直弹簧上的重物与滑动变阻器的滑动头连接,该装置在地面上静止时其电压表的学习改变命运 思考成就未来!
指针指在表盘中央的零刻度处,在零刻度的两侧分别标上对应的正、负加速度值.关于这个装置在“神州七号”载人飞船发射、运行和回收过程中示数的判断正确的是()A.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数仍为正
B.飞船在竖直加速升空的过程中,如果电压表的示数为正,则飞船在竖直减速返回地面的过程中,电压表的示数为负
C.飞船在圆轨道上运行时,电压表的示数为零
D.飞船在圆轨道上运行时,电压表示数所对应的加速度应约为9.8m/s2
解析:依题意,当重物的重力等于弹簧的弹力时,电压表的示数为零,飞船加速运动的过程中,重物也随之加速,则重物的和外力不为零,即当重物合外力不为零时,电压表有示数!
飞船在竖直加速升空的过程中,弹簧上的重物与飞船有同样的加速度,对重物受力分析,如图所示,由牛顿第二定律,有:N-mg=ma,a竖直向上;若飞船在竖直方向上减速返回地面,则飞船的加速度方向仍是竖直向上的,故A选项的说法正确!
当飞船在轨道上运动的时候,飞船处于完全失重状态,则弹簧对重物的弹力为零,地球对重物的万有引力产生一个使重物与飞船一起作圆周运动的向心加速度,当取重物受到的万有引力近似等于重物的重力时(当忽略地球的自转时,可以认为地球表面附近物体的重力与万有引力近似相等),a向≈g.,故D选项正确.针对性训练
1.如图3—25所示,一质量为M的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a、b为两个位于斜面上质量均为m的小木块.已知所有接触面都是光滑的.现发现a、b沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于()A.Mg+mg B.Mg+2mg C.Mg+mg(sinα+sinβ)D.Mg+mg(cosα+cosβ)
2.一质量为m的人站在电梯中,电梯加速上升,加速度大小为g/3,g为重力加速度.人对电梯底部的压力 为 学习改变命运 思考成就未来!
A.mg/3 B.2mg C.mg D.4mg/3 3.如图所示,一物块位于光滑水平桌面上,用一大小为F、方向如图所示的力去推它,使它以加速度.向右运动.若保持力的方向不变而增大力的大小,则()A.a变大 B.a不变 C.a变小
D.因为物块的质量未知,故不能确定a变化的趋势
4.叠放在一起的A、B两物体在水平力F的作用下,沿水平面以某一速度匀速运动,现突然将作用在B上的力F改为作用在A上,并保持大小和方向不变,如图所示,则关于A、B的运动状态可能为 A.一起匀速运动 B.一起加速运动
C.A加速,B减速 D.A加速,B匀速
5.如图所示,质量为m、M的A、B两个物体静止叠放在水平面上,已知A、B间动摩擦因数为μ1,B和水平面间的动摩擦因数为μ2.现给A物体施加一恒定作用力F,使其向右运动,B保持静止.下列说法可能正确的是()A.B受到水平面的摩擦力大小为μ2(m+M)g B.A受到的摩擦力大小等于F C.将作用力F增大,则B将向右运动 D.无论作用力F多大,B将始终保持静止状态
6.质量为m的小物块在沿斜面方向的轻弹簧的拉动下,以gsinθ的加速度沿斜面加速上升,斜面的倾角为θ,不计摩擦阻力,则弹簧的拉力为()A.0 B.mgsinθ
C.2mgsinθ D.mg+mgsinθ
7.如图所示,位手光滑固定斜面上的小物块P受到一水平向右的推力F的作用.已知物块P沿斜面加速下滑.现保持F的方向不变,使其减小,则加速度()学习改变命运 思考成就未来!
A.一定变小 B.一定变大 C.一定不变
D.可能变小,可能变大,也可能不变
8.科学家曾在“和平号”空间站上做了许多科学实验和测量,在下列测量中能够完成的是()A.用弹簧秤测拉力 B.用温度计测温度 C.用天平测质量 D.用摆钟测时间
9.如图所示,光滑固定斜面C倾角为θ,质量均为m的A、B一起以某一初速靠惯性沿斜面向上做匀减速运动,已知A上表面是水平的()A.A受到B的摩擦力水平向右 B.A受到B的摩擦力水平向左 C.A、B之间的摩擦力为零 D.A、B之间的摩擦力为mgsinθcosθ
10.在蹦床运动中,某运动员从高处落到蹦床后又被蹦床弹回,图中的图像为几位旁观者描绘的运动员的加速度随时间变化的图像,正确的是()
11.如图所示,A、B两条直线是在A、B两地分别用竖直向上的力F拉质量分别为mA和mB的两个物体得出的加速度a与力F之间的关系图线,分析图线可知下列说法中正确的是()A.比较两地的重力加速度gA=gB B.比较两物体的质量有mA
12.一斜劈被两个小桩A和B固定在光滑的水平地面上,然后在斜面上放一物体,如图所示,以下判断正确的是()A.若物体静止在斜面上,则B受到挤压 B.若物体匀速下滑,则B受到挤压 C.若物体加速下滑,则A受到挤压 D.若物体减速下滑,则A受到挤压 学习改变命运 思考成就未来!
参考答案
例析牛顿第二定律特点 第3篇
在应用该定律时, 应抓住以下四个特点.
一、瞬时性
无论物体合外力的大小和方向如何变化, F合=ma对运动过程的每一瞬间都成立, a总与F同步变化, 且与速度大小无关.
例1下面说法正确的是 ()
A.物体速度为零时, 合外力一定为零
B.物体合外力为零时, 速度一定为零
C.物体合外力减小时, 速度一定减小
D.物体合外力减小时, 加速度一定减小
解析:物体的加速度大小和方向总与合外力同步变化, 即物体合外力增大时, 加速度一定增大, 物体合外力减小时, 加速度一定减小;D正确.v与F合之间无决定关系, 故A、B、C错误.答案:D.
二、矢量性
定律中的加速度和力都是矢量, 有方向.定律不但确定了二者的大小关系, 还确定了方向之间的关系, 加速度的方向与合外力的方向始终相同.
例2如图1, 电梯与水平面夹角为30°, 当电梯加速向上运动时, 人对梯面压力是其重力的, 则人与梯面间的摩擦力是其重力的多少倍?
解析:人受力如图2, 建立图示坐标系, 此时只需分解加速度, 根据牛顿第二定律可得:
三、同体性
在F合=ma中, 加速度、力与质量是同属一个物体的, 所以解题时一定要把研究对象的受力情况搞清楚.
例3一人在井下站在吊台上, 用图3所示的定滑轮把吊台和自己提升起来.图中跨过滑轮的两段绳都是竖直的, 且不计摩擦.吊台质量m=15kg, 人质量M=55kg, 起动时吊台向上的加速度是a=0.2m/s2, 求这时人对吊台的压力. (g=9.8m/s2)
解析:选系统为研究对象, 受力如图4, F为绳的拉力, 由牛顿第二定律得:2F- (m+M) g= (m+M) a
则拉力大小为:
再选人为研究对象, 受力如图5, 其中FN是吊台对人的支持力.由牛顿第二定律得:F+FN-Mg=Ma
由牛顿第三定律知, 人对吊台的压力大小为200N, 方向竖直向下.
高考牛顿第二定律专题 第4篇
一、考查牛顿第二定律的性质
牛顿第二定律“瞬时性”反映了加速度与合外力的瞬时对应关系.合外力恒定时,加速度保持不变;合外力变化时,加速度随之变化;合外力为零时,加速度也为零.
例1 (2015年海南)如图1所示,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧s1和s2相连,通过系在a上的细线悬挂于固定点O:整个系统处于静止状态;现将细绳剪断,将物块a的加速度记为a1,S1和S2相对原长的伸长分别为△ι1和△ι2,重力加速度大小为g,在剪断瞬间
()
A.a1=3g
B.al=0
C.△ι1=2△ι2
D.△ι1=△ι2
解析设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间物块a受到重力和轻弹簧S1的拉力T1,剪断前对b、c和弹簧组成的整体分析可知T1=2mg,故a受到的合力F=mg+T1=3mg,所以加速度3g,故选项A正确、B错误;设轻弹簧S2的拉力T2,则T2=mg,根据胡克定律F=k△x,可得△ι1=2△ι2,所以选项C正确、D错误.
点评 因与弹簧连接的物体发生位移需要一定时间,所以弹簧形变的发生过程也需要一段时间,则弹簧形变不可能在瞬间改变,从而弹簧弹力不能突变.
二、结合图象考查牛顿第二定律
在解决牛顿第二定律问题时,物体的受力过程和运动情况既可以用方程表示,又可以用图象形象表示,因此图象法是处理牛顿定律问题的基本方法之一,也是高考考查的热点.
例2(2015年江苏)一人乘电梯上楼,在竖直上升过程中加速度a随时间t变化的图线如图2所示,以竖直向上为a的正方向,则人对地板的压力
()
A.t=2s时最大 B.t=2s时最小
C.t=8.5s时最大D.t=8.5s时最小
解析根据题意上升过程中,由牛顿第二定律得:F-mg=ma,所以向上的加速度越大,人对电梯的压力就越大,所以选项A正确、B错误;由图象可知,7s后加速度向下,由顿第二定律得:mg-F=ma,可知,向下的加速度越大,人对电梯的压力就越小,所以选项D正确、C错误.
点评 此题物体的运动情况用图象表示,通过运动图象能得出物体的加速度的方向.
例3(2015年重庆)若货物随升降机运动的v-t图象如图3所示(竖直向上为正),则货物受到升降机的支持力F与时间f关系的图象可能是 ()
解析 由图可知过程①为向下匀加速直线运动(加速度向下,失重,F 点评本题为实际应用问题.要求考生能根据F-t图象并结合实际情况确定物体的受力和运动情况,能很好地培养学生对图象的观察和思考能力,强化学生理论联系实际的思想意识. 三、考查连接体问题——整体法与隔离法 醑例4(2015年全国新课标Ⅱ)在一东西向的水平直铁轨上,停放着一列已用挂钩链接好的车厢.当机车在东边拉着这列车厢以大小为a的加速度向东行驶时,链接某两相邻车厢的挂钩P和Q间的拉力大小为F;当机车在西边拉着这列车厢以大小为3a的加速度向东行驶时,链接某两相邻车厢的挂钩P和Q间的拉力大小仍为F.不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为 () A.8 B.10 C.15 D.18 解析设这列车厢的节数为n,P、Q挂钩东边有k节车厢,每节车厢的质量为m, 点评对连接体问题一般用整体法与隔离法求解.若已知系统的外力,则用整体法求加速度,用隔离法求内力;若已知系统的内力,则用隔离法求加速度,用整体法求外力, 四、考查牛顿第二定律的两类基本问题 例5 (2015年全国新课标I)如图4(a),一物块在t=0时刻滑上一固定斜面,其运动的v-t图线如图4(b)所示,若重力加速度及图中的vo、v1、t1均为已知量,则可求出 () A.斜面的倾角 B.物块的质量 C.物块与斜面间的动摩擦因数 D.物块沿斜面向上滑行的最大高度 解析小球滑上斜面的初速度vo已知,向上滑行过程为匀变速直线运动,末速度为选项AC对.根据斜面的倾斜角度可计算出向 点评此题已知物体的运动情况求受力情况,然后根据运动学公式求加速度,再根据牛顿第二定律求力, 例6(2015年全国新课标I)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图5(a)所示.t=0时刻开始,小物块与木板一起以共同速度向右运动,直至t=ls时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1s时间内小物块的v-t图线如图5(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g取10m/S?.求 (1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度; (3)木板右端离墙壁的最终距离. 解析(1)规定向右为正方向,木板与墙壁相碰前,小物块和木板一起向右做匀变速运动,设加速度为a1,小物块和木板的质量分别为m和M,由牛顿第二定律有: -μl(m+M)g=(m+M)a1 由图可知,木板与墙壁碰前瞬间的速度v1=4m/s,由运动学公式得:位移,vo是小物块和木板开始运动时的速度. 联立题给条件得:μl=0.1 在木板与墙壁碰撞后,木板以-v1的初速度向左做匀变速运动,小物块以v1的初速度向右做匀变速运动.设小物块的加速度为a2,由牛顿第二定律有:-μ2mg=ma2 式中t2=2s,V2=0,联立题给条件得:μ2=0.4 (2)设碰撞后木板的加速度为a3,经过时间△t,木板和小物块刚好具有共同速度v3,由牛顿第二定律及运动学公式得: μ2mg+μl(m+M)g=(m+M)a1=Ma3 V3=-v1+a3△t v3=Vl+a2△t 碰撞后至木板和小物块刚好达到共同速度的过程中,木板运动的位移为: 联立并代人数值得:△s=6.0m 因为运动过程中小物块没有脱离木板,所以木板的最小长度应为6.0m. (3)在小物块和木板具有共同速度后,两者向左做匀变速运动直到停止,设加速度为a4,此过程中小物块和木板运动的位移为s3,由牛顿第二定律及运动学公式得: μl(m+M)g=(m+M)a4 碰后木板运动的位移为:s=s1+s3 联立并代人数值得:s=-6.5m 木板右端离墙壁的最终距离为6.5m. 点评应用牛顿运动定律解决的动力学问题主要有两类:一是根据已知的受力情况,研究物体的运动情况;二是根据已知物体的运动情况,求未知力.此题综合了两种情况. (一)一、知识要点 1.超重 (1)定义:物体对支持物的压力(或对悬挂物的拉力)物体所受重力。 (2)产生条件:物体具有 的加速度 2.失重 (1)定义:物体对支持物的压力(或对悬挂物的拉力)物体所受重力。 (2)产生条件:物体具有 的加速度 3.完全失重 (1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)的状态。 (2)产生条件:物体的加速度a=,方向竖直向下 二、疑难突破:传送带问题 三、典题互动: 题型一:超重、失重的理解及应用 例 1、电梯的顶部挂一个弹簧测力计,测力计下端挂了一个重物,电梯匀速直线运动时,弹簧测力计的示数为10N,在某时刻电梯中的人观察到弹簧测力计的示数变为8N,关于电梯的运动(如图所示),以下说法正确的是(g取10m/s)()A.电梯可能向上加速运动,加速度大小为4m/s B.电梯可能向下加速运动,加速度大小为4m/s C.电梯可能向上减速运动,加速度大小为2m/s D.电梯可能向下减速运动,加速度大小为2m/s 例 2、某人在地面上用弹簧秤称得体重为490N。他将弹簧秤移至电梯内称其体重,t0至t1时间段内,弹簧秤的示数如图所示,电梯运行的v-t图可能是(取电梯向上运动的方向为正)() 22222 题型二:传送带问题 例 3、水平传送带AB以v=2m/s的速度匀速运动,如图所示,A、B相距11 m,一物体(可视为质点)从A点由静止释放,物体与传送带间的动摩擦因数μ=0.2,则物体从A沿传送带运动到B所需的时间为多少?(g=10 m/s) 例 4、传送带与水平面夹角37°,皮带以10m/s的速率沿顺时针方向转动,如图所示,今在传送带上端A处无初速地放上一个质量为m=0.5kg的小物块,它与传送带间的动摩擦因数为0.5,若传送带A到B的长度为16m,g取10m/s,则物体从A运动到B的时间为多少? 2 2三、随堂演练 1.关于超重和失重的下列说法中,正确的是()A.超重就是物体所受的重力增大了,失重就是物体所受的重力减小了 B.自由落体运动的物体处于完全失重状态,所以做自由落体运动物体不受重力作用 C.物体具有向上的加速度时处于超重状态,物体具有向下的加速度时处于失重状态 D.物体处于超重或失重状态时,物体的重力始终存在且不发生变化 2.如图所示,木箱内有一竖直放置的弹簧,弹簧上方有一物块;木箱静止时弹簧处于压缩状态且物块压在箱顶上.若在某一段时间内,物块对箱顶刚好无压力,则在此段时间内,木箱的运动状态可能为()A.加速下降 B.加速上升 C.减速上升 D.减速下降 3.如图所示,传送带的水平部分长为L,传动速率为v,在其左端无初速释放一小木块,若木块与传送带间的动摩擦因数为则木块从左运动到右端的时间不可能是()L A.vv2gL B.v 福建省石狮市石光中学 刘一农 一、学习任务分析 1.教材的地位和作用 牛顿第二定律是在实验基础上建立起来的重要规律,它是动力学的核心规律,也是学习其它动力学规律的基础。在《普通高中物理课程标准》共同必修模块“物理1”中涉及本节的内容有:“通过实验,探究加速度与物体质量、物体受力的关系,理解牛顿第二定律。”本条目要求学生通过实验,探究加速度、质量、力三者的关系,强调让学生经历实验探究过程。 2.学习的主要任务 本节的学习任务类型是综合型。在知识上要求知道决定加速度的因素、理解加速度、质量、力三者关系;在技能上要求能设计和操作实验,会测定相关物理量;体验性上要求经历探究活动、尝试解决问题方法、体验发现规律过程,体会科学研究方法──控制变量法、图象法的应用。 3.教学重点和难点 重点:①知道决定物体加速度的因素。 ②加速度与力和质量的关系的探究过程。 教学难点:引导学生在猜想的基础上进行实验设计,提出可行的实验方案、完成实验并得出实验结果。 二、学习者情况分析 在学习这一内容之前,所教的学生已经掌握了力、质量、加速度、惯性等概念;知道质量是惯性的量度、力是改变物体运动状态的原因;会分析物体的受力。已具备一定的实验操作技能,会用气垫导轨与光电测时系统或打点计时器研究匀变速直线运动;具备一定的计算机操作能力,会应用CAI课件处理实验数据。学生对物理学的研究方法已有一定的了解,在自主学习、合作探究等方面的能力有了一定提高。 在非智力因素方面,学生学习积极主动,对学习物理有较浓厚兴趣;有较强的好奇心和求知欲,乐于探究自然界的奥秘;敢于坚持正确观点,勇于修正错误;喜欢和同龄人一起学习,有将自己的见解与他人交流的愿望,具有团队精神。 三、教学目标分析 根据上述对学习任务和学习者情况的分析,确定本节课教学目标如下: 1.知识与技能目标 ①让学生明确物体的加速度只与力与和质量有关,并通过实验探究它们之间的定量关系; ②培养学生获取知识和设计实验的能力。 2.过程与方法目标 在探究过程中,渗透科学研究方法(控制变量法、实验归纳法、图象法等); 3.情感、态度、价值观目标 ①通过学生之间的讨论、交流与协作探究,培养团队合作精神; ②让学生在探究过程中体验解决问题的成功喜悦,增进学习物理的情感。 四、教材处理与教学策略 在教材处理上把牛顿第二定律分为两个学时。第一学时主要的任务是:探究加速度与力、质量的关系;第二学时主要的任务是:建立牛顿第二定律并进行初步的应用。本节课是第一学时,主要采用以下的教学策略: 1.自主学习与合作探究 改演示实验为学生分组探究实验。让学生在自主学习中,通过对认知活动进行自我监控,并及时做出相应的调整。小组(4~6人一组),小组间的合作探究可以同时培养学生的合作精神和竞争意识,让不同层次的学生都能有所作为,有所收获。 教师的策略是宏观调控整体教学进度,微观放活学生局部学习进程,让学生的学习有组织、有步骤地进行。 2.现代教学手段与启发式 在课堂中采用多媒体课件作为辅助手段,创设物理情景,启发引导学生,帮助学生建立形象直观的认识,调动学生学习的积极性;同时利用CAI课件和校园网络处理实验数据,能有效地提高学习效率。 五、教学器材 教学设备:多媒体教室、课件。 学生分组实验器材(探究包):气垫导轨、气源、两个光电门和与之配套的数字计时器,滑块、滑片、细线、小桶、天平、砝码、细沙、弹簧秤、小车、木块、钩码、一端带有滑轮的长木板、打点器、纸带、秒表、毫米刻度尺、垫木、橡皮筋等。 六、教学过程设计 (一)创设情景、引入新课 视频展示:刘翔在雅典奥运会夺金的情景。 教师:在决赛时,刘翔将自己身上一切戴的东西像手表、项链等都摘了下来,穿最轻的跑鞋。这样做的科学道理在哪里? 预测学生讨论后得出的结论可能是:___________________________。 质量越小,运动状态越容易改变,也就是说在相同的情况下,物体获得的加速度就越大。 说明通过视频展示创设物理情景,激发学生的学习兴趣,同时渗透德育教育。 (二)提出猜想 教师:那么、物体的加速度与哪些因素有关呢?请同学们从生活经验出发提出自己的看法,并举例说明。(同时教师利用课件提供一些图片,对学生进行启发。) 附图片内容如下: ★为何体操,跳水运动员的身材都比较苗条、瘦小? ★从防止发生交通事故的角度考虑,说一说反超载的道理? ★F1方程式赛车的质量只有一般小轿车质量的三分之一,这样做有什么好处? ★神舟五号飞船返回仓返回时为何要打开降落伞? 预测学生有代表性的回答可能有以下几方面:(教师在学生分析的过程中板书归纳。) 1.与物体受到的外力的关系: ①与物体受到的外力有关;例如:骑自行车刹车:用力刹车时,用的力越大、车越容易停下来,即:阻力越大,自行车减速的加速度越大。 ②与物体受到的外力无关;例如:用大小不一样的力推大石头,推不动,运动状态不变,加速度为零。 ③应该是与物体受到的合外力有关;分析如下:用大小不一样的力推大石头,推不动,是因为大石头同时受到摩擦力的作用,受到合外力为零,因此、加速度也为零。 „„ 2.与物体质量的关系: 与物体的质量有关;例如:人分别用相同的力推自行车和摩托车时,自行车比较容易加速启动,而摩托车则较难。也就是说在相同的情况下,质量较小的自行车获得的加速度就较大。 „„ 3.与物体运动的速度的关系: ①与物体的速度有关;例如:速度大的物体较不容易停止运动,而速度小的物体较容易天下来。 ②与物体的速度无关;例如:做匀速直线运动的物体不论速度大小,加速度都为零。 ③与物体的速度无关;分析如下:加速度是描述速度变化快慢的物理量,从公式加速度与速度的大小无关。 „„ 可知,引导学生总结得出猜想:物体的加速度只与它所受合外力和物体本身的质量有关。 说明学生在生活中对“影响物体加速度大小的因素”有所认识,但这些认识往往是片面的、不准确的。因此要让学生充分地表达已有的认识,在这过程中教师利用课件提供一些图片,对学生进行启发,引导他们不断修正自己的观点,从而形成对科学的认识。 引导学生结合前面学习的知识(牛顿第一定律等),讨论猜想的科学依据所在,从而确定:物体的加速度只与它所受合外力和物体本身的质量有关。 说明:让学生从理论的角度加以分析有利于培养学生理论联系实际的能力,有利于培养学生的逻辑思维能力。 引导学生深入探究:与和的定量关系。 (三)探究a与F、m的定量关系 1.确定研究方法 教师:我们应该采用什么样的物理方法来研究 预测学生的分析可能如下: 分两步进行研究: ①保持研究对象的质量 一定时,研究加速度 ②保持研究对象受到的合外力 与、的定量关系呢? 和合外力的关系; 的关系。 一定时,研究加速度和质量 然后综合两次的研究结果,进行推理和归纳,便可找出与、三者之间存在的关系。 „„ 教师在确定研究方法后,简单地介绍“控制变量法”。 说明初中阶段学生曾多次应用过控制变量法。如果学生回答有误,教师启发学生回忆:研究电流与电压和电阻这三者关系所采用的方法。 2.设计实验方案 教师进一步引导学生设计实验方案。 让学生以小组为单位设计探究方案:包括使用哪些实验器材,如何进行操作,如何采集数据等?(要求学生把设计的方案简要地写在纸上)。 教师巡视给予必要的指导。 „„ 选择较有代表性方案的小组派代表上台简要叙述本组设计的方案(用实物投影仪把学生写在纸上的方案投影出来),让全班同学进行交流。大家在互相启发、补充的过程中形成较为完善的方案。 预测学生设计的实验方案可能是: 方案一:用小车、电火花打点计时器、纸带、长木板、细线、小桶、钩码、天平、砝码、刻度尺、垫木等器材,研究小车的运动。用天平分别测出小车的质量与小桶中砝码的总重力 当作小车受到的拉力,测出小桶的质量与小桶中砝码,把小桶,由,从打点计时器打出的纸带上测量并算出计算出小车的加速度。 方案二:以气垫导轨、气源、两个光电门、数字计时器、滑块、滑片、刻度尺、细线、小桶、砝码、天平为器材研究滑块的运动。用天平测出滑块和滑片的质量滑块M,测出小桶与小桶中砝码的质量小桶与小桶中砝码的总重力 当作滑块受到的拉力,把,用光电门和数字计时器自动测出滑块运动经过两个光电门时的速度、,以及这一过程所用的时间t,再通过公式算出滑块的加速度。 „„ 说明:①在学生交流讨论实验设计的方案中,要有较充分的时间让他们对各种方案阐述自己的观点,反思方案中的问题,同时教师要参与学生的讨论分析,启发引导学生形成较为完善的实验方案。 ②同时应注意有些学生可能有别的方案,要鼓励和认真对待,在课堂时间不足的情况下,可在课外指导学生去探究。 ③在设计测拉力的方法时,教师要告诉学生:把小桶与小桶中砝码的总重力 当作研究对象受到的拉力、这是有条件的,即<<。同时可以把这一条件作为学生的课外探究课题。 ④在实验中,只需测出小桶的质量,然后通过加减小桶中砝码的质量来改变对研究对象的拉力,这可以节约测量砝码所需的时间。 3.进行实验探究和数据处理 ①引导学生从实验误差、实验操作等方面来分析比较两种方案的差别。 师生共同确定用“方案二”进行实验探究,同时确定实验的具体步骤和注意事项。并用课件显示实验的具体步骤和注意事项。 说明“方案二”便于操作,且实验误差较小。用课件显示具体的实验步骤,有助于学生较为规范地完成实验。 ②介绍并演示CAI课件的功能 Ⅰ.数据计算:将测出、、t等数据输入计算机的数据处理表格后、计算机将自动算出相应的加速度,将输入计算机后将自动算出合外力;Ⅱ.自动描点连线制图的功能;Ⅲ.通过网络可达到数据共享。 ③学生以小组为单位,分工合作进行实验探究,并把实验数据输入计算机(使用移动PC并接入校园网)。 教师巡视,注意学生仪器使用是否得当,必要时给予指导。 ④调用多组学生的实验数据,让学生分析 与、与的定量关系。成正比)。 初步得出:与F成正比,与成反比(与1/ ⑤引导学生应用CAI课件,采用图象法处理实验数据。 师生共同得出结论:与成正比、与成反比。 说明:在CAI课件中定义坐标轴的数值和单位,同时调用已存的实验数据,计算机将在坐标系中自动描点、连线得到实验数据的关系图象,由此判断数据的关系。其中与的关系可转变为与1/的关系来做图。 (四)回顾总结深化认识 学生回顾本节课的探究过程以及探究过程中使用的物理思想和方法,归纳总结这节课的知识要点,提出自己在学习中存在的疑问。 教师答疑,深化知识。 七、教学流程图: 附:图中符号说明 八、本设计主要特点: 本节课教学设计注重学生学习过程的亲身体验,体现了“做中学”和“关注学生能力发展”的教学思想。其主要特点是: 1.本节课把牛顿第二定律分为两个课时,改演示实验为学生分组探究实验,让学生有较充分的时间进行实验探究,有利于培养学生的能力。 2.利用CAI课件和网络来处理实验数据,能节约时间,提高学习效率;同时在课堂中采用多媒体课件作为辅助手段,创设物理情景,启发引导学生,帮助学生建立形象直观的认识,有利于调动学生学习的积极性。 3.在学法上突出学生自主发现问题,开展合作探究,进行实验探索,引导分析总结等以学生为主体的特点。尤其关注课堂教学过程中学生个体差异产生新的教学资源并较好地进行利用,运用评价手段不断引导学生学习,较好地将新课程理念结合于教学实际中。高考牛顿第二定律专题 第5篇
牛顿第二定律 第6篇
高考牛顿第二定律专题
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。