代数式与方程教案范文
代数式与方程教案范文第1篇
知识与技能:理解直线方程的点斜式的特点和使用范围
过程与方法:在知道直线上一点和直线斜率的基础上,通过师生探讨得出点斜式方程 情感态度价值观:养成数形结合的思想,可以使用联系的观点看问题。
二、教学重难点
教学重点:点斜式方程
教学难点:会使用点斜式方程
三、教学用具:直尺,多媒体
四、教学过程
1、 复习导入,引入新知
我们确定一条直线需要知道哪些条件呢?(直线上一点,直线的斜率)
那么我们能不能用直线上这一点的坐标和直线的斜率把整条直线所有点的坐标应该满足的关系表达出来呢?这就是我们今天所要学习的课程《直线的方程》。
2、 师生互动,探索新知
探究一:在平面直角坐标系中,直线L过点P(0,3),斜率K=2,Q(X,Y)是直线L上不同于点P的任意一点,如ppt上图例所示。 通过上节课所学,我们可以得出什么?
由于P,Q都在这条直线上,我们就可以用这两点的坐标来表示直线L的斜率,可以得出公式:Y-3X-0=2 那我们就可以的出方程Y=2X+3 所以就有L上的任意一点坐标(X,Y)都满足方程Y=2X=3,满足方程Y=2X+3的每一个(X,Y)所对应的点都在直线L上。
因此我们可以的出结论:一般的如果一条直线l上任意一点的坐标(x,y)都满足一个方程,满足该方程的每一个数对(x,y)所确定的点都在直线l上,我们就把这个方程称为l的直线方程,因此,当我们知道了直线上的一点p(x,y),和它的斜率,我们就可以求出直线方程。
3、 知识剖析,深化理解
我们刚刚知道了如何来求直线方程,那现在同学来做做这一个例子。 设 Q(X,Y)是直线L上不同于点P的任意一点,由于点P,Q都在L,求直线的方程。 设点P(X0,,Y0),先表示出这个直线的额斜率是Y-Y0X-X0=K,然后可以推得公式Y-Y0=K(X-X0) 那如果当X=X0,这个公式就没有意义,还有就是分母不能为零,所以这里要注意(X不能等于X0)
1) 过点
,斜率是K的直线L上的点,其坐标都满足方程(1)吗? P(X0,Y0)
(X0,Y0)
,斜率为K的直线L上吗? 2) 坐标满足方程(1)的点都在经过P那么像这种由直线上一个点和一个斜率所求的方程,就称为直线方程的点斜式。 直线的点斜式是不是满足坐标平面上所有的直线呢?
小组讨论:当直线与X轴垂直时,倾斜角为直角时,直线方程怎么写?(Y-Y0=KX) 当直线与Y轴垂直时,倾斜角为零时,直线方程怎么写?(Y=K(X-X0) 那我们带入与X垂直的一条线上的坐标(3,0)(3,1),斜率为K,算出(Y=3K,Y=3K+1)
点斜式就不满足这个条件的直线,大家子啊照例做做下一个,还是不一样是吧,这个点斜式不能满足。(它只能满足斜率存在的直线。)
4、 巩固提高:做一做习题1的第一小题:经过点p(1,3)斜率为1,求出方程,并且画图。(Y=X+2)
5、 课堂小结:这节课我们学习了直线方程的点斜式方程,知道了这种方程也有他的局限性,就是不使用斜率不存在的直线,那怎么办呢?我们下节课继续学习。课后大家预习后边的内容,巩固今天所学习的知识。
代数式与方程教案范文第2篇
§1:函数与方程
教学分析:课本选取探究具体的一元二次方程的根与其对应二次函数的图像与x轴交点的横坐标之间的关系作为本节的入口。其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系。 教学目标:
1、让学生明确“方程的根”与“函数的零点”的密切联系,学会结合函数图像性质判断方程根的个数,学会用多种方法求方程的根和函数的零点。
2、通过本节学习让学生掌握“由特殊到一般”的认识规律,在今后学习中利用这一规律探索更多的未知世界。 重点难点:根据二次函数图像与x轴的交点个数判断一元二次方程的根的个数;函数零点的概念。 复习引入:
同学们好,今天我们来进行第四章函数应用的学习,这一节课我们先来学习第一节函数与方程。在讲新课之前,我们已经学习过一元一次方程、一元二次方程,并会对它们进行求解。现在来看几个方程:①ax+b=0(a0) 这是一个一元一次方程,我们能很容易求出方程的解是x=-.②ax2+bx+c=0(a0) 这是一个一元二次方程,在对一ab元二次方程求解时我们会先用判别式△=b2-4ac来判断方程是否有实解。当△>0时,一元二次方程有两个不相等的实数根,x1≠x2;当△=0时,一元二次方程有两个相等的实数根,x1=x2;当△<0时,一元二次方程没有实数根。当方程有实数根时,我们可以通过求根公式求出一元二次方程的根:x=
bb4ac2a2。③x5+4x3+3x2+2x+1=0
- 1函数的零点。
说明:①零点是所在函数图像与x轴交点的横坐标。
②零点是一个实数,并不是一个点。 ③函数的零点就是相应方程的根。
④函数零点的个数与相应方程的根的个数相等。
学习过零点概念及以上4点说明,我们已经学会判断零点:要求函数的零点就要看函数图像与x轴是否有交点,也即相应方程是否有实根。因此得到判断零点的方法。
2. 判断零点的方法:方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点。可得出:方程f(x)=0的实根与函数y=f(x)的零点是一一对应的。
那如果所给的函数的图像不易画出,又不能求出其对应方程的根时,我们怎样判断函数有没有零点呢?
观察例1中第一个方程的对应图像:f(x) = x2-2x-3 从图像上看,我们知道函数f(x) = x2-2x-3有两个零点:-1,3.而能找到区间[-2,0]使零点-1在[-2,0]内,区间[2,4]使零点3在[2,4]内。且有f(-2)=5>0,f(0)=-3<0, f(-2)f(0)<0; f(2)=-3<0, f(4)=5>0, f(2)f(4)<0.可以发现f(-2)f(0)<0,函数f(x) = x2-2x-3在区间(-2,0)内有零点-1是方程x2-2x-3=0的一个根;同样地,f(2)f(4)<0,函数f(x) = x2-2x-3在区间(2,4)内有零点3是方程x2-2x-3=0的另一个根。因此可以得到以下结论:
3.零点存在性定理: 若函数y=f(x)在闭区间[a,b]的图像是连续曲
- 35,一个小于2。
分析:转化判断函数f(x) =(x-2)(x-5)-1在区间(-∞,2)和(5, +∞) 内各有一个零点。
解:考虑函数f(x) =(x-2)(x-5)-1,有f(2) =(2-2)(2-5)-1=-1<0,f(5) =(5-2)(5-5)-1=-1<0,又因为f(x)的图像是开口向上的抛物线,在(-∞,2)内存在一点a,使f(a)>0;在(5, +∞)内存在一点b,使f(b)>0,所以抛物线与横轴在(a,2)内有一个交点,在(5, b)内也有一个交点,而该交点即是方程的解。所以方程(x-2)(x-5)=1有两个相异的实数解,且一个大于5,一个小于2。
四、 零点存在性定理说:“若f(a)f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间(a,b)内至少有一个实数解”,它只指出了方程f(x)=0实数解的存在,并不能判断具体有多少个实数解。那改为f(a)f(b)>0时,
问题:如果函数y=f(x) 在区间[a,b]上的图像是连续不断的一条曲线,并且f(a)f(b)>0,那么函数y=f(x) 在区间(a,b)内是否有零点?可能有几个零点?
代数式与方程教案范文第3篇
[师]同学们,我们前面几节课,我们学习了直线方程的各种形式,以一个方程的解为坐标的点都是某条直线上的点;反之这条直线上的点的坐标都是这个方程的解。这是这个方程叫做这条直线的方程;这条直线叫做这个方程的直线。现在大家回忆一下,我们都学习了直线方程的哪些特殊的形式。我们学习了直线方程的点斜式、斜截式、两点式、截距式等形式,对直线方程的表示形式有了一定的认识.现在,我们来回顾一下它们的基本形式. 点斜式的基本形式:y-y1=k(x-x1)适用于斜率存在的直线. 斜截式的基本形式:y=kx+b适用于斜率存在的直线;
两点式的基本形式:直线;
截距式的基本形式:
yy1xx1(x1≠x2,y1≠y2)适用于斜率存在且不为0的y2y1x2x1xy=1(a,b≠0)适用于横纵截距都存在且不为0的直线. ab在使用这些方程时要注意它们时要注意它们的限制条件。
那么大家观察一下这些方程,都是x,y的几次方程啊?[生]都是关于x,y的二元一次方程. 那么我们原来在代数中学过二元一次方程它的一般形式是什么呀?(板书)Ax+By+C=0 我们现在来看一次这几种学过的特殊形式,它们经过一些变形,比如说去分母、移项、合并,这样一些变形步骤。能不能最后都化成这个统一的形式呢?比如说y=kx+b,xayb=1,这些我们最终都可以吧它们变成这种形式。剩下的两种形式的变形留给同学们课下自己去完成。那么在学习这些直线的特殊形式的时候,应该说各有其特点,但是也有些不足。在使用的过程中有些局限性。比如说点斜式和斜截式它们的斜率都必须存在,两点式适用于适用于斜率存在且不为0的直线,截距式适用于横纵截距都存在且不为0的直线.那么我们现在想一想有没有另外一种形式,可以综合他们各自的一些特点,也就是这些方程最后化成一个统一的形式。能不能代表平面直角坐标系中的直线。要解决这些问题呢,要分两个方面进行讨论。
1.直线和二元一次方程的关系
(1)在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程.一个方面:是不是平面上的任意直线,表示它的方程都可以写成Ax+By+C=0的形式,刚才大家做了一些练习,当然这只是特殊形式,是不是所有的直线都可以写成这种形式呢?直线按斜率来分类可以分几类?斜率存在和斜率不存在。这两类是不是都可以转化成一元二次方程的形式。当倾斜角不等于90°是斜率存在,直线方程可以写成y=kx+b的形式。可以转化成kx-y+b=0和Ax+By+C=0比较发现什么?A=k B=-1 C=b 。当倾斜角等于90°斜率不存在,直线方程可以写成x=x0的形式。可以转化成x-x0=0和Ax+By+C=0比较发现什么?A=1 B=0 C=-x0 好,我们就把它分为这两种情况,当斜率存在的时候我们一般把它设成一个简单的斜截式,斜截式经过变形就可以化成一般的形式。而对于斜率不存在的时候,它的方程形式就是x=x0直线方程也可以转化成这样的一个形式。那么由此可以下这样一个结论:平面上的任意的一条直线,表示它的方程最后都可以转化成二元一次方程的形式。刚才我们从这个角度考虑,就是直线都可以转化成二元一次方程,现在我们反过来看,是不是任意的一个二元一次方程最终在直角坐标系下都能够表示直线。
(2)在平面直角坐标系中,任何关于x,y的二元一次方程都表示一条直线. 因为x,y的二元一次方程的一般形式是Ax+By+C=0,其中A、B不同时为0,在B≠0和B=0的两种情况下,二元一次方程可分别化成直线的斜截式方程y=-示与y轴平行或重合的直线方程x=-
ACx和表BBC. A也就是说Ax+By+C=0 (A,B不同时为零)大家想想如果AB都等于零这个直线方程就没了。现在我们考虑一下,这个方程能不能经过一些适当的变形,变成我们熟悉的形式,而确定它就是一个在平面直角坐标系中就是一条直线呢?By=-Ax-C 斜截式方程,斜率是 是y轴上的截距。二元一次方程通过变形在直角坐标系下都表示一条直线。那么我们从两个方面在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程.在平面直角坐标系中,二元一次方程都表示一条直线. 根据上述结论,我们可以得到直线方程的一般式. 我们就把代数中的二元一次方程定义为直线的一般式方程。
定义:我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫做直线的一般式方程。 我们在学习前面直线的几种特殊形式的方程,一眼就可以看出这条直线的某些特点,比如说点斜式就可以看出它的斜率还有过一个定点,还有两点式可以看出它过两个定点。那么我们怎么通过直线的一般式方程观察直线的一些特点呢?比如说A=0表示什么样一条直线?y=- 平行于x轴的直线,也有可能与x轴重合。如果要平行于y轴这个系数要满足什么样的条件?如果旦旦是c等于零,通过原点的直线。假如AB都不等于零它的斜率我们怎么看出来?这些直线的特点我们要能掌握住。我们对直线的一般式方程有了一定的了解。直线的一般式方程和和那几种特殊的形式之间有一个互相的转化,那么我们来看一个例子,通过一些转化来解决实际问题。
[例1]已知直线经过点A(6,-4),斜率为-
4,求直线的点斜式和一般式方程. 3分析:本题中的直线方程的点斜式可直接代入点斜式得到,主要让学生体会由点斜式向一般式的转化,把握直线方程一般式的特点. 解:经过点A(6,-4),并且斜率等于-
代数式与方程教案范文第4篇
本节课以提升数学核心素养的为目标任务,树立学科育人的教学理念,以层层递进的“问题串”引导学生学习,运用从特殊到一般的研究策略,进行教学流程的 “再创造”,积极启发学生思考。
2、教学分析
在本节课之前,已经学习了函数概念与性质,研究并掌握了部分基本初等函数,接下来就要研究函数的应用。函数的应用,教材分三步来展开,第一步,建立一般方程与相应的函数的本质联系.第二步,在用二分法求方程近似解的过程中,通过函数图象和性质研究方程的解,进一步体现函数与方程的关系.第三步,在函数模型的应用过程中,通过建立函数模型以及模型的求解,更全面地体现函数与方程的关系逐步建立起函数与方程的联系.
3、教学目标
(1)经历函数零点概念生成过程,理解函数的零点与方程的根之间的本质联系;
(2)经历零点存在性定理的发现过程,理解零点存在定理,会判断函数在某区间内是否有零点;
(3)积极培养学生良好的学习习惯,提升数学核心素养。
4、教学重点、难点
教学重点:零点的概念及零点存在性的判定。
教学难点:探究判断函数的零点个数和所在区间的方法。
5、教学过程
环节一:利用一个学生不能求解的方程来创设问题情境,激发学生的求知欲,引导学生将复杂的问题简单化,从已有认知结构出发来思考问题
环节二:建立一元二次方程的根与相应二次函数图象的关系,突出数形结合的思想方法,并引导学生从特殊到一般,得到方程的根与相应函数零点的本质联系
环节三:利用二次函数的图象与性质,从直观到抽象,具体到一般,得到判断函数零点存在的充分条件(即函数的零点存在性定理)
环节四:学会判断函数在某区间内是否存在零点
教学过程与操作设计: 环节
教学内容设置 师生双边互动 创
设
情
境
《方程的根与函数的零点》教学设计先来观察几个具体的一元二次方程的根及其相应的二次函数的图象: 方程与函数 方程与函数 方程与函数
师:引导学生解方程,画函数图象,分析方程的根与图象和轴交点坐标的关系,引出零点的概念.
组
织
探
究
二次函数的零点: 二次函数
.
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
生:独立思考完成解答,观察、思考、总结、概括得出结论,并进行交流.
师:上述结论推广到一般的一元二次方程和二次函数又怎样?
环节
教学内容设置 师生双边互动 组
织
探
究 函数零点的概念:
对于函数,把使成立的实数叫做函数的零点.
函数零点的意义:
函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标. 即:
方程有实数根函数的图象与轴有交点函数有零点.
函数零点的求法: 求函数的零点:
(代数法)求方程的实数根;
(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.
师:引导学生仔细体会左边的这段文字,感悟其中的思想方法.
生:认真理解函数零点的意义,并根据函数零点的意义探索其求法:
代数法;
几何法.
环节
教学内容设置 师生互动设计 探 究 与 发 现
零点存在性的探索:
(Ⅰ)观察二次函数的图象:
在区间上有零点______; _______,_______, _____0(<或>).
在区间上有零点______; ____0(<或>).
由以上探索,你可以得出什么样的结论?
怎样利用函数零点存在性定理,断定函数在某给定区间上是否存在零点.
生:根据函数零点的意义探索研究二次函数的零点情况,形成结论.
师:引导学生结合函数图象,分析函数在区间端点上的函数值的符号情况,与函数零点是否存在之间的关系. 环节
教学内容设置 师生互动设计 例 题 研 究
例1.求函数的零点个数. 问题:
1)你可以想到什么方法来判断函数零点个数?
2)判断函数的单调性,由单调性你能得该函数的单调性具有什么特性?
《方程的根与函数的零点》教学设计
师:引导学生探索判断函数零点的方法,指出可以借助计算机或计算器来画函数的图象,结合图象对函数有一个零点形成直观的认识.
生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用函数单调性判断零点的个数.
代数式与方程教案范文第5篇
教学目标:
1、知识与技能:进一步认识用字母表示数的意义及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式等。掌握解方程的方法及列方程解决问题的步骤,解决问题的关键是找出数量之间的相等关系,能根据题意正确地列出方程,解答两、三步计算的问题。
2、过程与方法: 能根据问题的特点选择恰当的方法来解答,进一步培养分析数量关系的能力,发展思维。
3、情感态度与价值观:提高整体认识知识的能力,找到知识间的内在联系。
教学重点:
熟练找出等量关系,能根据题意正确地列方程解决问题。 教学难点:
提高学生的解决问题的能力,整理知识的能力。
教学准备:
电脑课件;学生:与式与方程有关的相关知识
教学过程:
一、创设情境,引出知识
出示:学校组织远足活动。原计划每小时走3.8km,3小时到达目的地。实际2.5小时走完了原定路程,平均每小时走了多少千米?(列方程解应用题)
解题过程
解:设现在平均每小时走了x千米。
2.5x=3.83 2.5x2.5=11.42.5 x=4.56
答:平均每小时走了4.56千米?
二、提出问题
1、这是我们熟悉的列方程解决问题,用方程解决问题是我们解题的一种方法。请你以小组为单位,合作自主梳理有关代数的知识。
2、小组进行讨论
(设计意图:从学生已有知识经验基础出发,将这道具体的例题作为一个点,四散出各个基础知识,边回顾边整理,成为一个具体的体系,使学生明白基础的重要。)
三、分析知识建立联系
(一)学生汇报各类知识 小组汇报知识,要求按照由浅入深的顺序汇报,边汇报教师边完善,同时进行板书。
(设计意图:小组合作后需要集体进行知识的再加工与再整理,使知识更加完善。)
(二)解方程与方程的解
1、具体知识
4.56是方程的解,而求这个解的过程就是解方程。
方程是含有字母的等式
代数式与方程教案范文第6篇
班级姓名
一、判断(对的打“√”,错的打“”)
1、所有的小数都小于整数。()
2、比
()
3、1271不能化成有限小数。()
4、1米的与7米的同样长。() 1599756小而比大的分数,只有一个数。999
5、合格率和出勤率都不会超过 100%。()
6、0表示没有,所以0不是一个数。()
7、0.475保留两位小数约等于0.48。()
8、比3小的整数只有两个。( )
9、4和0.25互为倒数。( )
10、去掉小数点后面的0,小数的大小不变。( )
11、5.095保留一位小数约是5.0。( )
12、600006000是由6个亿和6个千组成的.()
13、一个小数的小数点先向右移动两位,再向左移动一位,这个小数就扩大了10倍.()
14、一个数(0除外)除以一个真分数,所得的商大于被除数.()
15、饲养场鸡比鸭多
二、填空
1、根据国家统计局统计,2004年我国总人口为129988万人,读作()万人,四舍五入到亿位约是()。
2、京福高速公路三明段已顺利通车,累计投资二十九亿四千二百万元,这个数写作(),改写成以“亿元”作单位的数是()亿元。
3、我国香港特别行政区的总面积是十一亿零三百万平方米,写作()平方米,改写成用“万平方米”作单位是()。
代数式与方程教案范文
声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。如若本站内容侵犯了原著者的合法权益,可联系本站删除。


