地铁车站施工实习生的工作总结
地铁车站施工实习生的工作总结(精选6篇)
地铁车站施工实习生的工作总结 第1篇
工作总结
(XX地铁三号线XX路站:XXX)时间过得很快,来到项目部工作已有半年。在这段时间里收获了许多,慢慢的在成长,当然还存在许多的不足。有总结才有进步,才能发现自己的优缺点。具体总结如下:
一、业务能力方面:前期不足之处:
1、对有些部位的施工细节不熟练。例如:(1)在浇筑立柱桩时对空桩的控制,严格控制混凝土浇筑的速度,首灌要快,然后再放慢浇筑速度,实时测量孔深以控制空桩深度;(2)在地连墙成槽的过程中要勤测泥浆的性能,以便及时调整,在地连墙浇筑混凝土前填沙袋的这道工序中一定要注意丢沙袋的方法,在外放区填沙袋的时候要均匀,丢的过程中一定要要求施工人员将沙袋丢入外放区,严禁丢入钢筋笼内,这两道工序看似简单,但要对地连墙的质量是至关重要的;(3)在在基坑开挖的施工作业中,要实时关注地连墙是否侵线以及开挖标高的控制,每开挖出一段就要及时跟进测量,以便及时处理。这些施工中的细节问题都要及时总结及时发现,避免每一次的主观错误。
2、有时候报检不及时,在程序方面有些小错误,不过在后期都有及时改正。这样的小错误也反映出我们年轻技术员在平时施工中没有严格按程序施工,这在我们今后的工作重要严格规范遵守。
3、对现场的一些工作考虑不到,有些工作没有及时上报给领导,导致一些没必要的麻烦。对于现场的工作,我们年轻技术员要学着多角度的考虑问题,而且要多向经验丰富的领工员、部长学习,对于初次接触的施工问题要多方面听取他们的意见。
4、现场工作交接班不清楚,有时候由于部门内部和部门之间没有及时交接清楚导致工作没有按要求完成,在这个问题上我们在平时的工作中一定要养成细致的习惯,对于施工作业、施工台帐及资
料有涉及到多个部门要及时沟通,做好口头与书面的技术交底。
5、施工日志记录有些地方不够详细,对于施工日志我们技术员要足够重视,做好每天的记录可以了解整个施工的情况和进度,有便于我们以后对下道工序的安排,可以及时发现问题,提前计划,把自己分内的事情做得更好。
6、有些现场交底不到位,有时候跟班作业不到位,这就需要我们每个技术员要有高度的责任心,对于自己分内的事情一定要按质按量的完成。
二、交际协调方面:和施工对交流协调缺乏经验。在不断的交流磨合中还是进步很大,在后期中有问题还是可以及时配合解决。相信在以后的处理问题中可以不断进步;在和部门之间的交际协调方面也许不断加强,做事要更加主动。
三、学习方面:
1、学习不够主动,遇到问题没及时请教。
2、缺少总结,图纸看得不够仔细。
3、缺乏方法,没充分利用各方面的资源。后期要加强学习,制定计划,当天的事情即日完成,在做资料中养成细心的习惯,尤其在施工现场中,要善于发现问题。
通过总结以往的工作,找出工作中的不足,以便在以后的工作中加以克服,同时还需要多看书,认真学习好规范规程及有关文件资料,掌握好专业知识,提高自己的工作能力,加强工作责任感,及时做好个人的各项工作。总之,在今后的工作中,我将不断的总结与反省,不断地鞭策自己并充实能量,提高自身素质与业务水平,以适应时代和企业的发展,不断成长。
地铁车站施工实习生的工作总结 第2篇
关键词:地铁车站;施工方法;施工流程;优缺点;适用条件
伴随着我国社会主义经济建设的迅猛发展与综合国力的增强,城市的规模也不断的增大,城市人口流量还在增加、再加上机动车辆呈现逐年上涨的趋势,交通状况不断恶化。为了改善交通环境,采取了各种措施,其中兴建地下铁道得到了普遍的认可,如最近几年在北京、广州、深圳等城市便兴建了大量的地下铁道。由于在城市中修建地下铁道,其施工方法受到地面建筑物、道路、城市交通、水文地质、环境保护、施工机具以及资金条件等因素的影响较大,因此各自所采用的施工方法也不尽相同。下面将就城市地下铁道施工方法分别加以介绍。施工方法的选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。
1、明挖法
明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。
明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地方通常采用明挖法施工。浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。
明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土,如图1.上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。该车站为地下2层岛式车站,长166.6 m,标准段宽17.2 m,南、北端头井宽21.4 m.标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m.车站出人口、风井采用SMW桩作为基坑的维护结构。
2、盖挖法
盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工。主体结构可以顺作,也可以逆作。
在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。2.1盖挖顺作法
盖挖顺作法是在地表作业完成挡土结构后,以定型的预制标准覆萧结构(包括纵、横梁和路面板)置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高。依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路。最后,视需要拆除挡上结构外露部分并恢复道路。施工顺序如图2.在道路交通不能长期中断的情况下修建车站主体时,可考虑采用盖挖顺作法。
工程实例:深圳地铁一期工程华强路站位于深圳市最繁华的深南中路与华强路交叉口西侧,深南中路行车道下。该地区市政道路密集,车流量大,最高车流量达3865辆/h.车站主体为单柱双层双跨结构,车站全长224.3 m,标准断面宽18.9 m,基坑深约18.9 m,西端盾构并处宽22.5 m,基坑深约18.7 m.南侧绿地内东西端各布置一个风道。主体结构施工工期为2年,其中围护结构及临时路面施工期为7个月。为保证深南中路在地铁站施工期间的正常行车,该路段主体结构施工采用盖挖顺作法施工方案。
2.2 盖挖逆作法
盖挖逆作法是先在地表面向下做基坑的维护结构和中间桩柱,和盖挖顺作法一样,基坑维护结构多采用地下连续墙或帷幕桩,中间支撑多利用主体结构本身的中间立柱以降低工程造价。随后即可开挖表层土体至主体结构顶板地面标高,利用未开挖的土体作为土模浇筑顶板。顶板可以作为一道强有力的横撑,以防止维护结构向基坑内变形,待回填土后将道路复原,恢复交通。以后的工作都是在顶板覆盖下进行,即自上而下逐层开挖并建造主体结构直至底板,如图3.如果开挖面积较大、覆土较浅、周围沿线建筑物过于靠近,为尽量防止因开挖基坑而引起临近建筑物的沉陷,或需及早恢复路面交通,但又缺乏定型覆盖结构,常采用盖挖逆作法施工。
工程实例:南京地铁南北线一期工程的区间隧道在地质条件和周围环境允许的情况下,以造价、工期、安全为目标,经过分析、比较,选择了全线区间施工方法。其中,三山街站,位于秦淮河古河道部位,位于粉土、粉细砂、淤泥质粘土土层中。因为是第1个车站,又位于十字路口,因此采用地下连续墙作围护结构。除人口结构采用顺作法外,其余均为盖挖逆作法。
2.3 盖挖半逆作法
盖挖半逆作法与逆作法的区别仅在于顶板完成及恢复路面后,向下挖土至设计标高后先浇筑底板,再依次向上逐层浇筑侧墙、楼板。在半逆作法施工中,一般都必须设置横撑并施加预应力,如图4.3、暗挖法暗挖法是在特定条件下,不挖开地面,全部在地下进行开挖和修筑衬砌结构的隧道施工力一法。暗挖法主要包括:钻爆法、盾构法、掘进机法、浅埋暗挖法、顶管法、沉管法等。其中尤以浅埋暗挖法和盾构法应用较为广泛,因此,本文着重介绍这两种方法。3.1浅埋暗挖法(浅埋矿山法)
浅埋暗挖法即松散地层的新奥法施工,新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土为主要支护手段,对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。浅埋暗挖法是针对埋置深度较浅、松散不稳定的上层和软弱破碎岩层施工而提出来的,如深圳地铁区间隧道大部分采用了浅埋暗挖法施工。
浅埋暗挖法的施工技术特点:围岩变形波及地表;要求刚性支护或地层改良;通过试验段来指导设计和施工。
浅埋暗挖法施工隧道时,应根据工程特点、围岩情况、环境要求以及施工单位的自身条件等,选择适宜的开挖方法及掘进方式。施工中区间隧道常用的开挖方法是台阶法、CRD工法、眼镜工法等;城市地铁车站、地下停车场等多跨隧道多采用柱洞法测洞法或中洞法等工法施工。
地下铁道是在城市区域内施工,对地表沉降的控制要求比较严格,所以更要强调地层的预支护和预加固,所采用的施工方法有超前小导管预注浆、开挖面深孔注浆、管棚超前支护。浅埋暗挖法的施工工艺可以概括为“管超前、严注浆、短开挖、强支护、快封闭、勤量测”18个字,其工艺流程见图5.工程实例:北京地铁东单车站东南风道与车站主体结构正交,北侧在长安街下,中部及南侧穿过居民区,风道全长43.4 m.采用浅埋暗挖洞桩法施工,在基本维持环境原状条件的情况下从地面居民生活区和人防设施下面顺利通过。
3.2盾构法
修建地铁随道盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法。盾构(shield)是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需的千斤顶;钢筒的尾部可以拼装预制或现浇隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装(或现浇)一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以防止隧道及地面下沉。盾构推进的反力由衬砌环承担。盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面。盾构法施工工艺见下图6所示。
按盾构断面形状不同可将其分为:圆形、拱形、矩形、马蹄形4种。圆形因其抵抗地层中的土压力和水压力较好,衬砌拼装简便,可采用通用构件,易于更换,因而应用较为广泛;按开挖方式不同可将盾构分为:手工挖掘式、半机械挖掘式和机械挖掘式3种;按盾构前部构造不同可将盾构分为:敞胸式和闭胸式2种;按排除地下水与稳定开挖面的方式不同可将盾构分为:人工井点降水、泥水加压、土压平衡式,局部气压盾构,全气压盾构等。盾构法的主要优点:除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;盾构推进、出土、拼装衬砌等主要工序循环进行,施T易于管理,施工人员也比较少;土方量少;穿越河道时不影响航运;施工不受风雨等气候条件的影响;在地质条件差、地下水位高的地方建设埋深较大的隧道,盾构法有较高的技术经济优越性。
工程实例:北京地铁五号线即采用了盾构法施工地铁五号线是一条贯穿北京市中心的南北向地下交通大动脉。南起丰台区宋家庄,向北经蒲黄榆、祟文门、东单、东
四、雍和宫止于昌平区太平庄北站,全长27.7 km.由于该路段地上大型建筑物密集,交通流量大,地下管网复杂,为减少对城市经济和市民生活的影响,经专家论证,决定在雍和宫至北新桥约700 m长的试验段率先采用盾构施工方法。该盾构为大直径土压平衡盾构机。
4、沉管法
沉管法是将隧道管段分段预制,分段两端设临时止水头部,然后浮运至隧道轴线处,沉放在预先挖好的地槽内,完成管段间的水下连接,移去临时止水头部,回填基槽保护沉管,铺设隧道内部设施,从而形成一个完整的水下通道。
沉管隧道对地基要求较低,特别适用于软土地基、河床或海岸较浅,易于水上疏浚设施进行基槽开外的工程特点。由于其埋深小,包括连接段在内的隧道线路总长较采用暗挖法和盾构法修建的隧道明显缩短。沉管断面形状可圆可方,选择灵活。基槽开挖、管段预制、浮运沉放和内部铺装等各工序可平行作业,彼此干扰相对较少,并且管段预制质量容易控制。基于上述的优点,在大江、大河等宽阔水域下构筑隧道,沉管法称为最经济的水下穿越方案。
按照管身材料,沉管隧道可分为2类:钢壳沉管隧道(有可分为单层钢壳隧道和双层钢壳隧道)和钢筋馄凝土沉管隧道。钢壳沉管隧道在北美采用的较多,而钢筋混凝土沉管隧道则在欧亚采用较多。
沉管隧道施工主要工序:管节预制→基槽开挖→管段浮运和沉放→对接作业→内部装饰。
上程实例:广一州珠江隧道是我国第一条公路与地铁合用的越江隧道,公路隧道全长1 238.5 m.河中段隧道埋置在河床下。不影响水面通航,河中沉管段全长457 m.该沉管为多孔矩形钢筋混凝土结构,其中包括两个双车道机动车孔、一个地铁孔、一个电缆管廊。沉管断面为典型矩形断面,外形尺寸为33 mx7.956 m(宽x高),底板厚1.2 m、顶板厚1.0 m,两外侧墙分别为0.7 m和0.55 m、最长管节的混凝土量达12 000砰。管段的基底坐落在河床的风化花岗岩层上。开槽时采用了炸礁施工。基础处理采用灌砂法。
5、混合法
可以根据地铁隧道的实际情况,在地铁隧道的施工过程中采用以上2种或2种以上的方法同时使用,称其为混合法。
工程实例:北京地铁东四站位于朝阳门内大街与东四南大街交叉日上,处于繁华的市中心,有多路公交车经过。车站主体顺东四南大街,呈南北走向,东四南大街规划道路红线宽70 m,现状路宽为22 m,朝内大街已改造完,道路红线宽60 m,两方向客流均衡,交通十分繁忙;且远期六号线顺朝内大街,呈东西走向,在此站换乘。本车站两端为明挖段,结构形式为3层三跨框架结构;中间为暗挖段,结构形式为单层三拱两柱结构。车站总长度197 m,暗挖段长为96.80 m,明挖段长为100.20m。
6、结束语
地铁车站组合风阀的施工 第3篇
1 组合风阀订货尺寸的确定
组合风阀的尺寸必须根据现场土建的预留尺寸现场确定,正常的程序是现场有托台的情况下,到现场测量,每边比托台大2 cm~3 cm。1)在确定尺寸前,应该先和电专业方面商量好将来风阀执行机构的位置。2)卧阀尺寸的确定:通常现场卧阀的位置是土建的吊装孔,都还没有砌筑托台,给订货带来一定难度,故这部分应该积极的和土建单位沟通,确定他们托台的尺寸(这部分将来在列车上线前要安装完,组合风阀又有一定的生产周期,如果等土建单位做好托台后再订货就会影响地铁运营开通),在土建支模板的时候,必须对尺寸进行复核,避免组合风阀和土建预留接口发生偏差,影响将来风阀安装。3)立阀尺寸的确定:这部分最好先确定了土建构造柱的尺寸后再订货生产。a.TVF风机前的立阀尺寸的确定,由于这部分的连接顺序是风机先和结构外壳消声器连接,然后消声器和一截短管连接,最后短管和立阀相连接,构造柱的尺寸取决于短管法兰和消声器的法兰是内平还是外平。在确定了构造柱的尺寸后这部分风阀的尺寸也就确定了。b.UOF风机前立阀尺寸的确定,需要先和装修单位沟通好他们检修门的大小,现场空出检修门后就可以确定风阀的尺寸(有时候装修单位这部分也做构造柱,订货尺寸必须做相应调整)。c.剩下的立阀不和设备连接,需要到现场测量确定,有的是现场两边正好是结构柱,就不需要构造柱,这部分在测量完结构柱的尺寸后即可以订货了。难点是和TVF风机并排的这部分立阀,现场由于标高和宽度的影响故这部分尺寸确定比较困难,首先在掌握了现场尺寸的前提下,先扣除了检修门的距离后再合理安排构造柱,尺寸紧张的时候为了节约空间可能两组风阀共用一个构造柱,也有可能靠风机边的立阀需要取消构造柱,用槽钢来代替。在确定了这部分构造柱的尺寸后就可以把立阀的尺寸确定。4)在确定好尺寸及安装的高度后要和电气、管道专业进行管道安装位置平衡,以免在组合风阀未安装前被其他专业的管线把风阀的安装位置占掉,造成风阀无法安装,其他专业返工的情况。
每组风阀在确定尺寸后,进行单独编号与安装位置进行对应,避免在组合风阀进场及运输过程中发生混乱,造成无法组装。
2 组合风阀现场安装
1)组合风阀结构图见图1。
2)安装工序流程:
底框组装→单体风阀→传动机构→执行器安装→预调试→各种附件→试车。
a.底框组装。底框部分是由若干小框架连接而成的,组装场地应选在靠近安装位置的附近地面上,场地打扫干净,凹坑处应用钢板支垫水平,然后将各个小框架逐块连接成一个整体,并拉线检查框架的对角线、工作面的平面度,其偏差值应控制在规范要求的范围之中。
b.单体风阀安装。单列风阀拼装时,应按编号顺序。
单体风阀安装应按设备技术文件提供的传动支撑位置打孔图进行,先在各支撑点和风阀连接中加入内藏式限位支撑并和底框连接在一起。
内撑安装在左右槽钢中间位置,用M6×12的螺钉紧固在左右槽钢中间,装配时先把内撑和底框之间的螺栓拧紧,然后把节点按传动中所示的位置安装好;限位块也是安装在左右槽钢之间,装配时可先安装一边支撑板,用螺钉将支板和槽钢以及限位块联结好,然后在另一侧单个风阀安装好后,再安装另一侧支撑板;最后安装轴及摇臂,注意调节螺钉的松紧,以便使轴转动灵活,个别不能灵活转动处,可用绞刀绞制两支撑板的孔,轴穿上并转动灵活为止。
装好内撑及限位块后,即可拧紧所有的底框螺栓。螺母及压板应先安装在单体风阀上而不拧紧,待对准其孔后(用小圆钢调整)最后拧紧。如果螺母压板太长,安装时不易放入两阀体槽钢之间,可在现场根据实际截短安装。
风阀的固定和限位靠风阀地脚螺栓,风阀地脚螺栓的固定有两种方法:在地面上将地脚螺栓先与底框焊接,然后就位安装;或者在洞口一侧预先装好地脚螺栓,同时在底边或上边也预先装好地脚螺栓。将整体风阀吊起靠近横、竖两个边的地脚螺栓,进行焊接。另外横竖两个边的地脚螺栓紧贴底框焊接并打膨胀螺栓固定。
卧阀最好是先组装然后再焊接地脚螺栓(注:单体风阀的长、短边至少要用两个地脚螺栓固定,并且地脚螺栓之间的间距为1.2 m~1.5 m,均匀设置)。
组合风阀装配要求:组合风阀是由多个单列风阀并列组合而成。单列之间的槽钢底框用M30×30的螺栓连接。连接时两列对应小阀之间要加装两个联轴和一个带连接片的连接轴。阀体安装无论采用卧式还是立式,均以单体小阀侧面的限位片为上,9孔以内 (含9孔)连接片装在第4孔,10孔以内(含10孔)连接片装在第6孔。
连接片安装的角度:当风阀叶片全部关闭时,安装连接片角度向下垂45°。当风阀叶片全部打开时,安装连接片角度向上斜45°。每两列风阀组合后用手搬动连接片,各小阀运转灵活。此时才能将槽钢螺栓全部拧紧。
单个风阀全部安装紧固后,便可安装电动执行器,执行器有两种安装方式,一种是风阀水平落地卧式安装形式;另一种是风阀垂直立式安装形式。
c.传动机构安装与调试。根据设备技术说明书,在安装固定好的风阀接缝处用盖板盖好,并钻孔用拉铆钉固定死,用固定叶片夹具把叶片固定在全开的位置上,然后依次安装接点、下拉杆、小摇臂、双摇臂、传扭轴、万向节以及联轴器等传动零部件。安装完成后,最后全面检查各连接处的螺钉、销钉、铆钉是否都紧固可靠,最后便可进行单机调试。
d.运行。由电气专业送电,在现场手操箱内进行操作。启动风阀,检查阀片的动作与开启指示灯是否一致;检查阀片运行时有无异常响声。关闭风阀,再检查阀片动作与关闭指示灯是否一致;阀片与阀体有无变形;如果一切正常,再在1 h内进行10次启闭动作,并在阀片全开和关闭位置时调整好设置在电动执行器上的限位开关。运行完成后,将现场操作切换到控制室。
3)安全技术措施。
安装前要求对所有施工人员进行进场三级教育,专业施工员要求对所有施工人员进行书面技术及安全交底。提高施工人员自我保护的安全意识。
因卧式组合风阀预留孔洞比较大,且距站台层高较高,所以要求施工技术人员必须对预留孔洞进行防护到位。
组合风阀重量大、体积大,所以要求施工人员在施工前对所用的吊装绳索进行仔细全面检查,要求施工人员必须戴好安全带,扣好帽扣。
3 后期风阀的调试和维护
风阀安装完成后,进行单机调试,调试内容包括:风阀开启是否成90°,关闭是否严密,执行机构运转是否正常等。
安装好的卧式风阀,由于其他施工单位可能还有施工任务,正好在风阀上面,施工人员不懂得危险,在上面搭平台,有的人甚至在上面踩,不但造成风阀叶片的破坏,而且有可能发生安全事故,所以风阀上面不加保护是十分危险的。另外列车已经开始热滑调试,一旦有东西或人员掉落必将造成列车损坏,结果就很难想象了。所以必须在醒目的位置打上警示标语,并且在阀体上搭设保护平台,既可让其他施工单位施工,又可减少安全事故和对风阀叶片的破坏。
4 结语
组合风阀在地铁运行过程中起着举足轻重的作用,几乎每天都要进行工况切换动作,但是地下空间相对狭窄,又不可能装有备用风阀,所以组合风阀的安装质量显得非常重要,需要在施工的每一个环节进行严格控制,才能达到预期的效果。
摘要:简要介绍了组合风阀在地铁车站空调通风系统中的作用及结构特点,着重阐述了地铁车站组合风阀的订货、加工、安装等环节的注意事项和操作要点,以指导实践,保证组合风阀的安装质量及使用效果。
地铁车站围护结构施工 第4篇
关键词:地铁车站;围护结构;施工
引 言
地下铁道是城市公共交通的骨干。它具有节能、省地、运量大、全天候、无污染又安全等特点,特别适应于大中城市。中国主要城市对地下铁道有较大需求,建设积极性较高,地下铁道交通发展迅猛,已有30多座城市建成了或正在新建、或拟就了建设规划。因此对地铁车站围护结构施工进行探究有非常重要的现实意义。
1 对地铁车站的围护结构比较
1.1 地下连续墙
地下连续墙,一般定义为利用各种挖槽机械,借助于泥浆的护壁作用,在地下挖出窄而深的沟槽,并在其内浇注适当的材料而形成一道具有防渗水、挡土和承重功能的连续的地下墙体。作为地铁车站围护结构的最常用的支护形式,在承载力和防水等方面有着巨大的优势,因此一直以来在地铁建设中有着广泛的应用,尤其是在沿海地区,有效的处理了软弱土的地基问题。但是这种围护结构也有自身缺陷,主要是建设成本太高和对城市的市政管线建设有比较大的影响。
1.2 排 桩
排桩是以某种桩型按队列式布置组成的基坑支护结构。排桩的应用也非常广泛,同时技术也很成熟,在许多内陆城市,包括西安等黄土地区中有着广泛的应用,最常使用的就是钻孔灌注桩。排桩的承载力比较高,施工较地下连续墙容易,但不能解决防水的问题,一般施工中需在排桩的间隙处喷射桩间网喷混凝土,以解决防水问题。排桩的缺点也同样是成本比较高,不是很经济。
1.3 SMW桩
SMW工法是以多轴型钻掘搅拌机在现场向一定深度进行钻掘,同时在钻头处喷出水泥系强化剂而与地基土反复混合搅拌,在各施工单元之间则采取重叠搭接施工,然后在水泥土混合体未结硬前插入H型钢或钢板作为其应力补强材,至水泥结硬,便形成一道具有一定强度和刚度的、连续完整的、无接缝的地下墙体。
1.4 TRD工法
TRD工法是将链式切削器插入土中,靠链式切削器的转动并沿水平方向掘削前进,形成连续的沟槽,同时将水泥浆从切削器的端部喷出,与土在原地搅拌混合,形成水泥土地下连续墙,并在水泥土墙中插入型钢,以增加连续墙的强度和刚度,最后在主体结构施工完毕后拔出型钢。TRD工法可以说是SWM工法桩的改进,扩大应用了范围,加深了处理深度。
TRD工法的特点:①整机的地上高度不超过10m,其地上高度与切削沟槽的深度无关,同时箱式刀具在筑造墙体时经常插入地中,故而装置的整体稳定性好。②筑成的墙体垂直精度高,并适合于各种土质条件下施工。③筑成的墙体连续无接缝等厚度,故而可适用于作止水墙体。④在切削沟槽时,因为是在全切削深度的内进行全区域的混合搅拌,故而墙体的质量均匀。⑤可在筑成的墙体内按实际计算结果以最佳间距设置芯材。
TRD工法具有施工效率高,工程造价低,成墙效果好,地层适应性好,环保等优点;TRD工法在地铁车站的基坑工程中的应用在技术上是可行的,在经济上是相当有优势的。
2 地铁车站围护结构施工要点
2.1 钻孔灌注桩施工要点
以某地铁车站为例,该工程采用钻孔灌注桩,围护采用钻孔灌注桩加水泥选喷桩作为止水帷幕,钻孔桩数量大、桩身长,施工质量的优劣直接关系到桩基和围护工程质量,更关系到整个工程的质量,因此,必须正确地选用科学合理的施工工艺,使钻孔灌注桩达到全部优良。
灌注桩属于隐蔽工程,但由于影响灌注桩施工质量的因素很多,对其施工过程中的每一环节都必须要严格要求,对各种影响因素都必须有详细的考虑,如地质因素、钻孔工艺、护壁、钢筋笼的上浮、混凝土的配制、灌注等。若稍有不慎或措施不严,就会在灌注中发生质量事故,小到塌孔、缩颈,大到断桩报废,以致对整个工程质量产生不利影响。所以,必须高度重视并严格控制钻孔灌注桩的施工质量,尽量避免发生事故及减少事故造成的损失,以利于工程的顺利进行。
该车站根据当地的地质情况,有针对性地选择钻孔施工方法:其中位于车站两侧的桩采用旋挖钻进行施工;横跨公路的中间段,由于地质条件良好,旋挖钻施工影响城市交通,采用人工挖孔桩的施工方法成孔。部分岩层较浅的车站围护结构亦可采用冲击钻冲击成孔的施工工艺。在围护结构的桩基施工中,桩基靠近主体结构侧墙一侧,宜远离侧墙边距离10cm左右,并在施工时保证桩基的垂直度,避免侵入主体结构。
水下浇注混凝土是用混凝土从孔底开始灌注,将孔内泥浆置换出来,成为混凝土桩的。在浇注过程中,应及时掌握孔内混凝土面上升的高度及导管插入的深度,测定每个混凝土面位置应取两个以上的测点,测绳受拉伸、湿度等因素的影响,所标长度变化较大,须经常校正。
2.2 旋喷桩施工要点
为保证钻孔灌注桩之间间距的止水性能,必须在灌注桩施工完成后继续施工旋喷桩。高压旋喷桩对处理淤泥、淤泥质土、粘性土、粉土、沙土、人工填土和碎石土等有良好的效果,在地铁车站施工中适用于围护结构止水。旋喷桩与钻孔桩一起形成围护结构止水帷幕,防止明挖施工过程中地下水的汇集、喷涌。
旋喷桩桩底一般施工至强风化岩层,钻杆无法下行为止。钻机采用双管高压旋喷桩及高压注浆泵,当钻杆钻到既定标高后用高压旋喷机把安有水平喷嘴的注浆管下到孔底,高压喷射水泥浆冲击切割土体,随着注浆管的旋转和提升而形成圆柱体桩体,浆与土体经过一系列的物理化学反应,固结成桩。旋喷桩截面必须与钻孔桩相互咬合,以便于保证支护、止水效果。
旋喷桩施工工艺属于一种比较成熟的工艺,在地铁车站围护结构止水有非常良好的应用效果,能够使开挖后的基坑不受潜水、地下涌水的影响。旋喷桩施工必须逐排进行施工,保证施工桩长及桩径。在开挖后如发现旋喷桩与地层相接处有涌水现象,必须及时补桩、堵漏。
2.3 支撐体系施工要点
支撑体系施工属于土方开挖前必须施工的临时构造,是为保证开挖后围护结构阻挡被动土压力所设置的结构。根据现阶段地铁车站所采用的支撑种类,分为钢管支撑与混凝土支撑两种,两种支撑各有优缺点。混凝土支撑具有良好的稳定性,且适用于复杂部位的支撑,但施工进度慢,影响土方开挖。钢管支撑具有施工简易、安拆方便等优点,但对于特殊要求的部位难以应用。
针对明挖车站的施工,为保证整个围护结构的稳定性,第一层支撑应全部采用混凝土支撑,第二、三层支撑标准截面宜采用钢管支撑,非标准截面采用混凝土支撑。如果第一道支撑体系应用钢管支撑,整个结构的稳定性能就非常有可能得不到保证,地铁车站坍塌事故往往出现在该问题的对待和处理上,如杭州凤起某车站。同时在开挖过程中,要对露出的围护结构桩基截面进行喷射混凝土施工,使其表面尽量平整,还要对有涌水的位置进行引流、堵漏处理。基坑内、外不宜做降水处理,但必须实时监测基坑周边以及围护结构水位、土体倾斜度的变化。
3 结 语
随着科学技术的不断提高,建筑新技术及新工艺也不断发展并完善起来。相当多的科研人员及业内人士非常重视地铁围护结构的设计与施工,其作为地下明挖施工的一个重要组成部分,对保证施工的安全、质量与进度具有非常重要的意义。
参考文献
[1]高志宏.浅谈明挖法地铁车站的设计分析方法[J].甘肃科技,2010(09).
地铁车站施工经验 第5篇
一、引言
地铁具有运量大、快捷、安全、准时、舒适等特点,是城市交通的主要发展方向。世界上第一条地铁是1863年在伦敦修建的,迄今已有近一个半世纪。这一个半世纪中,随着土建施工技术、机械制造技术、通信及信号技术等诸多领域的飞速发展,地铁事业亦取得了长足进步。从地铁运营的里程上看,欧洲和北美发达国家占领先地位,但近20年发展中国家的地铁事业也呈蓬勃发展之势。
我国1971年北京建成第一条地铁,目前上海、广州、深圳、南京等多个城市均已部分建成并正在兴建地铁网络,我国地铁事业正进入一个发展高潮。
上海早在1958年就已经开始筹建地铁,经过长期摸索、克服了种种艰难,终于在1995年4月28日地铁一号线建成试运营,历时38年。其后,2000年7月地铁二号线建成、2001年底明珠一期建成,目前在建或即将开工的有一号线北延伸(共和新路高架)、莘闵线、明珠二期、M8线、二号线西延伸、明珠一期北延伸、R4线等等。上海地铁建设进入了前所未有的高速发展阶段。
在上海软土地区,地层基本为饱和含水流塑或软塑粘土层,抗剪强度低,含水量高达40%以上,灵敏度在4~5,压缩性大都属高压缩,并具有较大的流变性,这种软弱流变的地质条件决定了上海地区的基坑工程中环境保护问题更为突出。在上海曾出现一些深基坑周围地层移动引起附近建筑和设施破坏的工程事故,造成了严重的社会影响和经济损失,因此控制深基坑施工过程中的风险贯穿于施工的全过程。
土建施工在车站施工中所占的周期、投资都比较大,而且是车站施工中风险比较集中的阶段,尤其应引起足够重视。
地铁土建施工涉及到诸多工序,以下按工序介绍:
二、围护结构
围护结构的主要作用是与支撑一起形成支护体系,支挡坑内外的不平衡土压力,保持基坑的稳定。因此,围护结构应具有足够的强度、刚度和稳定性。在上海地铁车站工程中,主要应用的有两类围护结构:地下连续墙和SMW(Soil Mixing Wall)工法。
2.1 地下连续墙
地下连续墙是在基坑四周通过成槽、钢筋混凝土施工等工艺形成的具有较好强度、刚度和抗渗性的地下连续壁。地下连续墙具有刚度大、抗渗性能好、施工过程中无振动、无噪音等特点。地下连续墙作为地铁车站深基坑的挡土围护结构,施工时对周围环境影响小,适宜在城市建筑密集区域作业。一般地下连续墙适用于开挖深度14米以上的深基坑。
根据地下连续墙在施工阶段和使用阶段的作用,地下连续墙可以分为单墙体系和双墙体系。双墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段与内衬墙共同工作形成受力体系,承受结构荷载。单墙体系中,地下墙在施工阶段作为挡土结构与支撑一起形成支护体系;在使用阶段单独作为承重体系的一部分,承受结构荷载。2.1.1 地下连续墙施工工艺 地下连续墙工艺流程: 导墙施工
成槽 成槽过程中应使用泥浆护壁,泥浆于现场配制。泥浆置换、清底 吊放锁口管 钢筋笼吊放 混凝土浇捣 锁口管拔出
地下连续墙施工前先要构筑导墙,导墙净宽应比连续墙宽度稍宽约4cm,顶部比地面高4~5cm。一般导墙深度约1.5米,遇障碍物或暗浜等特殊情况时,应先行处理,考虑导墙加深并要求导墙落到原状土上。
地下连续墙分幅成槽和浇捣混凝土,每次成槽宽度约2~6米,平面形状有“—”形、“L”形和“T”形等。槽段有先行幅和后行幅之分,先行幅在槽段两头放置锁口管。地下连续墙接头常用的有:预制接头、刚性接头、柔性防水接头和预留注浆孔接头等。2.1.2 地墙施工控制要点
1、导墙轴线和标高的复测
导墙轴线决定着地下连续墙的位置;导墙顶标高将影响到钢筋笼的入槽标高。在单墙结构地铁车站中,进而将影响到钢筋连接器与底板、中楼板和顶板钢筋的连接。因此,导墙的轴线和标高,施工单位必须报验。
2、成槽泥浆性能指标的控制:
成槽泥浆的比重、粘度、含砂量等项指标,不仅影响槽壁的稳定,同时也影响地下连续墙混凝土的密实性和防水性能。因此,在地墙成槽和混凝土浇筑过程中,必须逐幅槽段进行抽检,将泥浆指标控制在设计要求或规范规定的范围内。
3、成槽深度、垂直度
成槽深度、垂直度,必须控制在设计或规范允许范围内,一般应控制地墙垂直度高于3/1000,对于单墙结构车站,尤其应严格控制地墙的垂直度;成槽达到设计标高后,应进行清槽,以提高地墙的承载能力,减小沉降量。
4、钢筋笼
在钢筋品种、规格、数量符合设计要求的前提下,对单墙结构地下连续墙,应重点控制: a.钢筋连接器与底、中、顶板对应位置的准确性;
b.钢筋笼入槽时笼顶标高即吊筋长度控制,以确保钢筋连接器位置的准确。
5、混凝土浇筑 检查商品混凝土的配合比、强度和抗渗等级、坍落度,必须符合设计要求;检查导管埋入混凝土面的深度,避免因埋管过浅造成夹泥断墙事故;计算地墙混凝土的充盈系数,判断地墙施工质量。
2.1.3.减少地下连续墙施工中对周围环境影响的若干措施
1、减小槽幅宽度
2、加固槽壁土体,一般用搅拌桩或注浆等方法加固。
3、做高导墙抬高泥浆液面或降水加大槽内外液面高差。
4、在保护对象和槽壁间设置隔离桩。
2.2 SMW工法
SMW工法是指将土与水泥浆搅拌后形成搅拌桩墙体,在墙体中插入高强度劲性芯材(一般为型钢)使之与搅拌桩墙体形成的复合挡土墙。
SMW工法作为基坑围护结构于1976年由日本竹中土木株式会社与成幸工业株式会社开发成功并应用。1986年日本材料协会编制了SMW工法的施工规范,使SMW工法的应用出现了一个高潮。据统计,至1993年,这一工法占日本基坑围护结构的50%,目前占到80%,已成为基坑围护的主要工法。
国内应用搅拌桩作围护和地基加固始于80年代,但当时使用的是纯搅拌桩,未加型钢。明珠二期兰村路站是目前国内以SMW工法作为围护结构的最大的基坑工程,该基坑围护结构全长700多米、最深达26米。
SMW工法作为一种新型的围护结构,具有以下特点:对周围环境影响小、高止水性、可在各种地层中使用、大厚度和大深度、施工速度快、造价低、环境污染小。
2.2.1 SMW工法施工工艺
SMW工法施工工艺流程:(搅拌桩施工工艺见搅拌桩节)SWM工法工艺流程图
2.2.2 SMW工法施工控制要点
1、在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。
2、在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。
3、施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。
4、在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。(5)H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。
(6)水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。
2.2.3 SMW工法施工控制要点
1、在搅拌机过程中,注入地层的浆液有一部份会流返回地面,须沿挡向施作一沟槽。沟槽边设固定支架,以便固定插入的H型钢。
2、在搅拌成桩时,所需容量70~80%的水泥浆宜在下行钻进时灌入,其余的20~30%宜在螺旋钻上行回程时灌入。此时所需水泥浆仅用于充填钻具撤出留下的空隙。螺旋钻上拔的灌浆,对于饱和疏松的土体具有特别的意义,因为这种地层中的柱体易产生空隙。螺旋钻上行时,螺钻最好反向旋转,且不能停止,以防产生真空,有真空就可能导致柱体墙的坍塌(非饱和土体)。
3、施工应按跳孔顺序进行,为保证围护结构的连续性和接头施工质量,两桩搭接部分应重复套钻。
4、在搅拌桩的施工过程中,要特别注意水泥浆液的注入量和搅拌沉入及提升量及提升速度。下钻进的速度应比上提时的速度慢一倍左右,以便尽可能保证水泥土的充分搅拌,又可获得较高的贯入速度。在砂土互层或土性变化较大的场地施工时,应根据各种土质的情况选择水泥浆液的配合比,以便得到较均匀的墙体,确保工程质量。
5、H型钢的回收,通过在插入的H钢表面涂一层减摩材料,从而使H型钢便于拔出回收。针对不同工程,不同水泥浆液配合比,在施工前作H型钢的拉拔试验,以确保H型钢的顺利回收。基坑开挖时围护墙体会产生弯曲变形,弯曲后H型钢的回收会比较困难,因此若考虑型钢回收则开挖过程中应尽量减小围护结构的变形。
6、水泥浆液中的掺加剂:国内工程多掺入一定量的木质素,以减小水泥浆液在注浆过程的堵塞现象。也可在水泥浆液中掺加膨润土,利用膨润土的保水性以增加水泥土的变形能力。不致因墙体变形而过早开裂,从而影响墙体的抗渗性。日本公司在施工时,材料的配比基本是1m3土体注入水泥75~200kg,膨润土10~30kg,水灰比w/c为0.3~0.8,根据工程类别及土性选择使用。
三、地基加固
由于上海地区土质松软、含水量高、流变性强,因此对于较深的基坑,若不采取措施则开挖变形将较大。由于地铁基坑大多处于城市建筑物、管线较密集地区,对变形控制要求非常高,因此在基坑深度大、周围环境复杂时,应考虑对基坑进行加固。基坑加固方法有很多种,这里主要介绍在地铁工程中应用较多的几种:注浆法、深层搅拌法、旋喷法等。广意上讲此三种工法均属于注浆工法,此处所讲的注浆法是指狭义上的注浆法即通过注浆管进行的单液浆或双液浆施工方法。
3.1注浆加固
注浆法是指将注浆管置于(打入法、钻孔法、振冲法等)所要加固的地层中,通过注浆管注入浆液,使之与土体形成复合体,增加土体强度。
根据注浆进入土体的压力、掺和方式的不同,注浆可分为劈裂注浆和压密注浆。当注浆压力比较大时,浆液将沿作土体的薄弱处注入,沿径向流动,最终形成狼牙棒式的注浆体,这种方法称之为劈裂注浆。当压力较小时,浆液压力不足以劈裂土体,注浆体呈柱状,主要通过挤密作用加强土体,此方法称之为压密注浆。
根据浆液成分和配比的不同,可分为单液浆和双液浆。单液浆主要材料为水泥(可掺加适量的粉煤灰),而双液浆主要为水泥(适量粉煤灰)和水玻璃溶液的混合液。由于水泥浆和水玻璃液混合后会迅速凝固并产生强度,因此双液浆可用于工期紧、早期强度要求比较高的基坑加固。3.1.1注浆工艺流程:
1、注浆孔定位
2、浆液配置
3、机架就位
4、注浆管钻进(或打入、振入)
5、浆体注入边提升注浆管
6、机架移位 3.1.2注浆控制要点
1、控制浆液配比
正式施工之前,根据搅拌罐容积和设计配合比,配制标准水泥浆液,测得标准条件下水泥浆比重和粘度。施工过程中应随机抽检水泥浆比重、粘度,以检查水泥掺量是否符合设计要求。
2、控制注浆量
应配置浆液流量自动记录装置,如实记录浆液注入量。若无流量计,则在正式施工前,应对搅拌罐的容积进行标定,根据配合比、水灰比要求和加固深度、设计孔距等项数据,通过计算确定每孔水泥浆液注入量,作为施工标准和检查依据。
3、控制施工参数
首先是加固深度部位的控制,复核钻杆长度,使其满足加固深度要求;其次,施工中随机检查施工参数的执行情况,如注浆压力、注浆量、拔管间距等,发现问题,及时整改。
4、加固效果检验
确定检验方法,应满足设计单位提出的检验指标的要求,通常要求加固后土层的PS值达到1.0~1.5Mpa。要求进行静力触探检验,检验点位应随机抽样确定。
3.2搅拌桩加固 搅拌桩是指利用特殊的搅拌头或钻头,钻进地基至一定深度后,喷出固化剂,使其沿着钻孔深度与地基土强行拌和而形成的加固土桩体。固化剂通常采用水泥或石灰,可以是浆体或粉体。搅拌桩适用于加固淤泥、淤泥质土和含水量较高而地基承载力小于120Kpa的粘土、粉土等软土地基。搅拌桩施工时无振动、无噪声、无泥浆污染、适合于在城市建筑物等密集地区进行地基加固。
根据机械中搅拌头数量可分为:单轴机、两轴机、三轴机和多轴机。每种机械在加固过程中的挤土和涌土性能均不相同,应引起足够重视。3.2.1搅拌桩加固工艺流程
1、定位
2、搅拌下沉
3、喷浆提升
4、重复搅拌下沉
5、重复搅拌提升
6、清洗
7、移位
3.3旋喷加固
旋喷加固是通过旋喷管将高压喷射流注入土体内,使之与土体充分混合并重新结构从而提高土体强度的一种加固方法。3.3.1旋喷加固的特点
1、受土层、土的粒度、土的密度、硬化剂粘性、硬化剂硬化时间的影响较小,可以广泛应用于淤泥、软弱粘土、砂土甚至砂卵石地层等。
2、加固体强度较高,可达100~2000Kpa。
3、可以有计划地在预定地范围内注入必要地浆液,形成一定距离地桩,或连成一片地排桩或薄地帷幕,加固深度可以自由调节。
4、可以形成垂直的墙体亦可以根据需要形成水平或倾斜墙体。
旋喷法可分为单管旋喷、二重管旋喷和三重管旋喷。单管时仅喷射高压浆体;二重管旋喷同时喷射高压浆体和高压空气;三重管旋喷喷射喷射高压浆体、高压空气以及高压水。其中二重管旋喷加固半径可达100cm,三重管旋喷加固半径可达80~200cm。
3.3.2旋喷加固工艺
旋喷加固可分为两个阶段:第一阶段为成孔阶段,即用普通或专用钻机,驱动密封良好的喷射管和喷射头进行成孔,成孔时可采用水冲或振动的方法。
第二阶段为喷射加固阶段,即用高压浆体(以及高压水和空气)以较高的压力从喷嘴中向土中喷射。同时一边喷射一边提升,使浆体与周围土体混合,形成圆柱状的加固体。旋喷加固控制要点:
(1)旋喷桩浆液的固化剂可选用425、525号普通硅酸盐水泥,水泥浆液的水灰比应根据土体加固强度的需要选为1:1~1.5:1。水泥浆液中可添加水玻璃等化学辅助材料和掺合料,以及速凝、早强、悬浮等外加剂,浆液配比应通过试验确定。
(2)钻机安放应保证足够的平整度和垂直度,钻杆倾斜度不得大于1%,钻孔孔位与设计位置的偏差不得大于50mm;
(3)水泥浆拌制系统应配有可靠的计量装置;喷浆系统应配备流量表、压力计等检测装置;在喷浆过程中对提升速度应有控制装置和措施。
(4)施工前应对浆液流量、喷浆压力、喷嘴提升速度等进行标定。
(5)水泥浆宜在旋喷前一小时内搅拌,旋喷过程中冒浆量应控制在10~25%。相邻两桩施工间隔时间应不小于48小时,间距应不小于2m。
(6)成桩过程中钻杆的旋转和提升必须连续不中断,拆卸钻杆续喷时,注浆管搭接长度不得小于100mm;
(7)在高压喷射注浆过程中出现异常情况时,应及时查明原因并采取措施进行补救,排除故障后复喷高度不得小于500mm;(8)对泥浆的沉淀和排放应进行周密的设计和处理,确保施工过程中场地的清洁和不污染环境;
四、降水
1、深基坑降地下水的作用:
(1)保持开挖面的干燥,便于开挖施工(2)增加基坑稳定性
(3)改善基坑土体的特性,增加土体强度(4)防止坑底的隆起和破坏
降水工艺有很多种,如电渗法、喷射法、真空法等,有轻型井点、深井井点等。在选取时需根据不同的土层特性及基坑深度确定。见下表:
土层名称 渗透系数(m/d)土的有效粒径(mm)采用的降水方法 备注 粘土 0.001 0.003 电渗法 一般可用名排水,挖掘较深时可用电渗法 重粉质粘土 0.001~0.05 粉质粘土 0.05~0.1 粉土 0.1~0.5 0.003~0.025 真空法、喷射井点、深井法 上海地区使用较多 粉砂 0.5~1.0 细砂 1~5 0.1~0.25 普通井点法、喷射井点、深井法 中砂 5~20 0.25~0.5 粗砂 20~50 0.5~1 砾石 >50 多层井点或深井法 有时需水下挖掘
当土层的渗透系数较低时应采用真空井点系统,以便在井点周围形成部分真空,增加流向井点管的水力坡度。上海地铁深基坑采用较多的为真空深井法。
采用深井井点时,应根据土层渗透系数的不同开一截滤管或多截滤管。滤管周围应均匀填充填料,以保证水可以透过填料,而土体颗粒不会透过从而堵塞滤孔。填料应根据土体颗粒组成确定。为防止真空泄漏,应在孔口一定高度内用粘土回填密实。
降水施工的注意事项:
(1)应根据工程地质和水文地质条件、场地的施工条件、周围环境条件、机具及材料供应条件等,合理地选用轻型井点、喷射井点、深井井点、真空深井井点等井点类型,以及井点构造措施。(2)井点降水以不影响邻近建筑物及地下管线的安全为原则,必要时应采取回灌措施。(3)基坑降水必须在坑内外根据需要设置数量足够观测孔,并在坑外设置地面沉降观测点;(4)若遇承压水,应对坑底稳定性进行验算。必要时,应采用降承压水的措施,并应符合下列规定:
正式降承压水前应做抽水试验,确定降水参数;
井点布置应综合考虑基坑周围环境条件、地质条件和现场施工条件,当基坑周围环境容许时,宜在基坑外设置井点;
施工中应将基坑内的降水和抽取承压水分成两个独立的系统,并根据各自的技术要求制定降水组织设计。
承包商应对各工况下坑底抗承压水头的安全系数进行验算,并根据验算结果制定详细的降水和封井计划。
(5)应对成井口径、井深、井管配置、砂料填筑、洗井试抽、出水量等关键工序做好详细的纪录,每道工序完成后应进行检查和确认;
(6)应指定专人负责抽水、观测,并详细记录水位、水量变化情况;
五、开挖及支撑
1、开挖
下图为上海地区软土的流变试验,从图中可以知道: 上海软土流变试验曲线
在土体主压力较小时()蠕变变形很小,主要是弹性蠕变;不排水土体的流变要比排水土体的流变性显著,当(此应力约相当于14~15m的深基坑挡墙被动区土体的压应力)不排水的土样蠕变到最后会发生破坏,即呈破坏型;而排水土样蠕变则呈衰减型,蠕变是收敛和稳定的;当土体主应力达到或超过发生不收敛蠕变的极限应力水平时,从开始蠕变到蠕变速率急剧增大而发生破坏只有几天的时间,这说明在应力水平高的情况下,土体会在一定的承载时间内,以不易察觉的蠕变速度发生破坏。
从上述的试验结果的分析中可知,在处于具有流变地层的深基坑中,土的流变特性不仅会影响到基坑的稳定,而且对于基坑的变形控制也至关重要,这在控制基坑变形要求高的基坑工程中尤为突出。同时,在流变特性的分析中,我们可以取得有关控制软土深基坑变形的几点重要启示:
(1)分层分块开挖能够有效地调动地层的空间效应,以降低应力水平、控制流变位移。(2)减少每步开挖到支撑完毕的时间,即无支撑暴露时间,可明显控制挡墙的流变位移,这在无支撑暴露时间小于24小时效果尤其明显。
(3)解决软土深基坑变形控制问题的出路在于规范施工步序和参数,并将其作为实现设计要求的保证。
地铁深基坑施工工序及其参数可分为两种:
(1)长条形深基坑开挖(车站基坑标准段)如下图所示,其特点是基坑宽度较窄,一般为20左右,条形深基坑开挖施工技术要点是按有限长度L分段开挖和浇筑底板。每段开挖中又分层、分小段、限时完成每小段的开挖和支撑工作。每层厚度为hi,每小段宽度b,每小段开挖及支撑的工作在Tr时间内完成。主要施工参数见下图。车站标准段深基坑的开挖参数
车站深基坑端头井斜撑部分的开挖步序和参数
(2)基坑角部斜撑部分(端头井部分)的开挖 如下图所示,先自基坑角点沿垂直于斜撑方向向基坑内分步开挖,每步挖土适当限定宽度,每步开挖与支撑工作在限定时间内完成,两个斜撑范围内的三角形土体开挖后,再挖除坑内余留的土体。如每步斜条状开挖长度大于20m时则先挖中间再挖两端。其主要施工参数如下图所示。
从上面的基坑开挖方式中可以看出,基坑开挖分层数、每一层的厚度、每小段的开挖顺序、尺寸和无支撑暴露时间等是和软土流变变形直接相关的重要施工参数。当这些参数和地基土参数、支护结构参数一起被作为基坑设计依据并在施工中得以切实实施,软土基坑变形就能够真正得以合理而准确的预测和控制。变形控制的主要措施有:
(1)调整后继开挖步序和参数,这是运用软土基坑工程时空效应规律,控制基坑变形的一个十分重要的方法。当基坑变形或变形速率超过警戒值,应用考虑时空效应的计算方法,可以找出后继开挖中满足环境保护要求的施工参数。
(2)利用双液分层注浆注浆控制基坑挡墙位移或保护对象的位移,注浆时要结合跟踪监测数据,谨慎合理地选用注浆参数。
(3)局部增设支撑或调整支撑位置。
深基坑开挖过程的控制要点:
(1)基坑开挖必须按设计要求分段开挖和浇筑底板。每段开挖中又分层、分小段,并限时完成每小段的开挖和支撑。因此,主要施工参数有:分段、分层、分小段;每小段宽度,每小段开挖的无支撑暴露时间以及每小段开挖厚度。
(2)车站端头井的开挖,应首先撑好标准段内的2根对撑,再挖斜撑范围内的土方,最后挖除坑内的其余土方。斜撑范围内的土方,应自基坑角点沿垂直于斜撑方向向基坑内分层、分段、限时地开挖并架设支撑。对长度大于20m的斜撑,应先挖中间再挖两端。主要施工参数有:每小段宽度,每小段开挖的无支撑暴露时间以及每层开挖厚度。
(3)基坑开挖过程中严禁超挖,分层开挖的每一层开挖面标高不得低于该层支撑的底面或设计基坑底标高。
(4)基坑纵向放坡不得大于安全坡度,并进行必要的人工修坡。应对暴露时间较长或可能受暴雨冲刷的纵坡采用坡面保护措施,严防纵向滑坡。
(5)开挖过程中应及时封堵地下连续墙接缝或墙体上的渗漏点。(6)坑底开挖与底板施工
设计坑底标高以上30cm的土方,应采用人工开挖,局部洼坑应用砾石砂填实至设计标高。坑底应设集水坑,以及时排除坑底积水。集水坑与基坑挡墙内侧的距离应大于1/4基坑宽度。在开挖到底后,必须在设计规定时间内浇筑混凝土垫层(包括砼垫层以下的砾石砂垫层或倒滤层)。垫层所用混凝土的强度以及达到强度的时间必须满足设计要求。必须在设计规定的时间内浇筑钢筋混凝土底板。
2、支撑
在深基坑的施工支护结构中,常用的支撑系统按其材料分可以有钢支撑和钢筋混凝土支撑等种类。其优缺点比较如下表。钢支撑 钢筋混凝土支撑 优点 ◆便于安装和折除 ◆材料的消耗量小
◆可以及时施加预应力以减少无支撑暴露时间,合理地控制软土基坑变形 ◆有利于缩短工期 ◆整体刚度好 ◆节点构造处理相对简单 ◆结构稳定性好 缺点 ◆整体刚度较弱 ◆稳定性差
◆节点构造处理难度大 ◆制作时间长于钢支撑,不利于减少无支撑暴露时间 ◆拆除工作比较繁重 ◆材料的回收利用率低 ◆工期相对较长
就支撑结构的发展方向而言还是应该推广使用钢支撑,努力实现钢支撑杆件的标准化、工具化,建立钢支撑制作、安装、维修一体化的施工技术力量,提高支撑结构的施工水平。但还需强调指出,支撑系统应因地制宜,在特定条件下,钢筋混凝土支撑仍有其存在和优化的必要。上海地铁深基坑工程中绝大部分使用钢支撑。
支撑结构体系由围檩、支撑杆或支撑桁架、立柱、立柱桩等组成。深大基坑设计和施工中,必须对支撑系统中各节点,特别是多支撑交汇的关键节点的构造细节,做深入分析和谨慎处理,严防“一点失稳、全盘皆垮”的灾害性事故。
围檩 支撑结构的围檩直接与围护壁相连,围护壁上的力通过围檩传递给支撑结构体系。在采用地下连续墙的地铁地铁车站深基坑中,常常不设围檩而直接将支撑撑于地下墙面上,这种支撑布置要和地下墙相配,通常每道在一幅地下墙上设两根对撑。
支撑杆 是支撑结构中的主要受压杆件,由于受自重和施工荷载的作用,支撑杆属于一种压弯杆件。支撑杆相对于受荷面来说有垂直于荷载面和倾斜于荷载面二种,对于斜支撑杆要注意支撑杆和地下墙(或围檩)连接节点的力的平衡。
立柱和立柱桩 支撑杆和支撑桁架需要有立柱来支承,立柱通常采用H型钢或钢格构柱。立柱下要有立柱桩支承,立柱桩可以借用工程桩、也可以单独设计用于支承立柱。立柱和立柱桩可有效地保证支撑的稳定性,但立柱的沉降或回弹会引起支撑次应力,降低支撑稳定性。实测数据表明,基坑开挖到15m的坑底回弹范围通常是坑底以下12m深度内,因此建议立柱桩要穿越这一回弹区域。
支撑安装和制作要点
(1)在开挖每一层的每小段的过程中,当开挖出一道支撑的位置时,即在支撑两端墙面上测定出该道支撑两端与地下墙(或围檩)的接触点,以保证支撑与墙面垂直且位置准确,对这些接触点要整平表面,画出标志,并量出两个相对应的接触点间的支撑长度,以使地面上预先按量出长度配置支撑,并配备支撑端头配件以便于快速装配。而在地面上要有专人负责检查和及时提供开挖面上所需要的支撑及其配件,支撑在使用前应进行试装配,以保证支撑有适当的长度和足够的安装精度,对不符合技术要求的支撑配件一律弃用。
(2)支撑就位后应及时准确施加预应力,在施加预应力进程中要将钢支撑接头处连接螺栓拧紧三次以上以保持预应力。所施加的支撑预应力的大小应由设计单位根据设计轴力予以确定。通常取值为:第一道支撑预加轴力应大于设计轴力的50%;第二道及其下各道支撑预加轴力为设计轴力的80%。对于施加预应力的油泵装置要经常校验,以使之运行正常,所量出预应力值准确。每根支撑施加的预应力值要记录备查。
(3)为防止支撑施加预应力后和地墙(或围檩)不能均匀接触而导致偏心受压,首次施加预应力后立即在空隙处以速凝的细石混凝土填实。
预应力复加
(1)在第一次加预应力后12小时内观测预应力损失及墙体水平位移,并复加预应力至设计值;(2)当昼夜温差过大导致支撑预应力损失时,应立即在当天低温时段复加预应力至设计值;(3)墙体水位移速率超过警戒值时,可适量增加支撑轴力以控制变形,但复加后的支撑轴力和挡墙弯矩必须满足设计安全度要求;
(4)当采用被动区注浆控制挡墙位移时,应在注浆后1~2h内对在注浆范围的支撑复加预应力至设计值,以减少挡墙外移所造成的预应力损失。
六、内部结构
车站内部结构施工主要包括以下几部分:
板 顶板、中板、底板;侧墙 双墙体系中侧墙与地墙共同作用,单墙体系中无侧墙;梁柱体系等。
结构施工中控制要点如下:
1、底板施工
(1)底板施工前应将坑底软弱土清除干净,并用砾石、砂、碎石或素混凝土填平。(2)素混凝土垫层标高、厚度及强度满足设计要求,面层应无蜂窝、麻面和裂缝。(3)底板与地下连续墙的接触面必须进行凿毛、清洗,并在漏水处进行堵漏处理。
(4)底板钢筋与地下墙体底板相接时,应将钢筋连接器全部凿出弯正,连接时必须用测力扳手控制其旋紧程度。
(5)底板混凝土浇捣必须按顺序连续不断完成,采用高频震动器震捣密实,不得出现漏震或少震现象。
(6)底板混凝土浇捣完成的同时,及时收水、压实、抹光,终凝后及时养护,不少于14天。
2、侧墙施工
(1)侧墙施工前必须将地下墙凿毛处理,并按设计做好防水施工。(2)对地下连续墙的墙面渗漏应按规范及设计要求进行处理。(3)侧墙内模及支架应有足够的强度、刚度和侧向稳定性。
(4)应根据设计要求设置施工缝和诱导缝,并保证其稳固、可靠、不变形、不漏浆。(5)立内模之前,应对防水层、钢筋及预埋件工程进行检查,合格后办理隐蔽工程验收,进行下一道工序施工。
(6)一次立模浇捣高度超过3m时,应采取合理立模补强措施。(7)混凝土掺加微膨胀剂时要满足14天的养护要求。
(8)侧墙混凝土浇灌时应分层(每层高不超过30cm),浇捣连续不间断完成,分层浇捣时注意不出现漏震或过震。
(9)侧墙混凝土浇捣完成后,注意及时浇水养护,不少于14天。(10)侧墙外模板的拆除时间不应少于7天。
3、中楼板施工
(1)应根据设计要求设置施工缝和诱导缝,并经验收后方可浇筑混凝土。(2)中楼板梁、板的模板支架应采用满堂支架,其密度应满足强度和变形要求。(3)中楼板预埋件、预留孔洞的设置经监理检查验收后,方可浇筑中楼板混凝土。(4)中楼板底标高应考虑支架、搭板沉降及施工误差后,仍能满足下部建筑限界要求。(5)中楼板达到设计要求的拆模强度后方可拆模。
4、顶板施工
除严格遵循上节中楼板施工要求外,还应在施工过程中采取如下措施:(1)跨度在8m以上的结构,必须在混凝土强度达到100%时方可拆除模板;(2)顶板混凝土终凝前应对顶面混凝土压实、收浆成细毛面;(3)终凝后应及时养护,并尽量采用蓄水养护,养护时间不少于14d;(4)顶板上堆放设备、材料等附加荷载前必须进行强度验算。
地铁车站施工现场排水方案 第6篇
XXXXX站
施工现场排水方案
编制人: 日期:
复核人: 日期:
审核人: 日期:
中铁XXX局集团有限公司 长沙市轨道交通3号线一期工程XXX标项目经理部 二O一五年 七 月 湖南·长沙
目录
一、工程概况...........................................1
1、X号线车站.........................错误!未定义书签。
2、X号线车站.........................错误!未定义书签。
二、编制目的...........................................1
三、编制依据及规范.....................................1
四、施工现场场地排水条件...............................2
五、周边市政排水设施...................................2
六、施工现场排水方案...................................3
1、作业条件准备........................................3
2、各类排水设施的设置..................................4
3、排水系统的分类......................................5
七、排水管理...........................................6
八、现场临时排水附图...................................6
长沙市轨道交通3号线1期工程土建施工XXXXX标
施工现场排水方案
长沙市轨道交通3号线1期工程XXXXX标
XXXX站施工现场排水方案
一、工程概况
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.二、编制目的
本工程施工现场排水严格遵循雨、污水分流原则、污水集中处理原则和保证施工现场防涝原则,按照:水体收集→集中处理→达标排放的整体思路,水体排放采用自然排水和强制排水系统相结合的方法进行设置。加强施工现场排水管理是防止发生汛期内涝积水,杜绝超标排放、乱排废水、污水现象发生,确保安全渡汛和做好现场文明施工的重要举措。向政府职能部门申报好施工现场雨、污水收集、处理及排放形成系统,确保达标后分别排放,为施工现场创造良好的施工环境同时满足当地环境保护部门的要求,经对施工现场和周边环境进行实地踏勘,特编写本工程施工现场排水方案。
三、编制依据及规范
本处XXXX北站施工现场排水方案编制时依据施工现场场地条件及周边市政排水设施雨、污水分流接驳条件参照以下规范及标准进行:
长沙市轨道交通3号线1期工程土建施工XXXXX标
施工现场排水方案
⑴、《室外排水设计规范》(GB50014-2006); ⑵、《建筑给水排水设计规范》(GB50015-2003);
⑶、长沙市城市管理条例及长沙市城市市容和环境卫生管理办法; ⑷、长沙市轨道交通工程安全文明施工管理标准及安全文明施工标准化图集。
四、施工现场场地排水条件
经现场实地调查发现,施工现场内原有道路排水系统的泄水口主要分布在场地中央部位,此类排水系统只适用于前期施工准备阶段的临时排水,后期由于围护结构及基坑开挖作业的开展,将阻碍场地内原有排水设施导致排水系统无法正常使用。通过对现场内原地面与周边雨、污水管道高程测量对比,得知施工现场场地标高高于周边XXX路及XXX北路上市政雨、污水管网的水位标高。故施工现场内收集汇总的雨水、施工及生活所产生的废水及可经处理后自然流淌排入市政雨。
五、周边市政排水设施
本工程施工场地周边的市政雨、污水管网为沿XXX路及XXX方向敷设,现场实地调查中发现:在X号线车站北侧施工围挡附近存在一道管径1500mm,排水方向为自东向西的雨水管道;一道管径600mm,排水方向为自东向西的污水管道。在X号线车站西侧存在一道管径1000mm,排水方向为自北向南的雨水管道;一道管径800mm,排水方向为自北向南的污水管道。施工期间现场排水可以根据水体类别及具体区域位置采用如下排水方案来解决:
⑴、施工期间收集汇总的雨水直接经一级沉淀池处理后,根据区域位置就近排入市政雨水管网。
长沙市轨道交通3号线1期工程土建施工XXXXX标
施工现场排水方案
⑵、施工污水经基坑底、基坑顶、施工边界等主要收集系统集中收集,三级沉淀池集中沉淀处理,达标后排至市政雨水管网。
⑶、生活雨、污水采用雨、污分流的方式布管,集中汇总收集、处理达标后利用高差自由排放至XXX路的雨、污水管道。生活污水采用现场砌筑化粪池,通过池化后排入城市管网内,化粪池内的沉淀物定期请环卫部门抽排。
⑷、在现场修筑各类排水设施时,根据场地施工安排、施工区域划分、排水类别、周边市政雨、污水管道接驳井位置,统一规划、合理的进行施工现场排水布置。接驳井及雨、污水管道具体位置见XXXXX站施工现场排水设施布置图。
六、施工现场排水方案
本工程施工期间在施工现场西端(施工三期内)搭设2幢两层共32间的彩钢板活动房作为现场办公及施工人员宿舍,在施工前对场地内加工场、施工便道、办公及驻地场地范围采用混凝土硬化处理,并根据场地地形条件在场地四周合理的安排各类截、排水管沟及污水处理设施,各类排水设施尽量布置在离施工操作面不远且不影响交通的区域。施工现场及生活区临时排水设施布置,本着经济、实用的原则,在充分考虑到基坑、便道、生活区及加工厂的实际情况,将本工程施工场地范围内排水系统分为:场区周边排水、基坑顶部排水、基坑底部排水、车辆冲洗排水及办公及生活区排水五部分来进行,临时排水设施布置方案如下:
1、作业条件准备
⑴、已采取适宜的防护措施,确保施工过程中居民和车辆的正常出行
长沙市轨道交通3号线1期工程土建施工XXXXX标
施工现场排水方案
和生活;
⑵、管线位置、埋深、管径及接驳口位置已探明,并做好施工前的各项技术准备工作。
2、各类排水设施的设置
⑴、场区周边截、排水沟
由于场区周边地势比场地内地势高,所以在施工围挡范围周边布置(300*300mm)的截、排水沟用于收集、排放场地外侧的雨水。收集汇总后的雨水经过(500*500*500mm)沉淀池沉淀后,根据区域位置就近排入市政雨水管道接驳井内。
⑵、基坑顶部截、排水沟
在基坑边缘处修筑(300*300mm)的截、排水沟,用于收集场地内地表雨水和基坑开挖期间基底集水井内施工污水。收集汇总后的水体经过基坑边缘截、排水沟流入现场修筑的三级沉淀池内(三级沉淀池按照标准尺寸4500X3000X2000mm进行施做),经沉淀处理、达标后排入市政雨水管道接驳井内。
⑶、基坑底部集水沟、集水井
考虑到本处XX站基坑开挖施工期间基坑面积较大,故在基坑底靠近连续墙边0.5m处开挖(300*300mm)的集水沟、沿集水沟方向每间隔约50米开挖一处直径0.6m、深度约1-2m的集水井,集水通过潜水泵提升后排至基坑顶部截、排水沟内。排入基坑顶部截、排水沟内的基坑施工水体经过上述第⑵条,经三级沉淀池沉淀处理、达标后排入市政雨水管道接驳井内。
⑷、车辆冲洗排放
长沙市轨道交通3号线1期工程土建施工XXXXX标
施工现场排水方案
现场大门内设车辆冲洗系统,通过若干喷嘴形成压力水流,对出入车辆轮胎、底盘进行冲刷,冲刷水通过承重篦子汇入集水井,经三级沉淀池处理达标后排入市政雨水管道接驳井内,防止污染周边环境。
⑸、生活区内污水处理设施
生活区污水排放主要考虑厨房、洗漱间、卫生间的污水排放。对于食堂及洗漱间产生的含有油污的污水,须先经过修筑的隔油池净化处理、达标后排至市政污水管网;对于厕所污水先排入场内修筑的化粪池内,通过池化处理、达标后排入市政污水管网;对于生活区内的雨水经过修筑的排水沟收集后排入沉淀池,经沉淀根据区域位置就近排入市政雨水管道接驳井内。
⑹、施工现场排水设备
施工现场配备排水泵、排污泵等设备,对不可预测的自然现象及施工时的意外情况须进行全力以赴的应急抢救,确保如遇大雨等自然灾害时,施工现场的泥浆、污物等严禁直接排入城市管网。
3、排水系统的分类
⑴、自然排水系统
本工程施工现场位于长沙市开福区,施工占地面积较大、高低落差较小。为满足排水需要,施工前对现有场地内标高进行全面测量后,根据测量结果修筑排水设施,使雨水能够沿地面纵坡自然排水。
⑵、强制排水系统
施工现场强制排水主要为基坑内排水:因基坑高度低于现场地坪标高,故在基坑上口设置砖砌挡水坎防止雨水冲刷基坑侧壁或浸泡基坑;另在基
长沙市轨道交通3号线1期工程土建施工XXXXX标
施工现场排水方案
坑底周边设置300*300排水沟,并在最低处设置集水坑,由潜水泵从集水坑抽排至基坑顶部排水系统后,由地面排水系统经处理后排出。
七、排水管理
现场排水系统由专人负责管理,管理人员施工期间每天检查排水系统,一旦发现排水系统有损坏情况,应立即派人专门修补。另外应经常检查排水沟、集水井、沉淀池等泥沙沉淀情况,当泥沙沉淀较多时,应派专人负责清理。强制排水用水泵在未使用期时应统一保管,并检查运转情况,以使强制排水时正常运转。
我公司将全面负责处理好施工现场排水,并接受各方的监督和指导,确保施工中产生的泥浆、养护用水等未经沉淀池沉淀不得排放,确保雨季现场排水顺畅,采取一切措施减轻水体污染,使生产作业及环境得到有效的保障,确保市政排水管网畅通。
八、现场临时排水附图
地铁车站施工实习生的工作总结
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


